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Illustration of the visio-lingustic BERT pre-training with the proposed grounding alignment. The left-

hand side shows the model architecture and the pre-training tasks. The inputs are the image-caption pairs, and we leverage
masked language modeling, masked visual feature classification, sentence-image alignment, and the proposed semi-supervised
grounding alignment in the pre-training stage. The right-hand side shows the proposed grounding alignment in detail. The
noun phrases are first extracted from the caption input. Then a pre-trained grounding model takes the image and noun
phrases as inputs to generate the pseudo ground truth for the grounding alignment task. In the end, the model predicts the
compatibility between the selected image regions and noun phrases, e.g. aligned or not aligned.

Abstract—Self-supervised transformer-based architectures,
such as VILBERT [1] and others, have recently emerged as
dominant paradigms for multi-modal feature learning. Such
architectures leverage large-scale datasets (e.g., Conceptual
Captions [2]) and, typically, image-sentence pairings, for self-
supervision. However, conventional multi-modal feature learn-
ing requires huge datasets and computing for both pre-training
and fine-tuning to the target task. In this paper, we illustrate
that more granular semi-supervised alignment at a region-
phrase level is an additional useful cue and can further improve
the performance of such representations. To this end, we
propose a novel semi-supervised grounding alignment loss,
which leverages an off-the-shelf pre-trained phrase grounding
model for pseudo-supervision (by producing region-phrase
alignments). This semi-supervised formulation enables better
feature learning in the absence of any additional human
annotations on the large-scale (Conceptual Captions) dataset.
Further, it shows an even larger margin of improvement on
smaller data splits, leading to effective data-efficient feature
learning. We illustrate the superiority of the learned fea-
tures by fine-tuning the resulting models to multiple vision-
language downstream tasks: visual question answering (VQA),
visual commonsense reasoning (VCR), and visual grounding.
Experiments on the VQA, VCR, and grounding benchmarks
demonstrate the improvement of up to 1.3% in accuracy (in
visual grounding) with large-scale training; up to 5.9% (in
VQA) with 1/8 of the data for pre-training and fine-tuning'.
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'We will release the code and all pre-trained models upon acceptance.

I. INTRODUCTION

Visio-linguistic tasks (e.g., visual grounding [3], [4],
[5], [6], image captioning [7], [2], visual question answer-
ing [7], [8], [9], [10], etc.) have emerged as important
problems in high-level visual understanding. Traditionally,
such approaches have leveraged encoder-decoder architec-
tures, where components (e.g., CNN encoders, language
encoders, and decoders) have typically been pre-trained on
large corpora of unimodal data (e.g., ImageNet classifi-
cation, language modeling) and then transferred and fine-
tuned to the final visio-linguistic target task in question.
More recently, however, the focus has shifted to learn-
ing joint visio-linguistic representations, by leveraging re-
cent Transfromer[ | 1]-based neural architectures with multi-
modal co-attentive mechanisms (e.g., VILBERT [I], VL-
BERT [12], UNITER [13], ), that use so-called proxy
self-supervised objectives for pre-training. As illustrated in
Figure 1, such proxy objectives most often include masked
language modeling [ 1], [12] and masked visual classification
[11, [12], as well as, sentence-image alignment [1]. The
benefit of such models is their ability to learn general, ex-
pressive, and implicitly aligned multi-modal representations
that, when fine-tuned to the target/downstream task, result
in considerably improved performance.

Despite the enormous recent success of these multi-modal
BERT-based architectures across a broad range of visio-



linguistic tasks, challenges remain. First, such architectures
use coarse, if any, image-sentence alignment proxy ob-
jectives [1]. It is reasonable to assume that more granu-
lar alignment would be beneficial. This intuition has also
been borne out in recent work that presented the 12-in-1
model [14], learned across 12 visio-linguistic datasets and
supervised tasks in a multi-task manner. Multi-task learning
leverages several datasets to train the model, improving the
performance, but relies on the labeled data aggregated across
datasets and tasks. This exposes the second key challenge,
mainly, that conventional feature learning approaches require
huge datasets and substantial computation for both pre-
training and fine-tuning to the target task. A data-efficient
semi-supervised formulation, that could work well even with
limited data, would ultimately be much more desirable and
flexible. Our core goal is to address the aforementioned
challenges with such an objective.

