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Abstract

Human motion tracking is an important problem in com-

puter vision. Most prior approaches have concentrated

on efficient inference algorithms and prior motion models;

however, few can explicitly account for physical plausibility

of recovered motion. The primary purpose of this work is to

enforce physical plausibility in the tracking of a single artic-

ulated human subject. Towards this end, we propose a full-

body 3D physical simulation-based prior that explicitly in-

corporates motion control and dynamics into the Bayesian

filtering framework. We consider the human’s motion to be

generated by a “control loop”. In this control loop, Newto-

nian physics approximates the rigid-body motion dynamics

of the human and the environment through the application

and integration of forces. Collisions generate interaction

forces to prevent physically impossible hypotheses. This al-

lows us to properly model human motion dynamics, ground

contact and environment interactions. For efficient infer-

ence in the resulting high-dimensional state space, we in-

troduce exemplar-based control strategy to reduce the ef-

fective search space. As a result we are able to recover

the physically-plausible kinematic and dynamic state of the

body from monocular and multi-view imagery. We show,

both quantitatively and qualitatively, that our approach per-

forms favorably with respect to standard Bayesian filtering

methods.

1. Introduction

Physics plays an important role in characterizing, de-

scribing and predicting motion. Dynamical simulation al-

lows one to computationally account for various physical

factors, e.g., a person’s mass, interaction with the ground

plane, friction, self-collisions or physical disturbances. A

tracking system can take advantage of physical prediction to

cope with incomplete information and reduce uncertainty.

For example, ambiguities due to self-occlusions in monoc-

ular sequences could potentially be resolved by incorporat-

ing a passive dynamics-based (rag-doll) prediction. Pose

changes that are unlikely or which violate physical con-

Figure 1. Incorporating physics-based dynamic simulation

with joint actuation and dynamic interaction into Bayesian fil-

tering. Illustration of the figure model, on the left, shows collision

geometries of the figure segments (top-left), the joints and skeletal

structure (middle-left), and the visual representation correspond-

ing to an image projection (bottom-left). Most joints have 3 an-

gular degrees of freedom (DOFs), except for the knee and elbow

joints (1 angular DOF), spine joint and the clavicle joints (2 angu-

lar DOFs) and the root joint (3 linear and 3 angular DOFs). The

figure’s motion is determined by its dynamics, actuation forces at

joints (right-top) and surface interaction at contacts (right-bottom).

straints can be given lower weights, constraining the space

of poses to search over and boosting performance. We

claim that proper utilization of dynamics-based prediction

will significantly improve the quality of motion tracking.

We propose a means for incorporating full body physical

simulation with probabilistic tracking. The tracked individ-

ual is modeled as an actuated articulated structure (“figure”)

composed of three-dimensional rigid body segments con-

nected by joints. Segments correspond to parts of the figure

body, like the torso, head and limbs. The inference process

uses Bayesian filtering to estimate the posterior probability

distribution over figure states, consisting of recursive pa-

rameterizations of figure poses (relative joint DOF values

and velocities) and associated information. Posterior distri-

bution is represented by samples corresponding to individ-

ual state hypotheses. New state hypotheses are generated

from past hypotheses by running motion predictors based

on physical simulation and interpolation of training joint

DOF data that define a prior over valid kinematic poses.

1



Prediction algorithms can exploit knowledge about the envi-

ronment and incorporate the intentions (policy, goal) of the

tracked individual into the prediction process. We assume

that the segment shapes, mass properties, collision geome-

tries and other associated parameters are known and remain

constant throughout the sequence.

We present results that demonstrate the utility of using a

physics-based prior for tracking, compare the method per-

formance against other commonly used methods and show

favorable performance under the effects of dynamic inter-

action exhibited in monocular and multi-view video.

2. Related Work

There has been a vast amount of work in computer vi-

sion in the past 10-15 years on articulated human motion
tracking (we refer reader to [5] for more detailed review

of the literature). Most approaches [1, 3, 13] have concen-

trated on development of efficient inference methods that

are able to handle the high-dimensionality of a human pose.

