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Alexandru O. Bălan Leonid Sigal Michael J. Black

Department of Computer Science, Brown University, Providence, RI 02912, USA

{alb, ls, black}@cs.brown.edu

Abstract

The Bayesian estimation of 3D human motion from video

sequences is quantitatively evaluated using synchronized,

multi-camera, calibrated video and 3D ground truth poses

acquired with a commercial motion capture system. While

many methods for human pose estimation and tracking

have been proposed, to date there has been no quantita-

tive comparison. Our goal is to evaluate how different

design choices influence tracking performance. Toward

that end, we independently implemented two fairly standard

Bayesian person trackers using two variants of particle fil-

tering and propose an evaluation measure appropriate for

assessing the quality of probabilistic tracking methods. In

the Bayesian framework we compare various image likeli-

hood functions and prior models of human motion that have

been proposed in the literature. Our results suggest that in

constrained laboratory environments, current methods per-

form quite well. Multiple cameras and background subtrac-

tion, however, are required to achieve reliable tracking sug-

gesting that many current methods may be inappropriate in

more natural settings. We discuss the implications of the

study and the directions for future research that it entails.

1. Introduction

The recovery of human pose and motion from video se-

quences has improved dramatically in the last five years.

In particular, a variety of Bayesian methods have been de-

veloped for recovering 3D human pose [7, 13, 15, 16, 18].

Each of these methods makes different modeling choices re-

garding the formulation of a likelihood term and an a priori

probability term used in the Bayesian model. These meth-

ods also vary in how they perform inference. To date, no

quantitative results have been presented and each group pur-

suing this problem has used different image sequences. As a

result, it has been impossible to compare the methods quan-

titatively or even to determine why one method might work

better than another. To address this problem, we undertake

the first quantitative evaluation of current human tracking

formulations. In doing so we develop a novel set of evalua-

tion data with ground truth human motion and a set of eval-

uation measures for comparing the accuracy of human mo-

Figure 1: Example Ground Truth Data. The 3D body

model is obtained by a commercial Vicon motion capture

system. This 3D body model is shown here projected into

four calibrated camera views.

tion trackers. This paper presents a quantitative analysis of

current methods with the goal of teasing apart which model-

ing choices are important and where fundamental problems

remain. Rather than developing new algorithms for 3D hu-

man motion estimation, this paper evaluates current meth-

ods and quantitatively compares different design choices. A

full review of the literature is outside the scope of this paper;

rather, here we focus on a representative class of Bayesian

methods that use particle filtering [7, 15, 10]. For a more

detailed review of the literature, see [8, 11]. The paper also

presents a novel human motion dataset, baseline software,

and evaluation measures that are being made available to the

research community in the interests of encouraging quanti-

tative evaluation and comparison1.

Quantitative evaluation of human motion recovery re-

quires image sequences with ground truth. We describe

a novel facility that combines synchronized video capture

with a commercial motion capture system. The captured

data includes training data consisting of various motion cap-

ture sequences and testing data that includes multi-camera

calibrated video data and the associated ground truth body

poses (Figure 1).

1The data and software used in these experiments are available by writ-

ing to the authors.



No commonly accepted methods for quantitative com-

parison of video-based motion capture results have been es-

tablished. We explore a number of possible measures based

on the 3D Euclidean distance of various marker locations.

There are a number of important issues that must be consid-

ered in choosing a measure that is “algorithm neutral”.

For comparison purposes we implemented a generic par-

ticle filter framework for Bayesian tracking. We tested

two variations corresponding to traditional particle filter-

ing [10, 15] and annealed particle filtering [7]. Beyond the

choice of inference method, the success of any Bayesian ap-

proach lies in the choice of likelihood and prior. Here we

implemented three commonly used likelihoods that exploit

background subtraction, image gradients, and Chamfer dis-

tance to edges. We also explored two priors, one that uses

no temporal information [7] and one that assumes constant

velocity [13].

The following Methods section describes the ground

truth data collection, the Bayesian formulation of the

tracker, and the evaluation measures. Tracking results are

then presented that explore the space of design choices and

provide insight into tracking failures. A discussion follows

in which we summarize the state of the field and suggest

the areas that need the most attention. In particular we sug-

gest that in controlled laboratory environments with three

or more calibrated cameras, good lighting, stationary back-

grounds, a single subject, and only self-occlusion, current

methods work remarkably well. While constrained, this is

exactly the kind of environment in which current commer-

cial, marker-based, systems operate. We found that both

standard and annealed particle filters worked well in prac-

tice. While the annealed filter was more accurate it has a

significant failure mode when dealing with ambiguous data.

The experimental results suggest that much of the success

of current methods is due to good background subtraction

information. This seriously limits the applicability of these

methods outside the controlled setting.

