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Abstract

Video question answering is the task of automatically answering questions about
videos. Among query types which include identification, localization, and counting, the
most challenging questions enquire about relationships among different entities. Answer-
ing such questions, and many others, require modeling relationships between entities in
the spatial domain and evolution of those relationships in the temporal domain. We ar-
gue that current approaches have limited capacity to model such long-range spatial and
temporal dependencies. To address these challenges, we present a novel spatio-temporal
reasoning neural module which enables modeling complex multi-entity relationships in
space and long-term ordered dependencies in time. We evaluate our module on two
benchmark datasets which require spatio-temporal reasoning: TGIF-QA and SVQA. We
achieve state-of-the-art performance on both datasets. More significantly, we achieve
substantial improvements on some of the most challenging question types, like counting,
which demonstrate the effectiveness of our proposed spatio-temporal relational module.

1 Introduction
Understanding video content is an important topic in computer vision. Relevant tasks include
Activity Recognition [3, 22], Temporal Action Localization [20, 24], and, more recently,
Video Question Answering [2, 5, 7, 26]. Video Question Answering (aka VideoQA) is
the task of answering natural language questions about videos. It is, arguably, the most
challenging among video tasks since it may contain a myriad of queries, including those
encompassing other video understanding tasks. For instance, simpler questions, similar to
ImageQA, involve attribute identification in a single frame of a video [15, 17]. More complex
questions, similar to activity recognition and localization, require looking at multiple frames
in a local temporal region [5, 17]. The most complex questions require recognizing activities
across time, counting them or reasoning about their temporal order [5, 21].

A generic VideoQA algorithm must learn to ground objects of interest in video and
reason about their interactions in both the spatial and temporal domains. Conceptually, a
VideoQA algorithm can be broken into three different sub-tasks. First, the algorithm should
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Which object moves closer to the blue cylinder?
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Figure 1: The figure shows a question and selected frames of a video in SVQA dataset [21]. We show
individual spatial-relations among relevant objects, which are far, close and closer. The change
of spatial-relations over time corresponds to the temporal-relation which is getting close. Having
observed these temporal-relations among object-pairs, the algorithm can infer the answer – Sphere.

understand the intent of the query from the natural language description of the question. Sec-
ond, it should compute relationships which are relevant to the query in the spatial domain.
Finally, it should reason how these spatial relations evolve in the temporal domain. For in-
stance, consider the question and the sequence of frames in Figure 1. In order to answer, the
algorithm considers spatial relations among all possible object-pairs in each frame individu-
ally. In case of the blue cylinder and sphere, these are calculated as far in the first frame,
close and closer in the subsequent frames. Having done that, it needs to reason how
these spatial relationships change in the temporal domain. This leads to identifying the cor-
rect interpretation that cylinder and sphere are getting close. Having observed these
spatio-temporal relationships among all possible object-pairs, the algorithm can figure out
the correct answer which is sphere in this case.

Traditional approaches use 3D CNNs [13, 24], LSTMs [10, 26], or attention [2, 5, 25]
to model such relationships. Although successful, they are limited in capacity. For instance,
3D CNNs are useful for identifying local spatio-temporal action events, demonstrated by
success in Activity Recognition datasets, however, they struggle in modeling long-range
temporal relationships [23, 27]. Similarly, LSTM-based approaches, although known to
do well in long-range text sequences, struggle to model videos [2, 9]. This is because,
unlike text, videos contain longer and information-richer sequences of spatial data, which
LSTMs, or their spatial-attention variants, cannot model in a natural and effective way. More
importantly, these network architectures do not provide an effective prior and need to learn
relational reasoning from scratch which is inefficient and data-hungry [18].

