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Abstract

Strong lighting is common in natural scenes yet is often

viewed as a nuisance for object pose estimation and track-

ing. In human shape and pose estimation, cast shadows can

be confused with foreground structure while self shadowing

and shading variation on the body cause the appearance

of the person to change with pose. Rather than attempt to

minimize the effects of lighting and shadows, we show that

strong lighting in a scene actually makes pose and shape

estimation more robust. Additionally, by recovering multi-

ple body poses we are able to automatically estimate the

lighting in the scene and the albedo of the body. Our ap-

proach makes use of a detailed 3D body model, the param-

eters of which are directly recovered from image data. We

provide a thorough exploration of human pose estimation

under strong lighting conditions and show: 1. the estima-

tion of the light source from cast shadows; 2. the estimation

of the light source and the albedo of the body from multiple

body poses; 3. that a point light and cast shadows on the

ground plane can be treated as an additional “shadow cam-

era” that improves pose and shape recovery, particularly in

monocular scenes. Additionally we introduce the notion of

albedo constancy which employs lighting normalized image

data for matching. Our experiments with multiple subjects

show that rather than causing problems, strong lighting im-

proves human pose and shape estimation.

1. Introduction

Strong illumination is often seen as a problem for pose

estimation and tracking; this is particularly true for human

pose estimation. In contrast, we show that, rather than

hinder human pose and shape estimation, strong illumina-

tion can actually make it more robust. With a known light

source, shadows and shading provide additional constraints

for pose estimation and tracking. Conversely, if one has ac-

curate pose estimates, we can estimate the light source lo-

Figure 1. The Shadow Camera. Shadows cast on the ground may

reveal structure not directly observed on an object such as the right

arm or the left leg of the person in the image. The light together

with the ground plane act like another camera view providing an

additional silhouette of the object.

cation and reflectance properties of the body. Putting both

of these observations together results in a complete frame-

work for incorporating strong illumination in human pose

estimation. These ideas, however, are applicable to object

detection and tracking in general.

Consider the situation in which the scene is illuminated

by a single, known, point light source and is viewed through

one, or more, calibrated cameras. Here we focus on indoor

scenes where the light source distance is finite. The ap-

proach, however, easily generalizes to distant light sources,

the most common being the sun in outdoor scenes. Our

first observation is that a point light source and the ground

plane form what we call a shadow camera. The point light

acts like the focal point of a pinhole camera with the ground

plane acting like the image plane. The image formed on the

ground is the shadow cast by the body (Figure 1). This can

be generalized to multiple light sources (which effectively

produce a “camera” with multiple focal points). The cast

shadow image acts like a foreground silhouette mask in the

image plane of a regular camera. Note, moreover, the “im-

age plane” of the shadow camera need not be planar but can
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be any calibrated surface (or surfaces) in the scene. This

shadow image provides additional constraints on body pose

which make it possible to estimate 3D pose from monocular

camera views.

Making use of shadows requires the accurate segmenta-

tion of shadow regions in images. To that end we propose

a novel approach that uses background subtraction data and

checks whether putative shadow pixels are consistent with

being on the calibrated ground plane. For a complete frame-

work, we must also estimate the lighting in the scene auto-

matically. We propose two approaches that exploit 3D body

pose and shape represented using the SCAPE model [1],

the parameters of which are estimated directly from image

foreground silhouettes (without knowledge of scene illumi-

nation) [3].

The first approach recovers a point light position (or di-

rection) from cast shadows. Using the known body pose in

multiple frames and the detected shadow regions, we opti-

mize for the light position that best explains the cast shad-

ows. The second approach goes a step further and recovers

both the light position, relative illumination strength, and

albedo of the body. The key idea is the following: If we

see the body in many different poses, then points on the

body are seen at different orientations with respect to the

unknown lighting. We assume that the albedo of the body

does not change with pose and that any change in the ap-

pearance of a point on the body is due solely to its change

in orientation with respect to the light. Combining many

poses gives strong constraints on the location of the light,

the albedo of the body and the background illumination in

the scene. Hence by tracking an object with fixed lighting

we can actually infer the lighting; in this way the human

body becomes a light probe [4].