2. Methods

2.1 Ground Truth Data

To evaluate video-based human tracking we built an ex-

perimental environment for capturing 3D human motion

and synchronized video imagery simultaneously. Ground

truth motion is captured by a commercial Vicon system (Vi-

con Motion Systems Ltd, Lake Forest, CA) that uses reflec-

tive markers and six 1M-pixel cameras to recover the three-

dimensional pose and motion of human subjects. Video data

is captured simultaneously from four Pulnix TM6710 cam-

eras (JAI Pulnix, Sunnyvale, CA). These are grayscale pro-

gressive scan cameras with a resolution of 644× 488 pixels

and a frame rate of 120Hz (though to achieve better im-

age quality we captured video at 60Hz). Video streams are

captured and stored to disk in real-time using a custom PC-

based system built by Spica Technologies (Maui, HI). The

Vicon system is calibrated using Vicon’s proprietary soft-

ware while the video cameras are calibrated using the Cam-

era Calibration Toolbox for Matlab [2]. Offline, the coor-

dinate frames of the two systems are aligned and temporal

synchronization is achieved by tracking visible markers in

both systems. Figure 1 shows the 3D body model captured

by the Vicon system projected into four calibrated camera

views. As is common in the literature, the body is modeled

as a 3D kinematic tree of truncated cones with 31 parame-

ters comprising the position and orientation of the torso and

the relative joint angles between limbs.

To simultaneously capture video and pose our subjects

wore “street clothes” on which we attached standard retro-

reflective markers. These markers occupy an insignificant

portion of the visible image (see Figure 4 (a)) and, con-

sequently, their presence is unlikely to impact video-based

tracking performance.

Using standard marker-based motion capture protocols,

subjects were measured and a 3D body model was fit to

these measurements. Subjects performed a variety of com-

mon motions in a 3 × 3 × 2 m3 viewing volume. The

database currently contains 3 subjects and approximately 3

minutes of calibrated video. Additional motion capture data

(without video) is available for modeling human motions.

To allow training and evaluation the database is divided into

separate training and testing sets.

2.2 Bayesian Filtering Formulation

We pose the tracking problem as one of estimat-

ing the posterior probability distribution P+
t ≡ p(xt|y1:t)

for the state xt of the human body at time t

given a sequence of image observations y1:t ≡
(y1, . . . ,yt). Assuming a first-order Markov process

(p(xt|x1:t−1) = p(xt|xt−1)) with a sensor Markov as-

sumption (p(yt|x1:t, y1:t−1) = p(yt|xt)), a recursive for-

mula for the posterior can be derived:

p(xt|y1:t) ∝ p(yt|xt)

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1.

(1)

The integral in Eq. 1 computes the prediction P−
t using the

previous posterior and the temporal dynamics p(xt|xt−1).
The prediction is weighted by the likelihood, p(yt|xt), of

the new image observation conditioned on the pose esti-

mate.

Non-parametric approximate methods represent distribu-

tions by a set of N random samples or particles with asso-

ciated normalized weights {x
(i)
t , π

(i)
t }N

i=1, which are propa-

gated over time using temporal dynamics and assigned new

weights according to the likelihood function. This is the
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Figure 2: Example Edge Maps. (a) Canny edges us-

ing Chamfer distance (CC); (b) Smoothed Canny edges

(CS); (c) Gradient edges using Chamfer distance (GC); (d)

Smoothed Gradient edges (GS). They have been remapped

between 0 and 1 to represent edge probability.

basis of the Sequential Importance Resampling (SIR) algo-

rithm, or Condensation [1, 10]. A variation to SIR is given

by the Annealed Particle Filter (APF) introduced for human

tracking by Deutscher et al. [7]. This approach searches

for peaks in the posterior distribution using simulated an-

nealing. One characteristic of this process however is that

it tends to concentrate all of the particles into one mode of

the distribution rather than representing the full posterior,

thus deviating from the formal Bayesian framework. In this

paper we consider both SIR and APF.

2.2.1 Likelihoods

For each particle a likelihood measure needs to be com-

puted that will estimate how well the projection of a given

body pose fits the observed image. The most common ap-

proaches use edges and silhouettes.

Edge-based Likelihood Functions. We explore two

ways of detecting edges in images. The first uses im-

age gradients that have been thresholded to obtain binary

maps [7] while the second uses Canny edges [4]. An edge

distance map is then constructed for each image to deter-

mine the proximity of a pixel to an edge. Again we con-

sider two alternatives. The first involves convolving the bi-

nary edge map with a Gaussian kernel [7], while the sec-

ond computes a robust Chamfer distance from each pixel

to the closest edge [9]. The four types of edge maps are

shown in Figure 2. The negative log-likelihood is then es-

timated by projecting into the image sparse points along

the edges of all cylinders of the model and computing

the mean square error (MSE) of the edge map responses:

− logp(yt|xt) ∝
1

|{ξ}|

∑
ξ (1 − M(ξ))

2
, where {ξ} is the

Figure 3: Example Silhouette Maps. In realistic scenes,

silhouettes are rarely perfect.

set of projected points and M is the distance map. The

reader is referred to [7] for a more detailed discussion.