In this work, we leverage and extend relational networks [14] to model spatio-temporal
relationships in videos. Previously, relational reasoning has been used effectively in image
question answering [18] and activity recognition [27]. However, it was limited to either the
spatial or the temporal domain individually. Inspired by these two works, we present spatio-
temporal relational networks which can perform joint relational reasoning in both spatial
and temporal domains. Our contributions are two-fold: 1) We present a novel general-
purpose neural network module which acts as an effective prior for spatio-temporal relational
reasoning in videos. Our network models both spatio-temporal relations (capturing object-
interactions) and action-dynamics (capturing how individual objects change over time). To
our knowledge, this is the first attempt to perform joint spatio-temporal reasoning using re-
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lational networks. 2) We show the effectiveness of our proposed Spatio-Temporal Relational
Network on a variety of VideoQA tasks, which include both real-world (TGIF-QA) and syn-
thetic (SVQA) datasets. Also, we show substantial improvement in the challenging counting
task that requires capturing spatio-temporal dynamics in different parts of a video. To best
of our knowledge, this is the first attempt to approach VideoQA using relational networks.

2 Related work

2.1 Visual Question Answering

Image question answering [1] is the task of answering queries about images. Typical ques-
tions focus on identifying attributes, counting objects or reasoning about their spatial-relations.
Video question answering, apart from spatial-queries, also focuses on queries which require
spatio-temporal reasoning. These may include identifying a single activity spanning a few
contiguous frames, or more generally multiple such activities and inferring relationships be-
tween them. The earliest approaches [10, 25, 26] used LSTMs to encode video and text
representation, and leveraged temporal attention to selectively attend to important frames
in a video. These approaches model temporal reasoning through attention but lack spa-
tial reasoning. Jang et al. [5] used both spatial and temporal attention, and utilized motion
and appearance features. Although this allowed spatio-temporal reasoning but struggled to
model long-range temporal dependencies. To address this problem, Song et al. [21] proposed
a more granular spatial-attention and a modified-GRU incorporating a temporally-attended
hidden state transfer. Similarly, other approaches used memory networks [2, 7, 11] to handle
long-term dependencies. Gao et al. [2] used a co-memory attention that utilized cues from
both appearance and motion, and used conv-deconv features to build multi-level contextual
facts. Li et al. [8] used a self-attention based technique to exploit global dependencies among
words of a question and frames of a video. Although, modified-GRU [21], co-attention [2]
and self-attention [8] performed better than LSTM-based approaches, however, they still had
to learn relational reasoning from scratch using supervised data. Our approach takes a differ-
ent route, and instead uses relational networks which provide a prior for relational reasoning,
and hence, outperforms the above techniques.

2.2 Relational reasoning

Relational reasoning is the ability to reason about relationships among entities. It is central
to general intelligent behavior and is essential to answer complex questions in VQA tasks.
Roposo et al. [14] and Santoro et al. [18] introduced relational networks and showed their
effectiveness on scene description data and image question answering, respectively. They
demonstrated that even the powerful CNNs or MLPs struggle to solve questions which re-
quire relational reasoning. However, when augmented with relational networks (RNs), they
achieve superhuman performance even in complex datasets like CLEVR [6]. Zhou et al.
[27] extended relational networks to temporal domain and introduced Temporal Relational
Networks (TRNs). TRN computes temporal relationships among video frames and achieved
the state-of-the-art result in Activity Recognition datasets. Our work is different from the
above networks in two main ways. First, we show the effectiveness of relational networks
in a more challenging setting: Video Question Answering, where interesting events may
occur at different parts of the video. Second, and more importantly, we model joint spatio-
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Figure 2: Spatio-temporal Relational Network architecture. The Spatial Relations Module (top)
models arbitrary spatial-relations among all possible groups of objects for each frame individually.
The Global Context Encoder LSTM (bottom left) models the action-dynamics with global context at
time t. The concatenated output of these modules is then fed to the Temporal Relations Module (bottom
right) which computes temporal relations among a temporally-ordered group of frames. Notice that,
for simplicity, we have shown object-groups as pairs, however, in general they can be more than two.

temporal relationships, unlike [18] and [27] which work either in spatial or temporal domains
individually. Similar to ours, a recent work by Wang et al. [23] models spatio-temporal re-
lationships in Activity Recognition. However, they use Graph Neural Networks [19] which
depend on structured data like bounding boxes extracted using Region Proposal Networks
(RPNs) [16]. In comparison, we use relation networks which are simpler and flexible to
work with unstructured data like raw RGB values or CNN outputs.