Specifically, we propose a semi-supervised approach and
loss to effectively distill the information from an off-the-
shelf, pre-trained, language grounding model to arrive at the
improved visio-linguistic representation. Specifically, unlike
multi-task learning of [14], we do not assume any addi-
tional annotations on the visio-linguistic BERT pre-training
dataset, beyond image-sentence pairings (e.g., coming from
Conceptual Captions [2] dataset) used in VILBERT, VL-
BERT, and others. However, we do assume access to a
pre-trained off-the-shelf grounding model (e.g., a one-stage
model in [15]). By parsing sentences in the pre-training
dataset into a set of noun phrases and grounding those
phrases to regions, we generate a series of granular pseudo-
annotations which we can then use as part of the ground-
ing alignment (see Figure 2). We show that these granu-
lar pseudo-labels benefit feature learning for a variety of
downstream tasks. Moreover, the proposed semi-supervised
formulation has a larger margin of improvement on a smaller
data split, indicating the efficiency and effectiveness of the
proposed approach. Most importantly, we illustrate that the
features learned by leveraging the off-the-shelf model, when
fine-tuned to the task of grounding itself, improve on both
the off-the-shelf and original VILBERT performance.

The above observation suggests an intriguing potential for
self-training, where a model trained for a supervised visio-
linguistic task (grounding in this case) can improve feature
learning, which in turn improves the supervised (grounding)
model performance and so on. We note that the proposed
semi-supervised framework is general and neither relies on
a specific off-the-shelf grounding model nor on any specific
BERT-like feature learning architecture. To the best of our
knowledge, this is the first semi-supervised formulation of
generic visio-linguistic feature learning. Further, distillation
through pseudo-labeling of the form proposed can poten-
tially be used to assimilate knowledge from many expert
task models without increasing the complexity of the feature
learning pipeline or requiring data amassing.

Contributions: Our core contribution is a novel semi-
supervised grounding alignment mechanism and loss, which
leverages an off-the-shelf pre-trained phrase grounding
model for pseudo-supervision by using it to inferring region-
phrase alignments. This semi-supervised formulation en-
ables better feature learning in the absence of any additional
(human) annotations on the target large-scale (Conceptual
Captions [2]) dataset, which would be costly to ascertain.
Our formulation is agnostic to both the off-the-shelf ground-
ing model and the core visio-linguistic BERT formulation;
we validate this by applying our semi-supervised method
atop of VILBERT [!] and VL-BERT [12]. The resulting
semi-supervised variants of these visio-linguistic feature
learning techniques achieve improved performance on a
wide array of downstream tasks (e.g., grounding, VQA,
VCR) when fine-tuned to them in a supervised manner. We
conduct the experiments with large-scale training and small
splits training. The results show the improvement of our
approach is up to 1.3% in accuracy (in visual grounding)
with large-scale training and up to 5.9% (in VQA) with 1/8
of the data for pre-training and fine-tuning.

II. RELATED WORK

Visio-Linguistic Representation Learning: Vision and
language representation learning is an active area of
research. The majority of recent methods extend the
BERT [16] architecture to a multi-modal setting by process-
ing both visual and language inputs [17], [13], [18], [19],
[11, [12], [20]. Although the pre-training datasets are differ-
ent (e.g., Conceptual Captions Dataset [2] vs. MS COCO
[21]), the proposed training procedures are similar across
architectures. The input tokens are language tokens (words)
and image tokens (image region of interest). The pre-
training tasks are masked language modeling, masked visual
feature modeling, and sentence-image alignment. In [20],
they also perform masked visual-feature classification and
visual question answering in the pre-training stage.

In detail, ViLBERT [1] and VL-BERT [12] introduce a
Co-Transformer layer that refines both modalities jointly
via attention. The experiments demonstrate that VILBERT
and VL-BERT outperform single-stream models, which il-
lustrates the importance of joint multi-modal feature learn-
ing. In B2T2 [17], the authors propose an early fusion
architecture where visual features are embedded on the
same level as input word tokens. The experiments show
that early integration of the visual features into the text
analysis is key to their architecture’s effectiveness. Similarly,
UNITER [13] proposes an elegant self-attention mechanism
designed for learning contextualized representations in order
to develop universal image-text representations for visio-
linguistic tasks. However, none of these methods model
region-phrase alignment. In this paper, we propose a semi-
supervised grounding alignment that can benefit feature
learning for a variety of downstream tasks.