Generative methods typically propose to either learn a low-

dimensional embedding of the high-dimensional kinematic

data and then attempt to solve the problem in this more man-

ageable low-dimensional space [15], or alternatively advo-

cate the use of prior models to reduce effective search space

in the original high-dimensional space [3]. More recent dis-

criminative methods have attempted to go directly from im-

age features to the 3D articulated pose from either monocu-

lar imagery [11, 14] or multiple views.

Producing smooth and accurate tracking remains a chal-

lenging problem, especially for monocular imagery. In par-

ticular, many of the produced results lack plausible physi-

cal realism and often violate the constraints imposed on the

body by the world (resulting in out-of-plane rotations and

foot skate). Such artifacts can be attributed to the general

lack of physically plausible priors [2] (that can account for

static and/or dynamic balance and ground-person-object in-

teractions) which provide an untapped and very rich source

of information.

The computer graphics and robotics community, on the

other hand, has been very successful in developing realis-

tic physical models of human motion. These models for the

most part have only been developed and tested in the context

of synthesis (i.e. animation [6, 10, 19, 17]) and humanoid

robotics [18]. Here, we introduce a method that uses a full

body physics-based dynamical model as a prior for articu-

lated human motion tracking. This prior accounts for phys-

ically plausible human motion dynamics and environmental

interactions, such as disallowing foot-ground penetration.

Earliest work on integrating physical models with

vision-based tracking can be attributed to influential work

by Metaxas at el [9] and Wren at el [16]. In both [9] and

[16] a Lagrangian formulation of the dynamics was em-

ployed, within the context of a Kalman filter, for tracking

of simple upper body motions using segmented 3D marker

[9] or stereo [16] observations. In contrast, we incorpo-

rate full body human dynamical simulation into a Parti-

cle Filter, suited for multi-modal posteriors that commonly

arise from ambiguities in monocular imagery. More re-

cently, Brubaker at el [2] introduced a low-dimensional

biomechanically-inspired model that accounts for human

lower-body walking dynamics. The low-dimensional nature

of the model [2] facilated the tractable inference; however,

the model, while powerful, is inherently limited to walking

motions in 2D.

In this work, we introduce a more general full-body

model that can potentially model a large variety of human

motions. However, the high-dimensionality of our model

makes inference using standard techniques (e.g. particle

filtering) challenging. To this end, we also introduce an

exemplar-based prior for the dynamics to limit the effec-

tive search space and allow tractable inference in this high-

dimensional space. Exemplar based methods similar to ours

have been successfully used for articulated pose estimation

in [11, 15], dynamically adaptive animation [20], and hu-

manoid robot imitation [7]. Here, we extend the prior ex-

emplar methods [11] to deal with exemplars that account for

single-frame kinematics and dynamics of human motion.

3. Tracking with Dynamical Simulation

Tracking, including human motion tracking, is most of-

ten formulated as Bayesian filtering [4], which in com-

puter vision literature is often implemented in the form

of a Particle Filter (PF). In PF the posterior, p(xf |y1:f ),
where xf is the state of the body at time instant f and

y1:f is the set of observations up to the time instant f ,

is approximated using a set of (typically) weighted sam-

ples/particles and is computed recursively, p(xf+1|y1:f ) ∝
p(yf+1|xf+1)

∫
p(xf+1|xf )p(xf |y1:f ) dxf . In this for-

mulation, p(xf |y1:f ) is the posterior from the previous
frame and p(yf+1|xf+1) is the likelihood that measures
how well a hypothesis at time instant f + 1 explains the
observations; the p(xf+1|xf ) is often referred to as the tem-
poral prior and is the main focus of this paper.

The temporal prior is often modeled as a first or sec-

ond order linear dynamical system with Gaussian noise.