Finally we show that knowing the illumination allows us

to remove the effects of lighting from images of the body.

Given an estimated light position, light intensity, and back-

ground illumination, we solve for the albedo of points on the

body in a given view. Then, rather than formulate the body

tracking problem in terms of brightness constancy, we do so

using albedo constancy and show that albedo constancy is

less sensitive to changes in body pose.

We present results on multiple sequences with three light

configurations and two subjects. A quantitative evaluation

of pose estimation under different numbers of cameras and

different numbers of point light sources is also provided.

1.1. Related Work

There is a long history of recovering lighting and using

it to infer 3D structure. This work includes shape-from-

shading, photometric stereo, shadow carving, inverse light-

ing, and reflectance modeling. A thorough survey is beyond

the scope of this paper and the reader is referred to [7] for

an overview.

Our work is quite different from to the majority of work

in shape, shading and lighting. Most approaches assume a

fixed object which is viewed under different lighting con-

ditions. The most common approaches attempt to estimate

object shape from multiple images of a static object illumi-

nated from different light locations (for example [5, 14]);

in many cases these light locations are known. We turn this

standard problem around and use multiple known poses (i.e.

estimated from data) of the object to estimate the unknown

lighting.

The most closely related work is that of [7] which esti-

mates light sources and albedos using multiple views of an

object. They assume a rigid object but move the camera to

track it. This is similar to our case where the camera is static

but the object moves. We go beyond their work to deal with

an articulated non-rigid object which casts shadows on it-

self and the ground plane. They also only restrict attention

to infinitely distant light sources and assume the depth vari-

ation of the object is small. In our case the light is a finite

distance from the object (e.g. ceiling hight) and the depth

variation of the human body relative to the lighting distance

is not negligible.

There are also many shape-from-shading and structured

light methods that are related but beyond the scope of this

paper (see [6, 15]). The most related method is that of

Mercier et al. [8] which assumes unknown shape, re-

flectance and lighting. Like us they use silhouettes to re-

construct shape but unlike us use a voxel representation.

They go beyond work here to recover more general re-

flectance models but have a much more limited capture en-

vironment and do not cope with the complexities of non-

rigid and articulated objects. Our work could be extended

to include their more general reflectance model. In related

work Savarese et al. [10] use known light sources and es-

timate an unknown shape. In our case, we know the object

shape in multiple frames and estimate the lighting.

There has been little work on articulated pose estimation

from cast shadows. Segen and Kumar [11] describe a sys-

tem to recognize basic hand gestures by tracking the 3D po-

sition and orientation of two fingers using the hand shadow

captured with a single camera. More relevant is the work

of Bruckstein et al. [2] in which they geometrically recover

the pose of an articulated human stick figure and the light

position from shadows. The approach requires the skeletal

joints, and their corresponding locations on the shadow, to

be manually marked in the image.

We apply a different strategy and define an objective

function over the parametric pose and shape of the subject

and the point light source position such that the projection

of the shape onto the image silhouette and the shadow best

overlap the observed body regions. We believe this to be

the first automatic procedure to estimate articulated human

pose and shape by taking advantage of cast shadows.



Figure 2. Body Shape Model. SCAPE [1] is a realistic triangu-

lated mesh model that can represent different human body shapes

and poses. The underlying low dimensional parameterization is

given by (τ, θ, β), specifying the global position τ , limb rotations

θ and body eigen-shape coefficients β (here 6 DoF).

2. Pose & Shape from Silhouettes & Shadows

Much of the work on human pose estimation and track-

ing employs generative models of human shape that are

crude approximations of the body. In recent work [3] we

used a detailed graphics body model (SCAPE) [1], learned

from range scans of real people, to address the problem of

markerless human pose and shape estimation in a multi-

camera setting (Figure 2). The generative model predicts

silhouettes in each camera view given the pose/shape pa-

rameters of the the body and matches them to foreground

silhouettes extracted from images using a fairly standard

Chamfer distance measure. In this work we extend this

framework to take advantage of shadows cast from point

light sources. These shadows provide additional constraints

on pose and shape which are sufficient to disambiguate and

effectively enable monocular 3D pose estimation.