Semi-Supervised Learning: Semi-supervised learning [22]
refers to the class of models that leverage unlabelled data
to improve supervised model performance (often trained
with limited labeled data). While review of semi-supervised
method is beyond the scope of the paper, we want to
highlight the use of semi-supervision in language grounding.
Specifically, in [5], to solve the problem of only a subset of
language annotations and bounding boxes being available,
the authors propose a novel semi-supervised approach that
learns grounding by reconstructing a given phrase using an
attention mechanism. In [23], the authors study the case
of objects without labeled queries. They propose a learned
location and subject embedding predictors to generate the
corresponding language embeddings for objects lacking an-
notated queries in the training set. With the assistance of the
detector, they also apply the predictors to train a grounding
model on images without any annotation. In this paper, we
formalize a semi-supervised approach that produces pseudo-
annotations for region-phrase alignments at a scale (for
a large dataset), by employing an off-the-shelf pre-trained
grounding model.

Weakly-Supervised Learning: Weakly-supervised learning
is used when granularity of the labels doesn’t match the task
at hand. Existing works [24], [25], [26], [27], [28] leverage
image-caption pairs to address the visual grounding task.
However, the mapping between inputs and outputs is still
necessary. On the other hand, semi-supervised learning is
used when only some input and output relations are given.
In our work, we leverage semi-supervised learning to distill
the information from the off-the-shelf language grounding
model during the pre-training stage. This is beneficial as we
do not need any additional annotations.

Knowledge Distillation: Knowledge Distillation was first
proposed by Hinton et al. [29] where knowledge is trans-
ferred from a cumbersome model to a small model for
efficient deployment. It has been used in various tasks,
including model compression, transfer learning, life-long
learning and others [30], [31], [32], [33]. In [33], the authors
train a student network that is deeper and thinner by using
not only the outputs but also the intermediate representations
learned by the teacher network as hints. Similarly, [32]
introduces multi-step knowledge distillation that employs an
intermediate-sized network to bridge the gap between the
small and the large network. For lifelong learning, Li et
al. [31] propose an algorithm and first introduce knowledge
distillation to preserve performance on old tasks. Based
on [31], Hou et al. [30] propose a novel approach trying to
seek a better balance between preservation and adaptation by
adapting to the new task from an intermediate expert while
preserving a small subset of data for old tasks. Similar to
knowledge distillation, we leverage a pre-trained grounding
network to distill region-to-phrase alignment decisions into
visio-linguistic BERT feature learning architecture.

III. APPROACH

The proposed semi-supervised grounding alignment is an
additional pre-training task for any existing visio-linguistic
BERT-based architecture (see Figure 2 (green)). Importantly,
grounding alignment is the task that requires no additional
annotations beyond coarse image-sentence pairings. The
goal of this task is to predict whether selected image regions
are aligned with noun phrases. To train this granular ground-
ing alignment head, the representations from the selected
visual and language tokens are used to predict grounding
scores. We leverage semi-supervised proxy annotations as
a way to generate pseudo ground truth for this task. We
overview components of the visio-linguistic feature learning
in Section III-A and then formalize our semi-supervised
grounding alignment method in Section III-B. Moreover, we
explain the spatial positional encoding for image proposals,
which we also find to be useful.

A. Visio-Linguistic BERT

Before describing proposed semi-supervised alignment
pre-training task, we first overview recent visio-linguistic
BERT models atop of which it is designed to be applied.
Such architectures, e.g., [1] and [12], abstractly illustrated in
Figure 2, share many aspects of architectural design. Specif-
ically, the backbone is a modified multi-layer visio-linguistic
bidirectional Transformer encoder taking both visual and
language tokens as inputs. Visual tokens are the features
of regions-of-interest (Rols) and language tokens are the
encoded words from the captions. During the pre-training
stage, the visual tokens are the output bounding boxes of
the pre-trained object detector. The typical network is trained
with masked visual feature classification, masked language
modeling and sentence-image alignment.

Masked language modeling: This pre-trained task [I1],
[12] is very similar to the masked language modeling in
the original BERT model [16]. However, rather than only
using the linguistic content, the model also leverages visual
clues. In detail, during the pre-training stage, the input word
tokens are randomly masked and are replaced by a special
token, (Mask). Then the model needs to predict the (Mask)
tokens based on the unmasked words and the visual features.
This task is trained with a cross entropy loss, Ly orqd-

Masked visual feature classification: Similar to masked
language modeling, the visual tokens are randomly masked
out [1], [12]. The model’s task is to predict the categories
of the masked visual tokens by leveraging the features from
other unmasked tokens. The ground truth object categories
are obtained from the output of the pre-trained object detec-
tor. This task is trained with a KL-divergence 10ss, L;nq.