3 Approach
The input to our model consists of a video, a question and optionally answer-options (only
in the case of multiple-choice questions). We extract appearance ({At}T

t=1 ∈ R7×7×2048)
and motion ({Mt}T

t=1 ∈ R4096) features using ResNet-152 [4] (res5c) and C3D [22] ( f c6),
respectively; T is the sequence length. The overall architecture of our Spatio Temporal Rela-
tional Network (STRN) is shown in Figure 2. There are three main components: (a) Spatial
Relation Module (SRM), (b) Global Context Encoder LSTM (GCE), and (c) Temporal Re-
lations Module (TRM). The Spatial Relation Module takes appearance features ({At}T

t=1) as
input and computes spatial relations among various objects. This can be seen as modeling
object interactions in each frame individually. The Global Context Encoder LSTM takes
motion features ({Mt}T

t=1) as input and captures action-dynamics with global context at time
t. Finally, the Temporal Relation Module takes the concatenated SRM-encoding ( ft ) and
the GCE-encoding (ρt ) as input and computes how the spatial-relations and action-dynamics
change over time. This corresponds to modeling temporal changes in both the interactions
among different objects and the motion-dynamics of individual objects. The output (Y) of
the TRM is passed to the Answer Decoder Module whose exact form depends on the specific
question answering task (Section 3.2).
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3.1 Spatio-temporal Relational Network
Inspired by relational networks [18, 27], we encode the ability to model spatio-temporal rela-
tionships right in the formulation of STRN. Hence, it acts as an effective prior for situations
which require joint reasoning over both spatial and temporal domains. The input consists
of an ordered temporal sequence of spatial frame-descriptors {Ot}T

t=1, where each Ot con-
tains L spatial object-representations {ox}L

x=1. In general, the spatial frame-descriptors can
be any representation of interest. It can be structured in the case of bounding boxes or
unstructured in the case of CNN feature maps. In this work, we use CNN feature maps
({Ot}T

t=1 ∈R3×3×256) which we obtain from ResNet-152 features ({At}T
t=1 ∈R7×7×2048) us-

ing a Downscale-CNN layer (see Figure 2). Given {Ot}T
t=1, we define the basic-STRN as a

composite function below:

STRN_B(O) = hT
β

(
∑
a<b

gT
α ( fa, fb)

)
(1)

ft = hS
φ

(
∑
a,b

gS
θ
(oa,ob)

)
(2)

Equation (2) corresponds to SRM and is responsible for computing spatial relations ( ft )
for each Ot = {ox}L

x=1. In particular, spatial-relation function gS
θ

infers whether and how
the two inputs are related to each other. The relations are computed for all possible input
combinations oa,ob ∈ {Ot}. The individual object-object relations are then agglomerated
and reasoned over by the function hS

φ
. In a similar way, Equation (1) corresponds to TRM

and computes the temporal relations among a sequence of ordered inputs { ft}T
t=1 obtained

from {Ot}T
t=1 using Equation (2). The temporal-relation function gT

α computes the individ-
ual frame-frame relations, which are agglomerated, and reasoned over by the function hT

β
.

Hence, the combination of Equations (1) and (2) models the temporal relations among the
spatial relations, achieving spatio-temporal relational reasoning. In other words, STRN_B
models the interactions among objects and how they evolve over time. Following previous
work [18, 27], we use fully-connected layers to represent the functions gT

α ,h
T
β
,gS

θ
, and hS

φ
,

which are parameterized by α,β ,θ , and φ .
Capturing Action Dynamics: In STRN_B, we used the fi’s in Equation (1) to be spatial

relations, which helped us model evolving object interactions. However, apart from interac-
tions, some queries may also inquire about changes in motion (or appearance) of individual
objects. In order to capture action-dynamics, we leverage motion features ({Mt}T

t=1 ∈R4096),
which represent course motion information corresponding to each object in a video [22].
However, both C3D and Flow features are known to encode only short-term temporal in-
formation [23]. Hence, we additionally make use of a Global Context Encoder LSTM to
capture long-term global context. Instead of using only the SRM-encoding, we consider
the concatenation of the SRM-encoding ( ft ) and the GCE_LSTM-encoding (ρt ) while com-
puting temporal relations. The resultant model, STRN_GC, captures both the interactions
among object-groups and the action-dynamics of individual objects with global-context.