The new framework has the following steps: 1. Segment

the images into background, foreground and shadow re-

gions (Section 2.1). 2. Acquire initial estimates of the pose

using a learned probabilistic mapping from image features

to 3D pose (Section 2.2). 3. Estimate pose and shape param-

eters from foreground silhouette data alone and generate the

surface meshes in each frame (Section 2.3) [3]. 4. Estimate

light position from shadows (Section 2.4). 5. Re-estimate

pose and shape from foreground regions, shadow regions

and the estimated light position (Section 2.3).

2.1. Foreground/Shadow Segmentation

Foreground silhouettes have been widely used in human

pose estimation and tracking. Interestingly, most work in

shadow detection has focused on removing the shadows to

improve foreground segmentation [9]. Distinguishing fore-

ground from shadows can be challenging since both dif-

fer significantly from the background. The initial step in

View 1 View 2 View 3 View 4

Figure 3. Foreground and Shadow Segmentation. Row 1: Per

pixel classification. Row 2: Morphological operations. Row 3:

Multi-view integration. Note the robustness introduced by this

step. Row 4: Segmentation overlaid on original images. Row

5: Original images (with two light sources).

Figure 4. Shadow Integration. Segmented shadow regions from

Figure 3 aligned in a single coordinate frame. Each registered

shadow can be thought of as voting for the presence of a shadow.

Regions that contain only one vote (light blue) can be classified as

outliers and potentially relabeled as foreground pixels.

shadow detection is fairly standard and involves first trans-

forming the images into HSV color space (Hue, Satura-

tion, Value), then classifying foreground, shadow, and back-

ground classes using only the saturation channel. This is

followed by several morphological operations, including

median filtering, image dilation and erosion, removal of

small disconnected components and hole filling. Rows 1

and 2 in Figure 3 show the segmentation result before and

after this procedure.

We employ a novel shadow segmentation method that

uses multiple synchronized and calibrated camera views



of the scene and a calibrated ground plane on which the

shadow is cast. It is based on the observation that each

shadow pixel corresponds to a 3D ray which can be in-

tersected with the ground plane with known coordinates.

Therefore each camera view yields a 3D reconstruction of

the shadow.

Ideally, the 3D image of the shadow is the same in all

views. In practice, the segmented shadow regions differ due

to noise in the segmentation and the fact that the body may

occlude the shadow from some camera views. We think of

the recovered shadow in each view as voting for the true 3D

shadow as illustrated in Figure 4. Inconsistent 3D shadow

reconstructions result, in part, from mislabeling foreground

as shadow. For example, in Figure 3, View 3, most of the

torso is detected as shadow, yet it is not consistent with the

shadow reconstructions in the other views.

We adopt a conservative approach and attempt to relabel

inconsistent shadow regions only when it leads to a spatially

consistent foreground segmentation. More precisely, we re-

label shadow pixels as foreground when they not explained

by the other shadow views and are adjacent to foreground

pixels in the current view. This step may alter the shadow

vote outcome. Consequently, the procedure is repeated until

convergence (typically 3 to 5 iterations), resulting in robust

and clean segmentations (see Figure 3).

2.2. Initialization of Pose

Our optimization strategy requires an initial estimate of

the pose that is relatively close to the true configuration. In

[3] we relied on a cylindrical body model to perform hu-

man tracking and initialize the SCAPE optimization. This

was shown to work well in a multi-camera setup, but still re-

quired initialization at the first frame. Here we adopt a fully

automatic strategy that is able to cope with pose ambigui-

ties in monocular sequences. We use a Bayesian Mixture of

Experts (BME) framework [13] to learn a direct non-linear

probabilistic mapping from image features to the 3D pose.

The image (shape context) features are computed from fore-

ground silhouettes in one or more views. While we can

sample multiple initial poses from this model, we choose

only the most likely here and assume the body shape is the

mean shape in the SCAPE model.