Sentence-image alignment: Since the inputs to the model
are image-caption pairs, the goal of this pre-trained task is
to predict whether the input image and caption are aligned
[1], e.g., whether the caption describes the image. To train
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Figure 2: Pre-training of visio-linguistic BERT with semi-supervised grounding alignment. The model takes the image-
caption pairs as inputs and is trained under four tasks: masked visual feature classification, masked language modeling,
sentence-image alignment, and proposed grounding alignment. In masked visual feature classification and masked language
modeling, the model needs to reconstruct image region categories or words for masked inputs. In sentence-image alignment,
the model must predict whether the caption describes the image regions. In grounding alignment, the model has to predict

if the selected image region and phrase are aligned or not.

the model, the holistic representations taken from [IMG]
and [CLS] are used to predict the alignment between
the image and caption. We use image-caption pairs from
the Conceptual Captions dataset [2] as positive samples
and randomly replace the images, or the captions, to form
negative samples; training with binary cross entropy loss
Ealign~

B. Grounding Alignment

To have more granular alignment between visual and lin-
guistic domains, we introduce grounding alignment. Given
the visual and linguistic sequences V' and L, our model will
first form the alignment matrix M that represents which
noun phrase corresponds to which bounding box(es) (see
Figure 3). However, the Conceptual Captions dataset does
not have grounding alignment annotations. Motivated by
ideas from semi-supervised visual grounding, we leverage
the state-of-the-art visual grounding model to generate the
pseudo ground truth. The Conceptual Captions dataset con-
tains an image with a corresponding caption. We first take
the caption C as the input to the noun phrase extractor for
which we use the TextBlob library [34]. The outputs will be
the set of noun phrases {N,,} in the caption. After extracting
the noun phrases, images I coupled with corresponding
noun phrase N, are used as the input to the state-of-the-art
grounding model [15], the output of which is the bounding
box which represents the region that refers to the specified
noun phrase:

Bgnd = fgnd(IaNp)a (D

where fy,q denotes the pre-trained state-of-the-art visual
grounding model and B4 is the output bounding box(es).

Since most visio-linguistic BERT models use pre-
extracted image regions, the output bounding boxes from the

grounding model might not have exact matches. To address
this, we calculate the intersection over union (IoU) of the
grounding output and pre-extracted bounding boxes. If the
IoU is larger than a threshold’, we treat these bounding
boxes as the matches of the corresponding noun phrase.

To form the alignment matrix M, we initialize a binary
matrix of size #word tokens x #visual tokens. The entries
of the alignment matrix represent whether the indexed word
corresponds to the indexed image region. For example, if the
entry (2,3) is 1, then the image token 2 corresponds to the
word token 3. Otherwise, if the entry is 0, then they are not
matched. During training, we take this alignment matrix as
the input of the pre-training model. Because the alignment
matrix is unbalanced (fewer 1s than Os in general), we use
hierarchical sampling to avoid the model being affected by
this bias. In detail, we split the alignment matrix into positive
(0’s) and negative (1’s) set. We then sample a balanced
subset of grounding alignments, or miss-alignments, by
drawing equal number of positive and negative region and
noun phrase pairs respectively.

In grounding alignment, we test two variations. One is
token-level grounding, and the other is phrase-level ground-
ing. Token-level grounding means that we only do the word-
region match. The language representation, in this case,
will be the chosen word token representation. On the other
hand, the phrase-level grounding means the phrase-region
match. To combine the word tokens into a noun phrase
representation, we use an LSTM [35] to get the phrase-
level language representation. As we show in experiments
the latter is considerably better in practice.

Once having the corresponding language representations
H7 and visual representations H;,, we use the grounding

2We use an IoU threshold of 0.5, which is motivated by [15].
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Figure 3: Grounding Alignment. The grounding alignment leverages an off-the-shelf pre-trained phrase grounding model to

generate pseudo-supervision by producing region-phrase alignment. After having the pseudo ground truth, B, 4, we perform
bounding boxes matching to get the alignment matrix M for the grounding alignment pre-training task.

alignment model f44n to calculate the score gscore,
Gscore = falign(H\*/a Hz)

The grounding alignment model fq;;4, contains a feed-
forward network followed by a ReLU layer and a grounding
layer. The feed-forward network and the ReLU layer are
used to map features to the same dimension. The grounding
layer is used to calculate the score of the chosen word/phrase
and regions. The score measures the compatibility of the
word/phrase and the region. A higher score implies the
chosen word/phrase is more likely to belong to the chosen
region. We train this alignment model with a binary cross-
entropy loss objective, Lo, on the predicted score and the
pseudo ground truth labels discussed earlier,

‘and - LCE(gscore7 M*)7

@)

3

where M* denotes the (positive or negative) ground truth
sampled from the alignment matrix M.