For example, in [1, 3] the non-informative smooth prior

p(xf+1|xf ) = N (xf ,Σ), which facilitates continuity in
the recovered motions, was used; alternatively, constant ve-

locity temporal priors of the form p(xf+1|xf ) = N (xf +
γf ,Σ) (where γf is scaled velocity learned or inferred),

have also been proposed [13] and shown to have favorable

properties when it comes to monocular imagery. However,

human motion, in general, is non-linear and non-stationary.

Physical Newtonian simulation is better suited as the ba-

sis for a temporal prior that addresses these issues. For

simulation, our world abstraction consists of a known static



environment and a loop-free articulated structure (“figure”)

representing the individual to be tracked. We assume “phys-

ical properties” (mass, inertial properties, and collision ge-

ometries) are known for each rigid body segment. Given

these properties and a state hypothesis at frame f , we use

constrained dynamics simulator within the “control loop”

to predict the state at the next frame. Constraints are used

to model various physical phenomena like interaction with

the environment and to control the figure motion. Motion

planning and control procedures incorporate training mo-

tion capture data in order to estimate the human’s next in-

tended pose and produce corresponding motion constraints

that would drive the figure towards its intended pose. Sim-

ilar to earlier methods, we add Gaussian noise (with diago-

nal covariance) to the dynamics to account for observation

noise and minor physical disturbances.

3.1. Body Model and State Space

Our figure (body) consists of 13 rigid body segments and
has a total of 31 degrees of freedom (DOFs), as illustrated in
Figure 1. Segments are linked to parent segments by either

1-DOF (hinge), 2-DOF (saddle) or 3-DOF (ball and socket)
rotational joints to ensure that only relevant rotations about

specific joint axes are possible. The root segment is “con-

nected” to the world space origin by a 6-DOF global “joint”

whose DOF values define the global figure orientation and

position. The values of rotational joint DOFs are encoded

using Euler angles. Collision geometries attached to indi-

vidual segments affect physical aspects of the motion. Seg-

ment shapes define visual appearance of the segments.

Joint DOF values concatenated along the kinematic tree

define the kinematic pose, q, of the figure. Joint DOF ve-

locities, q̇, defined as the time derivatives, together with

the kinematic pose q determine the figure’s dynamic pose

[q, q̇]. The pose is considered invalid if it causes self-
penetration of body parts and/or penetration with the en-

vironment, or if the joint DOF values are out of the valid

ranges that are learned from the training motion capture

data. These constraints on the kinematic pose allow us to

reject invalid samples early in the filtering process.

The control policy information comprises of the iden-

tifier π of the policy type and the frame index υ the pol-

icy became effective. The policy type can either be active

motion-capture-based (πA) or passive (πP ). When the pas-

sive policy is in effect, no motion control takes place. The

final figure state x is defined as a tuple [q, q̇, π, υ], where
q ∈ R

31, q̇ ∈ R
31, π ∈ {πA, πP }, υ ∈ N

1.

3.2. Likelihood

The likelihood function measures how well a particular

hypothesis explains image observations If . We employ a

relatively generic likelihood model that accounts for silhou-

ette and edge information in images [1]. We combine these

Figure 2. Image Likelihood. The coupled observation yf , con-

sisting of two consecutive frames If (upper left) and If+1 (lower

left), matches the dynamic pose [qf , q̇f ] well if features (silhou-
ette and edges) at frame f fit the kinematic pose qf (red pose) and

features at frame f + 1 fit the kinematic pose q̂f+1 (green pose).

two different feature types and across views (for multi-

view sequences) using independence assumptions. Result-

ing likelihood, p(If |qf ), of the kinematic pose, qf , at

frame f can be written as,

p(If |qf ) ∝
∏

views

[psh(If |qf )]wsh [pedge(If |qf )]wedge , (1)

where psh(If |qf ) and pedge(If |qf ) are the silhouette and
edge likelihood measures defined as in [1], and wsh and

wedge = 1−wsh are a priori weighting parameters
1 for the

two terms which account for the relative reliability between

these two features.