2.3. Optimization

Our goal is to estimate the shape and pose of the body

along with the the light position(s) from one or more im-

ages; we do so within a framework of synthesis and evalua-

tion. Given a a predicted body shape and pose described by

the state vector s = (τ, θ, β) (see Figure 1), we project the

3D surface mesh into the image plane of camera i to pro-

duce an estimated foreground Fe
i (s). This is then compared

with the observed foreground Fo
i . Given a light position

c, ground plane g, and a canonical view i, the estimated

shadow, S
e(s, c, g), of the surface mesh on the ground is

rendered in view i and compared with the observed shadow

So (where So is the shadow derived from multiple views and

transformed into the canonical view (e.g. Fig. 4)).

To estimate the model and light parameters, we formu-

late an objective function in terms of a silhouette dissim-

ilarity measure, D(·e,·o), which is implemented as a bi-

directional Chamfer distance between estimated and ob-

served silhouettes [3]. In [3] we rely on foreground silhou-

ettes alone to estimate pose and shape; here we add a term

to measure the shadow difference. To optimize pose and

shape from silhouettes and shadows we minimize

E(s) = D
(

Se(s, c, g), So
)

+

K
∑

i=1

D
(

Fe
i (s), Fo

i

)

(1)

where K one or four camera views in our experiments. In

all cases, the optimization is performed using a stochastic

search technique related to annealed particle filtering as de-

scribed in [3].

2.4. Estimating the Light Position

To estimate light position, we first compute the pose and

shape, st , for some number of time instants t = 1 . . .N in a

sequence. Keeping pose and shape fixed, we then optimize

for the light positionc by minimizing the silhouette distance

E(c) =
∑

t

D
(

Se (st, c, g) , So
t

)

(2)

where the difference is computed between the shadow pre-

dicted by the model, Se(st, c, g), and the one computed

from the image(s) at time t, So
t .

To initialize the search we parameterize the light loca-

tion by its height from the floor and its azimuth and eleva-

tion angles. We discretize the space in a reasonable range

above the person and compute the value of (2) for a total

of 288 light positions. We then select the best location,

re-discretize around it using a 7 × 7 × 7 grid with a finer

sampling, and repeat down to a 5mm discretization.

2.5. Results

The experiments here use three sequences, (R1, R2 and

R1,2), the first two with different individual light sources,

and the third having both lights turned on. Each sequence

was captured by four synchronized and calibrated color

cameras. Sequences R1 and R1,2 are of subject AB while

R2 contains subject MB. In all cases we fit the parameters of

a SCAPE body model, independently in each frame, as de-

scribed in [3]. Ground truth light positions were computed

using a commerical motion capture system.

Light estimation results: We first show how the light

position can be estimated from the body model and ex-

tracted shadows. In each sequence the shape and pose of
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1. monocular, no shadows − 128 ± 54 mm

2. monocular, one shadow − 64 ± 14 mm

3. monocular, two shadows − 82 ± 12 mm

4. four views, no shadows − 54 ± 8 mm

5. four views, one shadow − 53 ± 6 mm

6. four views, two shadows − 66 ± 8 mm

Figure 5. Effect of shadows on pose and shape estimation. Left (R1, AB) and Middle (R2, MB): Monocular shape and pose estimation.

Row 1 shows the automatic initialization (Section 2.2). Row 2 shows estimated pose and shape based on monocular silhouette optimization.

Row 3 shows the improvement obtained by adding shadows to the optimization. Color key: amber = F e; mid-blue = F o; red = agreement

between F o and F e; light green = Se ; light blue = So; orange = agreement between So and Se . The estimation uses only the left-most

view of each frame, with the other view presented for visual inspection. The right two images in the panes show the recovered 3D shape

projected into the image and rendered in green along with its shadow. Right: Quantitative evaluation of the pose reconstruction using

different numbers of lights and camera views for optimization. Shadows prove most useful for monocular sequences when generated by a

single point light source. (See http://www.cs.brown.edu/research/vision/scape for videos and additional results.)