C. Spatial Positional Encoding

Motivated by the object detection transformer paper [36],
we add spatial positional encoding (SPE) in the visual
representation. We follow the same setting as described
in [36]. In doing so, we use a fixed absolute encoding to
represent these spatial positions. Specifically, for both spatial
coordinates of each embedding, we independently use sine
and cosine functions with different frequencies. We then add
them to get the final visual representation.

D. Loss Function

The overall training loss is a combination of the original
visio-linguistic BERT model loss and the proposed semi-
supervised grounding alignment:

L= Ewo’r‘d + »Cimg + Aalignﬁalign + Agndﬁgnda (4)

where Agjign and Agy,q are hyper-parameters which modulate
relative importance of the sentence-image alignment and the
proposed grounding alignment.
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IV. EXPERIMENTS

Our model learns visio-linguistic representations that can
account for more granular alignment between vision and
language in a semi-supervised manner. To assess their qual-
ity, as common in the literature, we employ and measure
performance on a series of proxy tasks (see Fig. 4). We use
accuracy as the evaluation metric for these tasks.

Visual Grounding: The referring expression, or grounding,
task is designed to localize an image region given a natural
language reference (Fig. 4 (a)). For this task, we fine-tune the
model on the RefCOCO+ dataset [37]. A common approach
to this task is to rank a set of image region proposals given
the natural language description. We follow the same settings
as VILBERT [1] using the bounding box proposals provided
by [38]. During the fine-tuning stage, we pass the final
representation for each image region into a learned linear
layer to predict a matching score (Fig. 4 (a)). We set the
proposal boxes having 0.5 Intersection over Union (IoU)
with the ground truth boxes as true labels. We fine-tune the
model with a binary cross-entropy loss for a maximum of 20
epochs and 256 batch size. We use the Adam optimizer with
an initial learning rate 4e—>5. In inference, we evaluate on the
val set and take the highest-scoring region as the prediction.

Visual Question Answering (VQA): In the VQA task,
given an image and a question, the model needs to answer
the question based on the content of the image. We fine-tune
the pre-trained model on the VQA 2.0 dataset [8] which
consists of 1.1 million questions on COCO images [21].
Each image contains approximately 10 answers. To fine-
tune the model, we add a two-layer MLP on the top of the
pre-trained model (see Figure 4 (b)). We feed the element-
wise product of the visual and linguistic feature to the two-
layer MLP to map the representation to 3,129 candidate
answers. The fine-tuning stage is trained with a multi-
label classification loss. A soft target score is assigned to
each answer based on the majority of 10 human candidate
answers. Then, we use a binary cross-entropy loss on the soft
target scores. The model is fine-tuned with 256 batch size
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Figure 4: Fine-tuning stage. (a) The visual grounding task. The inputs are the concatenation of image regions and the query.
(b) The VQA task. To fine-tune to the VQA task, the inputs are the concatenation of image regions, question, and masked
answer. (¢) VCR task. The inputs of the VCR task are image regions, question, and one of the four candidate answers.

for 20 epochs. The Adam optimizer with an initial learning
rate 4e — 5 is used. During inference, the output answer is
an arg max of the softmax prediction.

Visual Commonsense Reasoning (VCR): The VCR task
consists of two problems: visual question answering (Q— A)
and answer justification (QA— R). In the Q— A problem,
given an image, a question, and a set of answers, the model
needs to choose among the answers in a multiple-choice
manner. Similarly, in QA— R, given an image, a question,
and a correct answer, the model has to select the rationale.
The QA— R problem is also a multiple-choice QA problem.
We fine-tune the pre-trained model on the VCR dataset [39]
which consists of 290k multiple-choice Q-A pairs and 110k
movie scenes. To fine-tune on VCR, we concatenate the
question and each answer to form 4 different text inputs as
the input to the pre-trained model (see Fig. 4 (c)). A linear
layer is added on top of the base pre-trained model, ensuring
that the model predicts the score of the QA pair. The final
prediction is a softmax score over the 4 QAs. The fine-
tuning is achieved with respect to the binary cross-entropy
loss with batch size of 64 and for 20 epochs. The Adam
optimizer with an initial learning rate 2e — 5 is used.