Because our state carries both kinematic and veloc-

ity information, we model the likelihood of dynamic pose

[qf , q̇f ] using information extracted from both the current
and the next frame; we refer to this as the coupled observa-

tion yf = [If , If+1]. We define the likelihood of the cou-
pled observation as a weighted product of two kinematic

likelihoods from above:

p(yf |xf ) ∝ p(If |qf )p(If+1|q̂f+1), (2)

where q̂f+1 = qf +∆t · q̇f is the estimate of the kinematic

state/pose at the next frame, assuming the ∆t is the time

between the two consecutive frames (see Figure 2).

This likelihood implicitly measures the velocity level in-

formation. Alternatively, one can formulate a likelihood

measure that explicitly computes the velocity information

[2] (e.g. using optical flow) and compares it to the corre-

sponding velocity components of the state vector. Notice

that portions of our state, xf , such as control policy, are

inherently unobservable and are assumed to have uniform

probability with respect to the likelihood function2.

1For all of the experiments in this paper we use wsh = wedge = 0.5.
2The resulting dual-counting of observations, only makes the unnor-

malized likelihood more peaked, and can formally be handled as in [2].



(q, q̇, e) = f([q, q̇],m)Initialization

m = g([q, q̇],qd)

qd

Dynamics

π, υ

(π, υ,qd) = h([q, q̇, π, υ], e)

Motion Planning

[q, q̇, π, υ] [q, q̇]

[q, q̇], e

[q, q̇],m

Motion Control

[q, q̇],qd

Figure 3. Prediction Model: Control Loop. Components of the

control loop and the data flow. Each iteration advances the figure

state [q, q̇, π, υ] by time ∆ and records recent events e so they

could be accounted for by the motion planner at the next itera-

tion. The little boxes within the components represent “memory

locations” holding component-specific state information preserved

across component exits.

3.3. Prediction

Prediction takes a potential figure state and estimates

what its value at the next frame would be if the state’s evo-

lution followed a certain motion model. We assume that hu-

man motion is governed by dynamics and by a thought pro-

cess that tasks the figure “muscles” so that desired motion

would be performed. Our motion model idealizes this pro-

cess and models the state evolution by executing the “con-

trol loop” outlined in Figure 3.

Given a figure state x = [q, q̇, π, υ] and a vector of sim-
ulation events3 e that occured during the previous loop it-

eration, the motion planner decides what the next control

policy π will be and, depending on the policy, proposes

next desired kinematic pose qd that the figure should fol-

low. This desired pose is then processed by the motion con-

troller to set up a set of motion constraints4, m, that need

to be honored by the dynamics simulator when updating the

dynamic pose [q, q̇]. Motion constraints implicitly generate
motor forces to actuate the figure. As a simpler alternative

to constraints, the motion controller could generate motor

forces directly by a proportional-derivative servo [17].

The actual prediction consists of initializing the model

from the given initial state x, looping through the control

loop for the time duration of the frame,∆t, (this might take

several iterations of size∆ ≪ ∆t) and returning the state x

at the end of the frame.

3.3.1 Motion Planning

The motion planner, denoted by the function h in Figure 3,

allows the incorporation of different motion priors into the

prediction process. It is responsible for picking a control

policy π (using the information about the figure state x and

3 Currently, corresponding to a binary indicator variable determining

whether a collision with environment has occured.
4In case no desired kinematic pose was proposed,m = ∅.

the feedback e), updating the frame index υ since the pol-

icy was in effect and generating a desired kinematic pose qd

for the motion controller using an algorithm specific to the

policy, if applicable. New policies πf+1 are sampled from

simple distributions p(πf+1|πf , ef ) that can depend on the
duration of time the current policy πf has been in effect;

for each potential value of ef and πf there is one such dis-

tribution5. Two control policies have been implemented so

far, the active motion-capture based policy and the passive

motion policy.

Passive motion. This policy lets the figure move passively

as if it was unconscious, and as a result no qd is generated

when in effect. Its purpose is to account for unmodeled

dynamics in the motion-capture based policy and it should

typically be activated for short periods of time.