STRN_GC(O) = hT
β

(
∑
a<b

gT
α (Ωa,Ωb)

)
(3)

ρt = LSTM(Mt ,ρt−1) (4)

where Ωt is obtained by concatenating ft (Eq. 2) and ρt (Eq. 4), ρt is the hidden state of the
Global Context Encoder LSTM at time t and Mt is the tth motion embedding.
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Conditioning and Multi-scale Relations: For tasks like video question answering, dif-
ferent questions may require different types of relations. Hence, we model dependence on
questions by conditioning the relation-functions gT

α , and gS
θ

to obtain query-specific variants.
For instance, functions gT

α( fa, fb), and gS
θ
(oa,ob) transform to gT

α( fa, fb,γ), and gS
θ
(oa,ob,γ),

where γ is the question encoding obtained through a text-encoder LSTM, similar to one used
in Jang et al. [5].

Additionally, inspired by multi-scale temporal relational networks [27], instead of com-
puting relations among only two possible frames/objects at a time, we generalize the relation-
functions gT

α( fa, fb,γ), and gS
θ
(oa,ob,γ) to consider multiple frames/objects: gT

α( fa, fb, .. fm,γ),
and gS

θ
(oa,ob, ..on,γ), for m frames and n objects, respectively. Then, we consider multi-

ple relation-functions each specializing to capture relationships for a given value of (m,n)
frames/ objects at a time. This allows modelling relationships at multiple scales. We define
the M multi-scale, N multi-object Spatio-Temporal Relational Network (STRN) as:

STRN_S(O,m,n) = hT
β

(
∑

a<b..<m
gT

α (Ωa,Ωb, ..Ωm,γ)

)
(5)

ft = hS
φ

(
∑

a,b..n
gS

θ
(oa,ob, ..on,γ)

)
(6)

STRN(O,M,N) =
M,N

∑
m=2,n=2

(
STRN_S(O,m,n)

)
(7)

Each STRN_S(O,m,n) in Equation (5) computes relationships among a given value of m
temporal-objects and n spatial-objects and has its own h and g functions. Additionally, we
consider the temporal-relation function, gT

α (from Eq. 3 and 4), which captures both object-
interactions and action-dynamics. STRN(O,M,N) in Equation (7) accumulates relation-
ships from multiple STRN_S(O,m,n) for all values of (m,n), ranging from (2,2) to (M,N).
Hence, we obtain the M-multi-scale and N multi-object Spatio-Temporal Relation Network
(STRN) which we use as our final model.

3.2 Answer Decoder Module

Depending on the question type (Section 4.1) we have three different types of modules:
Multiple-choice: We define a linear regression function which takes the TRM-encoding

(Y ) as input and outputs a real-valued score for each multiple-choice answer-candidate: s =
W T

MCY , WMC are model parameters. To optimize, we use hinge-loss: max(0,1+ sn− sp),
where sp and sn are scores of the correct and incorrect answer, respectively. We use this
decoder for repeating action and state transition tasks in the TGIF-QA dataset.

Open-ended numbers: Similar to above, we define a linear regression function: s =
[W T

N Y + b], where [.] denotes rounding, Y is the TRM-encoding, WN are model parameters
and b is the bias. We optimize the network using l2 loss between the ground truth and the
predicted value. This decoder is used for the repetition count task in the TGIF-QA dataset.