A. Implementation Details

Training Details: We apply the pre-training stage on the
Conceptual Captions Dataset [2]. The Conceptual Captions
Dataset contains 3.3 million image-caption pairs. The data
from the Conceptual Captions Dataset is automatically
scraped from web images. Although noisy, it comes with
a huge diversity of visual and language content. Since there
are some broken links when downloading the data, we were
only able to obtain about 3 million image-caption pairs in
total. During pre-training, we conduct all experiments on 8
GPUs (6 GeForce RTX 2080Ti and 2 Quadro RTX 6000)
on a single server for the full dataset, which takes approx.
110 hours. Following the settings in [1], the batch size is set
to 512 for 10 epochs and the Adam optimizer is used with
an initial learning rate le — 4. A linear decay learning rate
schedule with a warm-up is also used.

B. Model Setup

Given our focus on data efficiency and the desire to see the
effect dataset size plays, we experiment with two variants

for pre-training: a full Conceptual Captions dataset and a
random 1/8 split of the same dataset for the majority of
experiments. Note that while we take 1/8 of data to do the
pre-training, we use the whole RefCOCO+, VQA, and VCR
datasets for fine-tuning. Later, in Table III, we experiment
with even smaller splits for pre-training and fine-tuning.

The goal of our work is to illustrate the effectiveness of
semi-supervised learning through the proposed grounding
alignment loss. Hence, we apply our semi-supervised align-
ment on top of the two common and simple architectures:
ViLBERT [1] and VL-BERT [12]. However, the proposed
loss and methodology can be easily added to any vision-
language pre-training pipeline as long as the pre-training
dataset contains image-caption pairs.

Baselines: Since our model is a direct extension of the
VILBERT [1] and the VL-BERT [12] models, we use them
as our natural baselines.

Ablation Study: We consider the effects our design choices
make on performance in Table II. Specifically, we consider
incrementally adding one component at a time to the base-
line VILBERT [1] model trained on 1/8 of the Conceptual
Captions dataset. This results in the following variants:

[+ SPE]: VILBERT [1] baseline model with added
Spatial Positional Encoding described in Section III-C.
[+ SS Ground (token)]: VILBERT [I] with SPE and
our semi-supervised grounding alignment implemented
at the token level (see Section III-B).
[+ SS Ground (phrase)]: Our final model, consisting
of VILBERT [I] with SPE and our semi-supervised
grounding alignment implemented at the phrase level.
The hyper-parameters of Agiign = 1 and Agroung = 20 in
Rows 3 and 4 were chosen through cross-validation.

C. Results and Discussion

Effectiveness of grounding alignment: As shown in Ta-
ble I, adding semi-supervised grounding (at the phrase
level) consistently shows improved performance against the
baselines in all settings and for all downstream tasks.

Effect of dataset size: Comparing the models pre-trained
on different sizes of Conceptual Caption Dataset (1/8 and
full dataset), semi-supervised grounding appears to be more



Table I: Quantitative Results. We evaluate the proposed semi-supervised grounding alignment loss on two architectures:
VIiLBERT [!] and VL-BERT [12]. Our models include SPE and implement semi-supervised grounding at the phrase level.
Training with two dataset sizes is explored (full and 1/8 of Conceptual Captions); best results for given dataset size are bold.

| Method | Visual Grounding | VQA | VCR (Q—A) | VCR (QA—R)

One-Stage Visual Grounding [15] 72.05 - - -

12-in-1 Multi-task ViLBERT [14] (GT 22", 5T) 72.12 - - -
B | VL-BERT [12] 66.35 69.78 70.11 70.32
% VL-BERT [12] + Semi-supervised Grounding (our) 67.17 70.09 70.51 70.75
© [ VILBERT [I] 70.92 67.85 70.83 T2.47
§ VILBERT [1] + Semi-supervised Grounding (our) 72.23 68.98 71.88 73.62
% | VL-BERT [12] 68.90 70.86 71.51 72.92
g VL-BERT [12] + Semi-supervised Grounding (our) 69.36 70.89 72.02 73.59
= | VILBERT [I] 72.22 69.17 72.15 73.61
E VILBERT [1] + Semi-supervised Grounding (our) 72.47 69.63 72.49 73.73

Table II: Ablation Study. We conduct ablations using 1/8 amount of the Conceptual Caption Dataset. The best result of
each column is marked by the bold black color. SPE denotes spatial positional encoding and SS Ground represents semi-
supervised grounding alignment. Hyper-parameters for A4, and Agnq were chosen through cross-validation.