Placement Relative Distance Direction

Error Error Error

Light 1 140mm 4.64% 0.87◦

Light 2 218mm 7.40% 1.83◦

Table 1. Estimated light position and distance accuracy. Light 1

was estimated with subject AB (sequence R1, 10 poses) and Light

2 with subject MB (sequence R2, 10 poses).

the subject was estimated at several time instants using only

the foreground silhouettes as image observations. Given the

estimated shape and pose, we optimize (2) as described in

Section 2.4. Each pose results in a different shadow and

provides different constraints on the light position. We eval-

uate the estimated light positions in terms of both direction

and position error. In particular, we report the relative dis-

tance error as a ratio of the placement error and the distance

from the light source to the average location of the subject

on the floor (Table 1).

The results suggest that the cast shadows were very good

for recovering the light direction, but not the precise loca-

tion. This is due to the fact that small changes in the di-

rection of incoming light induce large changes in the cast

shadow while, at the distances found here, variation in dis-

tance produces smaller changes.

Pose and shape fit: Here we use the estimated light po-

sitions from above along with the cast shadows to constrain

the estimation of the SCAPE parameters (1). We evaluate

how effectively a shadow camera can replace a video cam-

era (in some applications an additional light source may be

more practical than an additional camera).

First, consider the monocular pose and shape estimation

problem. Figure 5 shows examples of the initialization (top

row), estimated pose and shape based on monocular fore-

ground silhouettes alone (middle row), and using both fore-

ground and shadows (bottom). The example to the left illus-

trates why monocular views are inherently ambiguous and

the optimization is under-constrained. While the fit of the

foreground in the optimized view is almost perfect, an al-

ternate camera view reveals that the recovered pose is far

from the truth; note also that the projected shadow (light

green) does not match the observed shadow (light blue).

The shadow in this case is sufficient to fully constrain the

pose and shape estimation (bottom). This demonstrates that

shadows can provide powerful constraints for human pose

and shape estimation from monocular images.

We quantitatively evaluate pose recovery accuracy us-

ing joint placement error. Our video capture was synchro-

nized with a marker-based motion capture system which

was used to acquire ground truth joint locations for each

frame. We compute the root mean squared joint location

error in mm for the hips, knees, ankles, shoulders, elbows

and wrists. Figure 5 (right) shows the mean and standard

deviation of the errors over all the joints. The results sug-

gest that a single shadow offers a significant improvement

in monocular pose estimation. The addition of a second

point light source actually reduced accuracy, but additional

experiments are needed before we can make any conclu-

sive statements about the effects of multiple light sources

on pose accuracy. Once four camera views are available,

shadows appear to offer no clear benefit.

The spatial configuration of the camera, light source and

the subject affect the performance of the system. Intuitively,

a cast shadow is most informative when the camera view-

ing direction is orthogonal to the plane containing the light



Figure 6. Illumination from pose; synthetic example. Multiple

body poses are shown for a fixed lighting configuration. Corre-

sponding points on the body have the same albedo but appear dif-

ferent due to changes in their orientation with respect to the light

source. Right: estimated albedo.

and subject. If the light, camera and subject are relatively

collinear, then there is little new information present in the

shadow. We conclude that cast shadows may provide an

inexpensive means to generate a “second view” for pose es-

timation in a controlled environment with a single camera.

3. Lighting from Shading and Pose

In addition to cast shadows on surfaces in the world, the

human body itself contains information about the lighting in

the scene. In particular, shading on the limbs and shadows

cast by one body part onto another are a rich source of light-

ing and shape information. Exploiting this requires accurate

knowledge of the body shape (and consequently the surface

normals) which is provided by the SCAPE model. We as-

sume that the body albedo does not change with pose (a rea-

sonable assumption), the illumination is from a single point

light source (this can be generalized as discussed below),

the light source is not moving (reasonable in most scenes),

and that the reflectance is Lambertian (violated in practice

but sufficient for our purposes). Each body pose provides

corresponding surface points in different orientations rela-

tive to the light which provide constraints on the albedo,

light position and light intensity. By combining constraints

from multiple poses we infer the illumination in the scene

and albedo of the body.

This is illustrated in Figure 6. Using known poses/shapes

we generated synthetic views of the scene with a known

albedo (sinusoidal plaid pattern) and known illumination.

Using the method below we automatically inferred the light

position, the albedo and the illumination strength (up to a

scale factor). The recovered albedo shown on the right looks

“flat” with all the shading information removed.