Open-ended word: We define a linear classifier which selects an answer from a vocab-
ulary V : o = so f tmax(W T

w Y +b), where Ww are model parameters and b is the bias. We use
cross-entropy loss and the final answer is obtained using: y = argmaxy∈V (o). We use this
decoder for the SVQA dataset and also for the FrameQA task in the TGIF-QA dataset.
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3.3 Implementation details
We implement our model and design our experiments using PyTorch. Following previous
work [2, 5, 8, 21], we train separate models for each task of the TGIF-QA dataset and one
model for the entire SVQA dataset. Similarly, we set the maximum number of uniformly-
sampled frames in a video to 35. To encode text, we use the 300D Glove [12] word embed-
dings and take the output of the final layer of a text-encoder LSTM as the question-encoding
(taken as answer-encoding in case of multiple-choice questions). Both the text-encoder and
global-context-encoder are two layer LSTMs with 512 hidden units. In all our experiments,
we use a batch size of 64. We train our networks in an end-to-end fashion using Adam
optimizer with an initial learning rate of 0.001. Wherever applicable, we use a dropout of
0.2. The functions gT

α ,h
T
β
,gS

θ
,hS

φ
in Equation (5) and (6) are fully-connected networks with

2, 1, 2, 2 layers and and 256, 256, 256, 256 hidden units, respectively. In Equation (7),
we choose M=10 different scales, which means we consider 2-10 frames at a time while
computing temporal relations. Since the number of possible combinations of frames can be
large, we follow Zhou et al. [27] and randomly sample S = 3 possible frame-sequences for
each separate scale. Similarly, we choose N=3, which means we consider 2-3 spatial-objects
at a time while computing spatial relations. We do not subsample spatial-relations but we
downscale the appearance-features from {At}T

t=1 ∈ R7×7×2048 to {Ot}T
t=1 ∈ R3x3x256 using a

Downscale-CNN having (384, 192, 256) filters and (2,3,2) kernels. The code and pre-trained
models are available at https://github.com/gursimar/STRN.

4 Evaluation

4.1 Dataset
TGIF-QA [5] is a large-scale dataset containing 165K QA pairs collected from 71K real-
world animated Tumblr GIFs. The questions are categorized into four separate tasks. 1)
Repeating Action (Action) aims to name the event that happened a specific number of times
in the video. This is a multiple-choice task where the correct answer is one of the five
available options (Fig 3a). 2) State Transition (Trans), similarly, is a multiple-choice task
with five options. Questions ask about state transitions like facial expressions (from happy to
sad), among others (Fig 3b). 3) FrameQA is an open-ended task which, similar to image-QA,
can be answered by looking at one of the "appropriate" frames in the video. However, the
range of possible answers span the entire vocabulary (Fig 3c). 4) Repetition Count (Count)
aims to count the number of times a given event happens in the video. This is an open-ended
task and answers lie in a range of integers: 0 to 10 (Fig 3d).

SVQA [21] is synthetically generated dataset designed to control and minimize language
biases in existing videoQA datasets. It contains 120K questions asked on 12K videos with
moving objects like sphere, cylinder or cube (Fig 1). Similar to FrameQA, answers span
the entire vocabulary. Questions are compositional and require a series of reasoning steps
(like comparison and arithmetic) in both spatial and temporal domains. Since the exact train-
val-test subsets of the SVQA dataset are not readily available, we randomly sample a new
split similar to Table 1 of Song et al. [21]. In comparison to TGIF-QA, it contains more
complex questions requiring more elaborate spatio-temporal reasoning. However, unlike
real-world GIFs in TGIF-QA, it contains perceptually-simpler scenes consisting of a few
synthetic objects. These two datasets are well suited for our task because they contain well
formed questions that require complex spatio-temporal reasoning.
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4.2 Experiments

This section outlines the details of our experiments. First, we compare our method with
the state-of-the-art baselines on both the TGIF-QA and the SVQA dataset. Then, we show
an ablation study which demonstrates the effectiveness of joint spatio-temporal relational
reasoning. Following previous work [2, 5, 8, 21], we use classification accuracy (ACC)
as an evaluation metric for all tasks of the SVQA dataset and also the Trans, Action and
FrameQA tasks of the TGIF-QA dataset. For the Count task of the TGIF-QA dataset, we
use Mean Squared Error (MSE) between the predicted value and the ground truth value as
an evaluation metric.