Settings || SPE | Aatign | Agna | token | phrase || Visual Grounding | VQA | VCR (Q—A) | VCR (QA—R)
VILBERT [/] -t ] - - - 70.92 | 6785 | 7083 | 7247
+ SPE v 1 0 71.19 68.12 71.67 73.58

+ SS Ground (token) Ve 1 20 Ve 69.02 67.64 71.72 73.06

+ SS Ground (phrase) v 1 20 v 72.23 68.98 71.88 73.62

Table III: Efficiency of the Proposed Semi-supervised Grounding Alignment. We evaluate the proposed semi-supervised
grounding alignment loss with different amounts of pre-training (vertical) and fine-tuning (horizontal) data. With less data
the margin of improvements of our model over the baseline VILBERT [!] increases.

| | | Visual Grounding | VQA | VCR: Q — A | VCR: QA — R | Avg.

| | Full | 1/4 | 18 | Full | 1/4 | 18 | Full | 14 | 18 | Full | 14 | 18 |
2| _ Baseline | 72.22 | 71.10 | 69.77 | 69.17 | 68.15 | 60.41 | 72.15 | 72.02 | 70.24 | 73.61 73.5 71.29 | 70.30
_g E Ours 7247 | 71.72 | 70.57 | 69.63 | 68.67 | 60.97 | 72.49 | 7222 | 7090 | 73.73 | 73.57 | 71.79 | 70.73
= (+0.25) | (+0.62) | (+0.80) | (+0.46) | (+0.52) | (+0.56) | (+0.34) | (+0.20) | (+0.66) | (+0.12) | (+0.07) | (+0.50) | (+0.43)
&) Baseline | 70.92 | 70.00 | 6742 | 67.85 | 66.13 | 55.67 | 70.83 | 69.15 | 68.71 | 72.47 | 69.91 | 69.85 | 68.24
= g Ours 7223 | 71.51 | 7046 | 68.98 | 68.02 | 61.61 | 71.88 | 71.11 | 70.02 | 73.62 | 72.95 | 71.22 | 70.30
*E_ (+1.31) | (+1.51) | (+3.04) | (+113) | (+1.89) | (+5.94) | (+1.05) | (+1.96) | (+1.31) | (+1.15) | (+3.04) | (+1.37) | (+2.06)
8| o Baseline 69.9 69.28 | 65.88 | 67.21 | 64.39 | 54.66 | 70.36 | 69.26 | 66.55 | 72.28 | 70.32 | 67.57 | 67.26
E = Ours 70.71 | 69.64 | 66.81 | 68.48 | 65.82 | 5545 | 7097 | 70.83 | 68.82 | 72.69 | 72.36 | 69.34 | 68.49
O~ (+0.81) | (+0.84) | (+0.93) | (+1.27) | (+1.43) | (+0.79) | (+0.61) | (+1.57) | (+227) | (+041) | +2.04) | +1.77) | (+1.27)

effective for a smaller dataset. In other words, the pro-
posed approach allows competitive performance that is data-
efficient (requires a fraction of the original dataset). Part
of the reason is a trade-off between the size/quality of
supervised and unsupervised pseudo-annotated data inherent
in all semi-supervised methods. To study the effectiveness
of the proposed semi-supervised grounding alignment with
limited data, we conduct additional experiments in Table III.
We do so with the VILBERT model as the baseline and
add the semi-supervised grounding alignment to it for “Our”
model. We experiment with (full, 1/8 and 1/16) fractions
of Conceptual Captions dataset for pre-training and (full,
1/4 and 1/8) fractions of target datasets for fine-tuning.

Notably, the margin of improvement our model has, over the
baseline, increases as the amount of training data decreases
for both pre-training and fine-tuning. Using 1/8 of the
Conceptual Captions dataset for pre-training leads to the
largest improvement of 2.06%, on average, and up to 5.94%
with 1/8 VQA dataset fine-tuning. The improvement with
1/4 of the VCR dataset is also sizable at 3.04%. Extensive
experiments in Table III illustrate that the proposed semi-
supervised alignment is not only effective but also highly
data-efficient.