3.1. Reflectance Model

Let a = [a1 . . . aV ]T be a vector containing the albedo

at each of V vertexes in the body mesh and let Np =
[n1,p . . .nV,p]

T be a matrix of surface normals at each ver-

tex for the pth body pose. We saw above that body shape

and pose can be estimated reliably from silhouettes; this

gives us P body poses with known 3D coordinates Xp =
[x1,p . . .xV,p] at each vertex. Here each pose is seen in

four camera views and the visibility of each point from each

camera is easily computed.

If c is the location of a single point light source, then

sv,p(c) = c−xv,p defines a light direction from the vertex v
in pose p to the light source. Finally let dv,p be the distance

from the light to the body vertex in pose p. We represent

the appearance of the body, r̂p, in a given pose using the

standard Lambertian reflectance model. For vertexes that

are in direct illumination the reflectance is

r̂v,p = av((sv,p(c))
T nv,pl/(dv,p(c))

2 + b) (3)

where l is the light intensity and b is the background illumi-

nation. For body points in shadow we have r̂v,p = avb.

Given observed images we compute the error

E(l, b, a, c) =
1

Z

P
∑

p=1

K
∑

k=1

V
∑

v=1

vis(p, k, v)ρ(rp,k,v − r̂p,k,v)

where vis(p, k, v) = 1 if vertex v is visible from camera

k in pose p and zero otherwise; the same indexing nota-

tion is used for the observed and estimated reflectance rp,k,v

and r̂p,k,v. The normalization term Z is simply the sum of

the visible pixels. Here we formulate the error using a ro-

bust function ρ() to account for: 1) inaccuracies in pose and

shape estimation which may produce erroneous surface nor-

mals; 2) limitations in the body model (e.g. the body model

is naked while actual subjects wear clothes); 3) violations of

the Lambertian assumptions (e.g. skin typically has a spec-

ular component). Here we take ρ() to be the negative log

Student-t function.

Note that there is a well known ambiguity in that one

can multiply the albedo by a constant factor and scale l and

b appropriately to compensate. Consequently we set l to be

an arbitrary constant and find a and b relative to that. Note

also that it is trivial to change the formulation to model a

light source at infinity and estimate light source direction

rather than position (in this case all rays s are parallel and

the light intensity does not vary with distance).

Finally, most previous models have looked at objects

with limited depth variation relative to the distance from the

light source and, hence, have ignored the 1/d2 term. We ar-

gue for people tracking in indoor environments this term

cannot be safely ignored as we observe significant intensity

variation from a person’s head to their feet with illumina-

tion mounted on the ceiling. If there is sufficient variation in



Figure 7. Estimated light position; synthetic example. Black

dots represent the course initializations of the light. Red stars are

the initial locations with lowest error. Green are the the result of

optimization starting with the red stars. Blue is the ground truth.

depth of points across poses, this quadratic fall-off of light

intensity helps constrain the distance of the light source.

3.2. Optimization

Minimizing E(l, b, a, c) takes place in two stages. First a

coarse initialization search is performed. Assuming a single

point light source we discretize the space as in Section 2.4

(see Figure 7). Given each hypothesized light position we

solve for a and b (recall l is fixed) using coordinate descent.

The background illumination is initialized to b = 0 and the

albedo to a constant value over the entire body. The five

light positions with the lowest residual error are selected as

initial starting locations.

The algorithm then optimizes over the all the param-

eters including the light source location, c, using coordi-

nate descent; note we enforce positivity constraints on the

albedo and background illumination during optimization.

Convergence is determined when the change in the resid-

ual E(l, b, a, c) is less than a threshold for five iterations.

The gradients with respect to the parameters are all straight-

forward except for those related to light position. Changes

in light position change which vertexes are directly illumi-

nated; computing the gradient with respect to these changes

cannot be done in closed form and approximating it is too

computationally costly since it involves multiple visibility

computations. Consequently, we approximate the gradient

with respect to c by simply ignoring these changes in illu-

minated vertexes. Still, at each iteration of the descent, the

visibility with respect to the light must be computed and

this is the most computationally expensive part of the al-

gorithm. Current visibility computations are performed in

Matlab and take about one second per view; this could be

reduced with graphics hardware.