Active motion. Our motion capture based policy actuates
the figure so that it would perform a motion similar to the
one seen in training motion capture data. We take an ex-
emplar based approach similar to that of [7, 11, 20]. To
that end, we first form a database of observed input-output
pairs (from training motion capture data) between a dy-
namic pose at frame f and a kinematic pose at frame f + 1,
D = {[q∗

f , q̇∗

f ],q∗

f+1
}n

f=1
. For pose invariance to abso-

lute global position and heading, corresponding degrees of
freedom are removed from q∗

f and q̇∗

f . Given this database,

that can span training data from multiple subjects and activ-
ities, our objective is to determine the intended kinematic
pose qd given a new dynamic pose [q, q̇]. We formulate
this as in [11] using a K nearest neighbors (k-NN) regres-
sion method, where a set of similar prototypes/exemplars
to the query point [q, q̇] are first found in the database and
then the qd is obtained by weighted averaging over their
corresponding outputs; the weights are set proportional to
the similarity of the prototype/exemplar to the query point.
This can be formally written as,

qd =
X

[q∗

f
,q̇∗

f
]∈neighborhood[q,q̇]

K(df ([q∗

f , q̇
∗

f ], [q, q̇])) · q∗

f+1,

where df ([q∗

f , q̇∗

f ], [q, q̇]) is the similarity measure and K
is the kernel function that determines the weight falloff as a

function of distance from the query point.

We use a similarity measure that is a linear combination

of positional and velocity information,

df ([q∗

f , q̇∗

f ], [q, q̇]) = wα · dM (q,q∗

f ) + wβ · dM (q̇, q̇∗

f ),

where dM (·) denotes a Mahalanobis distance between q

and q∗

f , and q̇ and q̇∗

f , respectively with covariance matri-

ces learned from the training data, {q∗

f}
n
f=1
and {q̇∗

f}
n
f=1
;

the wα and wβ are positive constants that account for the

relative weighting of the two terms. For the kernel function

we use a simple Gaussian, K = N (0, σ), with empirically
determined variance σ2.

5These discrete conditional distributions are defined empirically.



3.3.2 Motion Control

The motion controller g in Figure 3 conceptually approx-

imates the human’s muscle actuation to move the current

pose hypothesis [q, q̇] towards the intended kinematic pose
qd when the figure state is updated by dynamics. We formu-

late motion control as a set of soft constraints on q and q̇.

Each constraint is defined as an equality or inequality with a

softness constant determining what portion of the constraint

force should actually be applied to the constrained bodies.

Constraints can also limit force magnitude to account for

biomechanical properties of the human motion, like muscle

power limits or joint resistance.

Unlike traditional constraint-based controllers [8], we do

not directly control (constrain) the position of the figure

root so that global translation will result only from the fig-

ure’s interaction with the environment (contact)6. This in-

troduces several problems that require a new approach to

motion control. Consider the case where the desired kine-

matic pose qd is infeasible (e.g. causing penetration with

the environment). Leaving the linear DOFs unconstrained,

in this case, often leads to unexpected contacts/impacts with

an environment during simulation which can affect the mo-

tion adversely7. To address these problems, we propose

a new kind of hybrid constraint-based controller (see Fig-

ure 4) that aims to follow desired joint angles as well as tra-

jectories of selected markers (points) defined on the figure

segment geometries. The controller takes as input dynamic

pose [q, q̇] and desired kinematic pose qd and outputs a set

of desired angular velocities q̇d obtained using inverse dy-

namics.

Given the desired kinematic pose qd and positions z
j of

markers on selected figure segments (toes), the controller

first computes the marker positions with respect to the de-

sired pose (using forward kinematics), z
j
d. These positions

are then adjusted so that they do not penetrate the environ-

ment. The adjusted positions z
j
d produce requests on de-

sired positions of markers zj , which are subsequently com-

bined with requests on desired values of joint angles qk at

other figure segments (with no associated markers). Finally,

these requests are converted to constraintsm = {q̇i = q̇i
d}

on angular velocities that are passed to the simulator.