Comparison to multi-task learning: Results in Table I are
suggestive that semi-supervision through distillation might
be more effective than multi-task learning; this observation



Q — Atask

How does [person1] feel about [person0] ? Baseline Ours

(a) She is bored with him. 0.25 ~=0
(b) She doesn't like her at all. 0.03 0.0003
(c) [person1] is apprehensive about her coming. 0.23 0.999

0.0005
QA — Rtask

| think so because... Baseline Ours

(a) He is looking at her intensely and gripping his clipboard tightly. 0.00001 0.001

(b) He looks unhappy and is hiding around the corner. 0.9999 0.9989

(c) [person2] speaks with [person1] as he looks to be halfway off =0 =0
of a chair presumably thinking on if he should leave or stay

(d) [person1] has his face and eyes tilted up and to the left
towards [personQ], who is also stared upon by others in the ~= ~=0
group like [person0]. no one seems happy to see her .

Figure 5: Qualitative results. Qualitative results for VCR task. The numbers represent the probabilities across the answers.
During inference, the answer with the highest score is chosen. The green color represents the correct answers and the orange
color denotes the wrong answer. More examples can be found in the supplementary material.

is consistent with other distillation literature [29]. In the
context of our experiments, the evidence is twofold. First,
both ours and [14] utilize the same grounding data for
pre-training and fine-tuning the visual grounding task. The
results show that with the same amount of data, our method
performs better. Second, we compare to 72.12 from [14]
because this is the most similar setting with ours, which
is pre-trained using 5 visual grounding datasets [37], [40],
[41], [42] in a multi-task manner and then fine-tuned to
RefCOCO+ dataset. The result demonstrates that our method
is still better. We note that this improved performance holds
even when we pre-train on 1/8 of the Conceptual Captions.

Ablation observations: In Table II, we conduct the ablation
study of the model components. Experiments show that
adding SPE improves performance and further addition of
semi-supervised grounding, at the phrase level, achieves the
best results. This, along with the results in Table I clearly
indicates that the grounding alignment helps the model
learn better visio-linguistic representations. Comparing two
variants of the semi-supervised grounding alignment, at the
token and at the phrase level, we see a clear superiority
of the latter. In other words, the form of semi-supervised
alignment task and loss plays an important role. Further-
more, we also show the quantitative results of the models
w/o SPE in the Suppl., which show the same trend.

Generality: We provide results with two visio-linguistic
backbones, VILBERT [1] and VL-BERT [12], to demon-
strate the applicability of the proposed grounding alignment.
Table I summarizes the results of baseline models and our
method. In all cases, we use our final model which includes
SPE and semi-supervised grounding at the phrase level. We
observe a similar trend as in Table II: adding grounding
alignment outperforms the baselines. Another point worth
noting is that our method outperforms the one-stage visual
grounding model [15]. Therefore, the features learned by
leveraging the off-the-shelf model, when fine-tuned to the
task of grounding itself, improve on both the off-the-shelf
and the original baseline models’ performance.

Qualitative Results: We show the qualitative result of the

VCR task in Figure 5. The baseline [1] predictions and ours
as well as the final prediction probabilities are listed. The
green color of the answers denotes the ground truth answer.
The green color of numbers indicates the predicted answer
is correct and the orange color is the wrong prediction.
We can see that the baseline and ours predict the correct
answer in most cases. However, in the Q — A example,
our method predicts the correct answer while the baseline
fails. This shows that our method can focus more on the
correct answers. Please see the supplementary material for
more qualitative results for different tasks.

Limitations and future directions: One limitation of the
proposed approach is that since the pseudo-supervision is
pre-extracted from the off-the-shelf region-phrase grounding
model, we cannot do end-to-end training. Although the
outputs of the off-the-shelf region-phrase grounding model
are reasonable and improve feature learning, we believe joint
training of the Visio-Linguistic BERT model and the off-
the-shelf model might boost performance. Thus, to advance
grounding alignment, we suggest developing a model that
can combine the two models and train in an end-to-end
manner. Moreover, we also suggest using other supervision
to facilitate feature learning. For example, we can use scene
graph generation or human pose estimation as a large portion
of the dataset contains humans and objects.

V. CONCLUSION

In this paper, we propose a novel semi-supervised ground-
ing alignment mechanism and loss, which leverages an
off-the-shelf pre-trained phrase grounding model to gen-
erate pseudo grounding truths. This formulation enables
better feature learning on the large-scale dataset without
any additional human annotations and illustrates that more
granular semi-supervised alignment at a region-phrase level
is useful. The proposed grounding alignment shows the
effectiveness of the learned features by fine-tuning the visio-
linguistic BERT models to multiple downstream vision-
language tasks. Experiments manifest the improvements in
the visual grounding, VQA, and VCR benchmarks.
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