3.3. Albedo and Lighting Results

We evaluate the method using a synthetic sequence (S1)

where all parameters are known and two real sequences

(R1, 83 poses and R2, 23 poses). S1 was constructed using

Figure 8. Estimated albedos for two different subjects and light

positions.

Figure 9. Albedo constancy. Given known lighting, we undo its

effect in images. Several views of the body are shown viewed

from different cameras in different poses. In each pair, the left

shows the visible pixel luminance values while the right shows

these values “corrected” to remove lighting. Note that the effects

of illumination are greatly reduced.

the same body shapes and lighting as R1 but the observa-

tions were generated using the model (3) and a synthetic

albedo. To recover the albedo in the real sequences, we first

converted the input images to a single luminance channel

(sum of RGB values) and excluded pixels that were satu-

rated (pixels values in the top 10% for a given frame).

Figure 7 shows the recovered light position for S1. De-

spite having a unique minimum, we found the distance of

the light source was weakly constrained in practice (lying

along a line). The position was fairly accurately recov-

ered with the best estimate being 56.3mm (1.86%) from

the truth. The estimated albedo accounted for for 98% of

the variance in the true albedo.

For the real sequences the camera positions were consis-

tently biased below the true position. The error in position

was 506.2mm (16.7%) for R1 and 412.7mm (12.67%) for

R2. Here we posit that a non-linear camera response near

saturated regions caused the bias. The recovered albedos

for the two sequences are shown in Figure 8. In both cases,

the estimated albedo appropriately lacks most of the shad-

ing information present in the input data.

3.4. Albedo Constancy

Changes in orientation with respect to the light source

cause changes in luminance; these violate the common as-

sumption of brightness constancy used in many tracking

frameworks. In human tracking, these illumination ef-

fects can be significant [12]. Given estimated light posi-

tion (or direction), light intensity, and background illumina-



Brightness deviation Albedo deviation

Figure 10. Brightness versus albedo constancy. Left: standard

deviation computed for brightness (left) and albedo (right) for ev-

ery point on the body. Right: Sum of squared differences in corre-

sponding mesh locations plotted as a function of the log distance

between poses defined in terms of surface normals. Green: bright-

ness constancy error; Blue: albedo constancy error.

tion, along with the body surface normals, we solve for the

albedo of the body in each frame using (3). We can then

define tracking in terms of albedo constancy rather than

brightness constancy.

While tracking is not the focus of this paper, we show

preliminary evidence that albedo constancy may be more re-

liable than brightness constancy. For subject MB, we used

the estimated illumination to compute the albedo in each

frame and normalized both the albedo values and brightness

values to [0, 1]. Figure 9 shows two poses from R2 with the

original brightness on the left and the albedo on the right af-

ter removing lighting effects. Figure 10 shows the standard

deviation in the pixel values for both brightness and albedo.

Observe that the legs, arms, and back all have high deviation

in the brightness model since their orientation changes sig-

nificantly throughout the sequence. Figure 10 (right) shows

the squared errors (SSD) between corresponding points on

the body in different poses as a function of the log distance

between poses (defined in terms of the dot product between

corresponding surface normals). As expected, albedo is less

sensitive to changes in surface pose.

4. Conclusions

We have presented a framework for exploiting strong

lighting in the estimation of 3D human shape and pose. We

have shown that a sufficiently rich model of the human body

makes estimation of light sources practical. We have also

shown that knowing the lighting in a scene can make human

pose estimation more reliable. In contrast to the prevail-

ing wisdom that strong lighting should be avoided, or that

vision algorithms should be invariant to lighting, we show

that strong lighting is actually beneficial to pose and shape

estimation. These conclusions extend beyond the case of

human pose considered here.

In future work we will explore the use of albedo con-

stancy for tracking. Future work will also consider extended

light sources (which can be modeled as many point light

sources) and will combine cast shadows with shading for

light source estimation. We will also explore more complex

reflectance models. Finally we will explore the integration

of shading information into the body shape fitting.
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