This process is implemented using first order inverse dy-

namics on a helper figure, where position and orientation re-

quests serve as inverse dynamics goals; we fix the root seg-

ment in the helper figure to ensure that these goals can not

be solved by simple translation or rotation of the root seg-

ment. The process consists of the following steps. First, the

6However, the orientation of the root segment is constrained, which

implements balancing. Although this is not physically correct, because the

orientation can change regardless of the support from the rest of the body,

it serves our purpose well.
7For example, unwanted impacts at the end of the walking cycle will

force the figure to step back instead of forward.

Figure 4.Motion Controller. Input kinematic pose q determines

the positions zj of markers on the feet (left), the desired kinematic

pose qd their desired positions z
j

d (middle). Desired positions are

adjusted to prevent penetration with the ground and constraints on

the marker velocities żj and joint DOF derivatives q̇k of the helper

figure are formed (right). Superscripts i index the figure’s angular

DOFs, superscripts j the markers and superscripts k the angular

DOFs of the figure segments that have no markers j attached.

pose of the helper figure is set up to mirror the current pose

[q, q̇] of the original figure. Next, given the value of cα > 0
determining how fast the controller should approach the de-

sired values, the requests on desired positions of markers

are converted to soft constraints on desired marker veloci-

ties żj = −cα · (zj − z
j
d), and the requests on desired joint

angles at other segments are converted to soft constraints on

desired joint angle velocities q̇k = −cα · (qk − qk
d). These

constraints are finally combined with additional constraints

on joint angle limits qi ≥ qi
min and qi ≤ qi

max; the con-

straints are solved and final desired angular velocities, q̇i
d,

are obtained. The last step is implemented by using the fa-

cilities of the physics engine.

3.3.3 Dynamical Simulation

The dynamical simulator, denoted by (with slight abuse of

notation) function f in the control loop, numerically in-

tegrates an input dynamic pose forward in time based on

Newtonian equations of motion and specified constraints.

We use the Crisis physics engine [21] which provides fa-

cilities for constraint-based motion control and implements

certain features suitable for motion tracking. The simula-

tor’s collision detection library is used to validate poses8.

The simulation state is advanced by time∆ by following
standard Newton-Euler equations of motion, while obeying

a set of constraints— the explicit motion control constraints

m, soft position constraints qi ≥ qi
min and qi ≤ qi

max

due to angular DOFs i implementing joint angle limits, and

implicit velocity or acceleration constraints enforcing non-

penetration and modeling friction. Because constraints,m,

are valid only with respect to a specific dynamic pose, the

constraints have to be reformulated each time the state is in-

ternally updated by the simulator. As a result, motion con-

troller can be called back throughout the simulation process.

8When noise is added to a kinematic pose, it has to be determined

whether the proposed pose is valid according to the metrics discussed in

Section 3.1.



This is illustrated by the corresponding arrows in Figure 3.

Once the simulation completes, the dynamic pose [q, q̇]
matching the resulting state of the physical representation

is returned. In order to provide feedback about events in the

simulated world for the motion planner (“perception”), re-

cent simulation events (see footnote 3) are recorded into e,

which is returned together with the updated pose.

4. Experiments

Datasets. In our experiments we make use of the two

publicly available datasets that contain synchronized mo-

tion capture (MoCap) and video data from multiple cam-

eras (@60 Htz). The use of this data allows us to (1) quan-

titatively analyze the performance (by treating MoCap as

ground truth), and (2) obtain reasonable initial poses for the

first frame of the sequence from which tracking can be ini-

tiated. The first dataset, used in [1], contains a single sub-

ject (L1) performing a walking motion with stopping, im-

aged with 4 grayscale cameras (see Figure 8). The second,
HUMANEVA dataset [12] (see Figure 7), contains three sub-

jects (S1 to S3) performing a variety of motions (e.g. walk-

ing, jogging, boxing) imaged with 7 cameras (we, however,

make use of the data from at most 3 color cameras for our

experiments). Each dataset contains disjoint training and

testing data, that we use accordingly.