4.2.1 Comparison with the state-of-the-art methods

TGIF-QA Dataset: We summarize the results in Table 1. At the very top, Random and Text
correspond to selecting an answer randomly and learning a model without any visual input,
respectively. In the next four lines, we show results obtained using the image-VQA based
baselines, which either mean-pool the video features (aggr) or average the results (avg).
The rest of the results correspond to videoQA methods (refer to Section 2.1 for a compar-
ison). The letters inside the brackets correspond to the features used to train the model: R
means ResNet, C means C3D and F means Flow. The last three rows show the result of
our models. Our STRN model outperforms all other approaches on all tasks which require
spatio-temporal reasoning: Action (2.74%), Trans (2.4%) and Count (4.63%) ( 4.10−3.91

4.10 )
by a significant margin. On the other task, FrameQA, which can be answered using a sin-
gle frame, we outperform all but one approach (PSAC). We gain this increase in perfor-
mance despite not taking advantage of Flow features/ complex memory-networks (used in
Co-memory), or co-attention mechanisms (used in PSAC). In the STRN-GC variants, we do
not use the Global Context Encoder LSTM. As shown in the table, we get good results even
without using action-dynamics with global-context.

Model Action ↑ Trans ↑ FrameQA ↑ Count ↓
Random [5] 20.00 20.00 0.06 6.92
Text [5] 47.91 56.93 39.26 5.01
VIS+LSTM(aggr) [5] 46.80 56.90 34.60 5.09
VIS+LSTM(avg) [5] 48.80 34.80 35.00 4.80
VQA-MCB(aggr) [5] 58.90 24.30 25.70 5.17
VQA-MCB(avg) [5] 29.10 33.00 15.50 5.54
ST(R+C) [5] 60.10 65.70 48.20 4.38
ST-SP(R+C) [5] 57.30 63.70 45.50 4.28
ST-TP(R+C) [5] 60.80 67.10 49.30 4.40
ST-SP-TP(R+C) [5] 57.00 59.60 47.80 4.56
Co-memory (R+F) [2] 68.20 74.30 51.50 4.10
PSAC (R) [8] 70.40 76.90 55.70 4.27
STRN-GC (R) [ours] 72.16 79.18 52.90 4.42
STRN-GC (C) [ours] 71.42 78.85 50.04 4.10
STRN (R+C) [ours] 73.14 79.30 52.96 3.91

Table 1: Comparison with state-of-the-art on TGIF-QA dataset. ↑ means higher numbers correspond
to better performance (ACC) and ↓ means lower numbers correspond to better performance (MSE).
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Exist Count Integer Comparison Attribute Comparison Query All
More Equal Less Color Size Type Dir Shape Color Size Type Dir Shape

Random [21] 50.00 22.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 12.50 50.00 50.00 25.00 33.33 33.33
Text [21] 52.92 32.41 75.14 56.39 57.81 47.73 52.56 53.12 53.55 51.56 12.27 51.07 48.65 25.23 32.70 39.95
GRU+AVG [21] 51.77 33.18 59.66 54.12 59.38 52.27 50.00 51.13 53.27 47.58 19.78 51.91 53.33 28.26 38.29 41.43
2GRU [21] 53.54 35.02 68.18 53.70 56.10 54.12 51.28 51.70 52.70 47.86 19.59 53.50 58.38 34.79 38.34 41.85
ST-TP [21] 51.46 32.54 58.46 50.39 53.52 49.74 54.56 53.12 51.95 50.39 21.23 53.81 55.70 36.08 40.60 40.47
SVQA [21] 52.03 38.20 74.28 57.67 61.60 55.96 55.90 53.40 57.50 52.98 23.39 63.30 62.90 43.20 41.69 44.90
STRN [ours] 54.01 44.67 72.22 57.78 62.92 56.39 55.28 50.69 50.14 50.00 24.31 59.68 59.32 28.24 44.49 47.58

Table 2: Comparison with the state-of-the-art on different categories of the SVQA dataset. Since
everything is accuracy (ACC), higher numbers correspond to better performance.

