
IEEE Computer Society Conference on Computer Vision and Pattern Recognition                      June 24-28, 2008   

Physical Simulation for
Probabilistic Motion Tracking

Marek Vondrak* Leonid Sigal‡ Chad Jenkins*

*Brown University
‡University of Toronto



IEEE Computer Society Conference on Computer Vision and Pattern Recognition                      June 24-28, 2008   

Articulated Tracking
• Given: observed image sequence {If}
• Infer: kinematic poses {qf} over time

qfIf Frame fImage Pose
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Articulated Tracking
• Given: observed image sequence {If}
• Infer: kinematic poses {qf} over time

• Such that: {qf} are physically plausible

qfIf Frame fImage Pose
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Kinematic Bayesian Filter

– Motion model
• p(qf | qf-1)

– Likelihood model
• p(If | qf)
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[ A. Blake, M. Isard,  ’98 ]

[ Deutscher et. at.,  ’00 ]
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Kinematic Bayesian Filter

Given pose qf-1 predict pose qf

Does pose qf reconcile with image If?

– Motion model
• p(qf | qf-1)

– Likelihood model
• p(If | qf)
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Why Is Tracking Hard?
• High dimensionality (> 30 degrees of freedom)
• Variability in imaging conditions 
• Variability in appearance and clothing
• Physically realistic  motion priors are hard (and 

often expensive) to model and characterize 
– Foot skate, out-of-plane rotations, jerky motion, etc.

Pose space qf
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• Variability in imaging conditions 
• Variability in appearance and clothing
• motion priors are hard (and 

often expensive) to model and characterize 
– Foot skate, out-of-plane rotations, jerky motion, etc.
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Physics-based Tracking
• Incorporate physics-based predictions into Bayesian Filtering
• Motion model based on full body 3D physical simulation
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Benefits of modeling dynamics
• Ensures physical realism
• Some constraints are easier to specify (e.g. force limits, balance)
• Should generalize to new environments and dynamic 

interactions within the environment (e.g. motion adaptation
[ A. Witkin, M. Kass,  ’88 ] )

External forces 
(e.g. gravity,
contact forces)

Internal forces (e.g. 
joint constraint forces, 
actuation forces)

Actuation (motor) 
forces drive the body
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Related Work

C. Wren, A. Pentland, 
FG 1998 

D. Metaxas, D. 
Terzopoulos, PAMI 1993

• Models of dynamics
– upper body (limited physical interactions)

• Models of observations
– 3D marker, stereo

• Unimodal model of posterior
– Kalman filtering
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Related Work

• Models of dynamics
– lower body (biomechanically inspired)

• Models of observations
– monocular

• Multi-modal model of posterior
– particle filtering

M. Brubaker, A. Hertzmann, 
D. Fleet, CVPR 2007

M. Brubaker, D. Fleet, CVPR 
2008

C. Wren, A. Pentland, 
FG 1998 

D. Metaxas, D. 
Terzopoulos, PAMI 1993
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Related Work (Graphics/Robotics)

K. Yin, K. Loken, M. van 
de Panne, SIGGRAPH ‘07

P. Wrotek, C. Jenkins, M. 
McGuire, SIGGRAPH ‘06

V. Zoran, A. Majkowska, B. 
Chiu, M. Fast, SIGGRAPH ‘05

• Generic physics engines allow for 
complex models of the dynamics
– Static/dynamic friction 
– Joint limit constraints
– Active/static balance
– Muscle models 

J. Hodgins, W. Wooten, D. Brogan, 
J. O'Brien, SIGGRAPH ‘95
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Physics-based Particle Filtering
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[ ]...... ffx τ=• We need to let the state                                    

Actuation (motor) forces 
drive the body fτ
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Physics-based Particle Filtering
• Problem:

– Priors over valid motor force (torque) trajectories are hard to characterize
• Solution(s):

– Use simplified physical models for which priors are easy to model

– Assume that we have the model for kinematics and solve for the forces implicitly 
(i.e. use a controller)

Brubaker et. al., ‘07

Actuation (motor) forces 
drive the body fτ
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Body Model and State Space
• World model

– Known static environment
– Loop-free articulated figure

• 13 rigid bodies
• Known physical properties (geometry, 

mass, inertial)

• 31 degrees of freedom (DOFs)

1-DOF
2-DOF
3-DOF

State vector:

Dynamic State

[ ]πqqx &=

Kinematic State

Control strategy



IEEE Computer Society Conference on Computer Vision and Pattern Recognition                      June 24-28, 2008   

Motion Model: Control Loop
• Executed for every hypothesis in our multi-hypothesis tracking framework

0q

Initialization

0q&

Motion Planning Motion Control

Dynamics
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• Control that follows joint angles alone is problematic
• Locomotion results only from interactions with ground

Motion Model: Motion Control
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Motion Model: Motion Control

New hybrid controller that follows desired 
joint angles as well as 3D virtual markers