Error. To quantitatively evaluate the performance we make

use of the metric employed in [1] and [12], where pose er-

ror is computed as an average distance between a set of 15
markers defined at the key joints and end points of the limbs.

Hence, in 3D this error has an intuitive interpretation of the

average joint distance, in (mm), between the ground truth

and recovered pose. In our monocular experiments, we use

an adaptation of this error, that measures the average joint

distance with respect to the position of the pelvis to avoid

biases that may arise due to depth ambiguities. For tracking

experiment, we report the error of the expected pose9.

Prediction. The key aspect of our physics-based prior is

the ability to perform accurate physically-plausible predic-

tions of the future state based on the current state estimates.

First, we set out to test how our prediction model compares,

quantitatively, with the standard prediction models based on

stationary linear dynamics described in Section 3.

Figure 6 (right) shows performance of the smooth prior

(No Prediction), constant velocity prior, and individual pre-

dictions based on the two control strategies implemented

within our physics-based prediction module. For all 4meth-
ods we use 200 frames of motion capture data from the L1
sequence to predict poses from 0.05 to 0.5 seconds ahead.

9Other error metrics such as optimistic error [1] and error of maximum

a posteriori (MAP) pose estimate produce very similar results.
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the quantitative evaluation of 4 different dynamical priors for hu-
man motion: smooth prior (No Prediction), constant velocity prior

and (separately) active and passive physics-based priors imple-

mented here. On the left, performance in the presence of noise

is explored. See text for further details.

We then compare our predictions to the poses observed by

motion capture data at corresponding times.

For short temporal predictions all methods perform

well; however, once the predictions are made further into

the future, our active motion control strategy, based on

exemplar-based MoCap method, significantly outperforms

the competitors. Overall, the active motion control strat-

egy achieves 29% lower performance error over the con-

stant velocity prior (averaged over the range of prediction

times from 0.05 to 0.5 seconds).
Figure 6 (left) shows the effect of noise on the predic-

tions. For a fixed prediction time of 0.25 seconds, a zero
mean Gaussian noise is added to each of the ground truth

dynamic poses before the prediction is made. The perfor-

mance is then measured as a function of the noise variance.

While performance of the constant velocity prior and pas-

sive motion prior degrade with noise, the performance of

our active motion prediction stays low and flat.

Notice that the constant velocity prior performs similarly

to the passive motion; intuitively, this makes sense since the

constant velocity prior is an approximation to the passive

motion dynamics, that does not account for environment in-

teractions. Since such interactions happen infrequently and

we are averaging over 200 frames, the differences between
the two methods are not readily observed, but are important



at the key instants when they occur (see Figure 5).

Tracking with multiple views. We now test the perfor-

mance of the Bayesian tracking framework that incorpo-

rates the physics-based prior considered above in the con-

text of multi-view tracking using a 200 frame, 4 view, image
sequence of L1. We first compare the performance of the

proposed physics-based prior method (L1), to two standard

Bayesian filtering approaches that employ smooth temporal

priors, Particle Filtering10 (PF) and Annealed Particle Fil-

ter10 with 5 levels of annealing (APF 5). To make the com-
parison as fair as possible we use the same number of par-

ticles11 (250), same likelihoods, and same interpenetration
and joint limit constraints in all cases; joint limit constraints

are learned from training data. The quantitative results are

illustrated in Figure 9 (left). Our method has 72% lower

error then PF and 47% lower error then APF, as well as

considerably lower variance. Qualitative visualization of re-

sults analyzed in Figure 9 is not shown due to lack of space;

typical performance, on HUMANEVA sequence (with error

93.4 ± 24.8), is illustrated in Figure 7.

We have also tested how performance of our method de-

grades with larger training sets that come from other sub-

jects performing similar (walking) motions (see Physics S1-

S3 L1). It can be seen that additional training data does not

noticeably degrade the performance of our method, which

suggests that our approach is able to scale to large datasets.