SVQA Dataset: Results are summarized in Table 2. Similar to Table 1, the two lines
at the top correspond to random and text-only models; GRU+AVG is an image-VQA based
approach; 2GRU is similar to ST-based methods [5] and SP-TP is the same as Jang et al.
[5]. As shown in the last column of Table 2, we outperform all methods by a margin of
2.68%. We perform better in Exist, Count and five out of thirteen sub-categories of Integer
Comparison, Attribute Comparison and Query. We do competitively in three and worse in
five sub-categories. However, we would also like to highlight a substantial improvement
of 6.47% in the Count category, which unlike sub-categories, forms a significant portion
(23%) of the total dataset (see Fig 3 of [21]). This result is in consonance with TGIF-QA
dataset (Table 1), where we gain a substantial improvement of 4.63% in the Count task.
Since counting is considered a complex task requiring elaborate spatio-temporal reasoning,
we believe this improvement conclusively demonstrates the effectiveness of our approach.

4.2.2 Ablations

In this experiment, conducted on TGIF-QA dataset, we show the effectiveness of joint spatio-
temporal relational reasoning, as opposed to individual spatial or temporal relational reason-
ing. To show that our experiment generalizes over different modalities, we consider sep-
arate models trained individually on both ResNet (ResNet-res5c) and C3D (C3D-conv5b).
In order to avoid interference, we do not use Global Context Encoder LSTM and we call
the resultant model as STRN-GC. We summarize the results in Table 3. We consider two
baselines. In STRN-GC-TRM, we replace the Temporal Relations Module (TRM) with a
two-layer LSTM as a baseline to model temporal relations. We initialize the hidden state of
the LSTM using the last hidden state of the text-encoder LSTM, following the ST models of
Jang et al. [5]. In STRN-GC-SRM, we replace the Spatial Relations Module (SRM) using an
expressive CNN. As shown in the table, STRN-GC significantly outperforms both baselines
in all four tasks, which shows the effectiveness of joint spatio-temporal relational reasoning.
We believe the reason is that LSTMs and CNNs, despite being effective to model temporal
and spatial data, need to learn relational reasoning from scratch which is inefficient.

ResNet-res5c
Model Action Trans Frame Count
STRN-GC-TRM 64.95 71.25 44.86 4.50
STRN-GC-SRM 66.09 77.36 49.57 4.54
STRN-GC 72.16 79.18 52.90 4.42

C3D-conv5b
Action Trans Frame Count
63.10 71.26 44.63 4.18
67.72 77.70 47.53 4.40
71.42 78.85 50.04 4.10

Table 3: Effectiveness of joint spatio-temporal relational reasoning as opposed to individual.
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5 Conclusion

In this paper, we propose a novel neural network module which provides an effective prior
to capture spatio-temporal relations (object-interactions and action-dynamics). We achieve
state-of-the-art performance on a real-world (TGIF-QA) and a synthetic (SVQA) videoQA
datasets. Additionally, we achieve substantial improvement in the challenging counting task,
which requires capturing spatio-temporal dynamics in different parts of a video.

(a) Repeating Action (b) State Transition (c) FrameQA (d) Repetition Count

Q) What does the man do after
lick lips? 
(Ours): Bite donut
ST-TP: Running

Q) What does the guy do four
times? 
(Ours): Throw money
ST-TP: Spin

Q) How many young women are
singing and dancing? 
(Ours): Two
ST-TP: Three

Q) How many times does the man
shake shoulders? 
(Ours): 4
ST-TP: 5

Figure 3: [Best viewed in color] A comparison of the qualitative results of ST-TP [5] and STRN (Ours).
Green and Red refers to correct and incorrect predictions, respectively.

Q) What number of things are either small objects that are behind
the small blue cube rotating at start or big gray cylinders?
Prediction: One
Type: Count

Q) Are there any balls moving left that have the same size as the red
ball?
Prediction: Yes
Type: Exist

Q) Are there more cubes than yellow cylinders?
Prediction: Yes
Type: Integer Comparison

Q) How many objects are either big objects that have the same color
as the cylinder moving forward or small blue cubes rotating?
Prediction: Two
Type: Count

Q) Do the small cube rotating and the small object moving backward
have the same color?
Prediction: No
Type: Attribute Comparison

Q) What color is the small object rotating that has the same shape
as the big object?
Prediction: Cyan
Type: Attribute Comparison

Figure 4: [Best viewed in color] Qualitative results of our approach (STRN) for different categories of
the SVQA dataset. Green and Red refers to correct and incorrect predictions, respectively.
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