• Control that follows joint angles alone is problematic
• Locomotion results only from interactions with ground
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• Given the intended 
kinematic pose qd
– the controller computes 

intended positions of 
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– adjusts the positions so they 
do not penetrate the 
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– solves for additional 
constraints that would drive 
the current dynamic pose
towards the adjusted 
intended kinematic pose
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Motion Model: Motion Control

Current dynamic 
pose

• Given the intended 
kinematic pose qd
– the controller computes 

intended positions of 
markers

– adjusts the positions so they 
do not penetrate the 
environment

– solves for additional 
constraints that would drive 
the current dynamic pose
towards the adjusted 
intended kinematic pose

Intended kinematic
pose

Inverse Dynamics
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Motion Model: Motion Control
Motion simulation using Crisis physics engine

Traditional Controller Our Controller
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How Good is our Motion Model? 
Given: a pose (position and velocity) of the body

from walking mocap data
Goal: predict the state some time ∆t into the future

),0(1 Σ+=+ Nqq ff

),0(1 Σ+⋅∆+=+ Nqtqq fff &

),0(),,(1 Σ+=+ Nqqfq P
fff π&

),0(),,(1 Σ+=+ Nqqfq A
fff π&

Physics (passive rag-doll):

No prior:

Constant velocity prior:

Physics (active mocap control):
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Given: a pose (position and velocity) of the body

from walking mocap data
Goal: predict the state some time ∆t into the future

Long-term predictions are more 
accurate with actively 
controlled physics-based model
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How Good is our Motion Model? 
Given: a pose (position and corrupted velocity) of the body

from walking mocap data
Goal: predict the state some time ∆t into the future

),0(1 Σ+=+ Nqq ff

No prior:

),0(1 Σ+⋅∆+=+ Nqtqq fff &

),0(),,(1 Σ+=+ Nqqfq P
fff π&

Physics (passive rag-doll):

Constant velocity prior:

),0(),,(1 Σ+=+ Nqqfq A
fff π&

Physics (active mocap control):
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Likelihood Model
• Measures how well a state hypothesis explains image 

observations
– We use a generic likelihood model based on edges and silhouettes
– Combine observations from different sources of information and across 

camera views assuming independence

• States carry both position and velocity information

f

f+1

[ Balan et. al., ’05 ]   [ Deutscher et. at.,  ’00 ]

[ Brubaker et. al., ’07 ]

See:
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Multi-view Tracking

Purple square:
Ground contact Inference: Particle Filtering

Motion Prior: Physics-based
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Multi-view Tracking: Comparison
with equal number of particles

Inference:
Motion Prior:

Particle Filtering
Physics-based

Particle Filtering
Smooth prior
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Multi-view Tracking: Comparison

Inference:
Motion Prior:

Particle Filtering
Physics-based

Annealed Particle Filtering
Smooth prior
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Quantitative Comparison: Multi-view
PF APF 5 PF Physics Physics S1-S3 L1 Physics S1-S3

120.7 ± 46.9 63.5 ± 17.9 33.9 ± 7.2 36.3 ± 9.0 52.5 ± 15.0

More accurate performance 
with lower variance

• HumanEva Dataset 
– contains synchronized motion capture data and multi-view video

[ Sigal et. al., ’06 ]
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Quantitative Comparison: Multi-view
PF APF 5 PF Physics PF Physics PF Physics

120.7 ± 46.9 63.5 ± 17.9 33.9 ± 7.2 36.3 ± 9.0 52.5 ± 15.0

L1 L1, S1, S2, S3 S1, S2, S3
L1 L1 L1

Training Subject
Test Subject

More accurate performance 
with lower variance

Performance does not degrade 
with larger training sets

Can generalize to new people
(at least for simple motions)
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Monocular Tracking

Inference: Particle Filtering
Motion Prior: Physics-based
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Monocular Tracking: Comparison

Inference:
Motion Prior:

Particle Filtering
Physics-based

Particle Filtering
Smooth prior
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Quantitative Comparison: Monocular

PF APF 5 PF Physics  
219.2 ±

72.1
249.6 ±

91.0
64.2 ±

23.4

More accurate performance 
with lower variance



IEEE Computer Society Conference on Computer Vision and Pattern Recognition                      June 24-28, 2008   

What about other motions?
e.g., Jogging
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Conclusions
• Framework for physically-plausible tracking

– Incorporates the full-body physics-based simulation as a 
temporal prior within the context of Bayesian filtering

• Non-linear non-stationary dynamics of the human body
• Interactions with the environment

– We also introduce novel hybrid constraint-based controller

– We show both qualitatively and qualitatively that the 
resulting framework is more accurate and physically 
plausible than results obtained using standard priors in 
Bayesian filtering methods
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Future Work
• More effective inference methods

– Better proposal functions for particle filtering
– Richer observation models

• More realistic models of human motion
– Better models of ground contact with multi-segment feet
– Active balancing

• Weaker reliance on motion capture data
– Action-specific controllers (or combinations of such)
– Learning of priors over motor forces for specific classes 

of motion (hard problem even for biomechanics)
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