We also test whether or not our approach can generalize,

by training on data of subjects from HUMANEVA dataset

and running on a different subject, L1, from the dataset of

[1] (Physics S1-S3). The results are encouraging in that we

can still achieve reasonable performance that has lower er-

ror then PF and APF (noise and joint levels of which were

trained using subject specific data of L1). While due to the

exemplar-based nature of our active controller it is likely

that our method would not be able to generalize to unob-

served motions, our experiments tend to indicate that it can

generalize within observed classes of motions given suffi-

cient amount of training data.

Monocular Tracking. The most significant benefit of our

approach is that it can deal with monocular tracking. Physi-

cal constraints embedded in our prior help to properly place

the hypotheses and avoid overfitting of image evidence that

in the monocular case lack 3D information (see Figure 8

(Physics)); the results from PF and APF on the other hand

tend to overfit the image evidence, resulting in physically

implausible 3D hypothesis (see Figure 8 (APF 5) bottom)

and lead to more severe problems with local optima (see

Figure 8 (APF 5) top). Figure 8 (Physics) bottom, illus-

10Wemake use of the public implementation by Balan et al. [1] available

from http://www.cs.brown.edu/people/alb/.
11In APF we use 250 particles for each annealing layer.

Figure 7.Multi-view Tracking. Tracking performance on the Jog

sequence of subject S3 form HUMANEVA dataset; 250 particles
are used for tracking. Illustrated is the projection of the tracked

model into one of the 3 views used for inference.

trates the physical plausibility of the recovered 3D poses

using our approach. Quantitatively, on the monocular se-

quence, our model has 71% lower error then PF and 74%

lower error then APF, with once again considerably lower

(roughly 1

3
to 1

4
) variance (see Figure 9 right).

Analysis of computation time. While the tracking frame-

work was implemented in Matlab, the Physics prediction

engine was developed in C++. As a result, the overhead im-

posed by the physics simulation and motion control is neg-

ligible with respect to the likelihood12 computation. The

overhead imposed by the motion planning is a function

of the number of training examples; in our experiments

corresponding to 11–20%. The sub-linear approximations

to k-NN regression [11] can make this more tractable for

large datasets. The raw per particle computations in sec-

onds for each of the approaches are: PF – 0.0280, APF 5 –
0.1525, Physics (no motion planning) – 0.0560, Physics L1
– 0.0624, Physics S1, S2, S3, L1 – 0.0672.

5. Discussion and Conclusions

We presented a framework that incorporates the full-

body physics-based constrained simulation, as a temporal

prior, into the articulated Bayesian tracking. As a result, we

are able to account for non-linear non-stationary dynamics

of the human body and interactions with the environment

(e.g. ground contact). To allow tractable inference we also

introduce two controllers: a novel hybrid constraint-based

controller, which uses motion-capture data to actuate the

body, and a passive motion controller. Using these tools, we

illustrate that our approach can better model the dynamical

process underlying human motion, and achieve physically

plausible tracking results using multi-view and monocular

imagery. We show both qualitatively and qualitatively that

the resulting tracking performance is more accurate and nat-

ural (physically plausible) than results obtained using stan-

dard Bayesian filtering methods such as Particle Filtering

(PF) or Annealed Particle Filtering (APF). In the future, we

plan to explore richer physical models and control strate-

gies, which may further loosen the current reliance of our

12The likelihood evaluations, however, in our framework involve com-

puting the likelihood over two frames (rather than one in PF) and hence

are twice as expensive; the number of likelihood evaluations in APF is a

function of the number of layers.
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Figure 8.Monocular Tracking. Visualization of performance on

a monocular walking sequence of subject L1. Illustrated is the per-

formance of the proposed method (Physics) versus the Annealed

Particle Filter (APF 5); in both cases with 1000 particles. The top
row shows projections (into the view used for inference) of the re-

sulting 3D poses at 20-frame increments; bottom shows the corre-
sponding rendering of the model in 3D along with the ground con-

tacts. Our method, unlike APF, does not suffer from out-of-plane

rotations and has consistent ground contact pattern. For quantita-

tive evaluation see Figure 9 (right).

method on motion-capture training data.
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