Silhouette-based Likelihood Function. Silhouette maps

have been generated by learning a Gaussian mixture model

for each pixel over 1000 background images and compar-

ing the background pixel probability to that of an uniform

foreground model (Figure 3). The negative log-likelihood

of a pose is then estimated by taking a number of visible

points on each limb and projecting them into the image. The

MSE between the predicted and observed silhouette values

for these points is computed [7].

2.2.2 First- and Second-Order Stochastic Dynamics

Predictions from the posterior are made using temporal

models. The simplest model applicable to generic motions

assumes no dynamics (first-order): x
−
t = xt−1 [7], while a

more specific model for smooth motions assumes constant

angular velocity. Although it violates the first-order Markov

assumption we take the fairly standard approach and im-

plement the second-order model by augmenting the state

at time t with the previous state; that is, x
∗
t ≡ [xt, xt−1]

T

[13]. The prediction is obtained by x
−
t = 2xt−1 − xt−2.

In both cases the predictions are diffused using normally

distributed random noise to account for uncertainties. The

noise is drawn from a Gaussian with diagonal covariance

where the standard deviation of each body angle equal to

the maximum absolute inter-frame angular difference [7].

In comparison with the work of Deutscher et al. [7],

our training set appears more restrictive and focuses pri-

marily on walking motions. This likely results in smaller

standard deviations for most joints and this, in turn, restricts

the practical size of the state spacing making particle filter-

ing methods more effective. In addition, we implemented a

hard prior that eliminates any particle corresponding to im-

plausible body poses to reduce the search space. In partic-

ular, we check for angles exceeding anatomical joint limits

and for inter-penetrating limbs [18]; these changes to [7]

significantly improve tracking performance for the standard

particle filter.
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Figure 4: Markers. (a) VICON markers; (b) Body model

inferred; (c) 15 joint locations used for computing 3D error.

2.3 Error Measures

2.3.1 3D Error for a Single Particle

The appropriate error measure to evaluate the goodness

of a pose estimate may vary with the application domain and

the tracking algorithm. Here we concentrate on a 3D error

measure and consider 15 virtual markers m ∈ M placed

on the body: one for pelvis, neck and head, and two for

shoulders, elbows, wrists, hips, knees and ankles (Figure

4(c)).

For each particle x
(i)
t , the full pose error δ(x

(i)
t , τt) is

computed as the average distance in millimeters of all vir-

tual markers m ∈ M with respect to the true pose τt

δ(x
(i)
t , τt) =

∑
m∈M ||m(x

(i)
t ) − m(τt)||

|M|
(2)

where m(y) returns the 3D location of marker m for the

body model y. We also compute the individual error for the

pelvis and head. Individual errors for the lower and upper

arms and legs are averaged over the left and right sides of

the body. Please note that we do not consider an error mea-

sure directly based on joint angles deviations from the true

pose. Computing average errors in angle representations is

complicated by the presence of multiple solutions that give

rise to the same pose.

2.4. Posterior Distribution Error

When evaluating Bayesian tracking methods there are a

number of issues to consider. The goal is to be able to com-

pare algorithms even though they may have different rep-

resentations of the posterior distribution. A Kalman filter

method [1] maintains a uni-modal distribution parameter-

ized by its mean and covariance. Traditional particle fil-

tering methods such as SIR use point masses sparsely dis-

tributed in a high dimensional space. Annealed particle fil-

tering tends to concentrate its particles into one very narrow

and peaked mode.

Not having access to the true posterior, we can only hope

to see a high probability for the true pose and low probabili-

ties everywhere else. However, one of the noted advantages

of particle filtering is the fact that it can represent inherent

ambiguities by maintaining multiple modes. Such an algo-

rithm should not be penalized for having non-zero probabil-

ity in regions that are far from the true pose as long as the

true pose is “well represented” by the posterior.

We will now discuss a number of error measurement

choices for the posterior error with respect to the true pose

τt. We use ∆γ(P+
t , τt) to denote the error of the posterior

P+
t , where γ represents different choices.

The most obvious choice is to sample from the poste-

rior and compute the average error ∆W over the sampled

poses. For particle methods, when the number of samples

is sufficiently large, this error converges to a weighted aver-

age over the particles errors (Eq. 3) where the error of each

particle is weighted by its normalized likelihood π
(i)
t :

∆W (P+
t , τt) =

∑

i

π
(i)
t · δ(x

(i)
t , τt). (3)

Algorithms that maintain a wider posterior will score worse

under this measure even with the mode in the right place.

This measure will favor for instance APF over SIR, since

APF has narrow peaks. It also causes the error to have a

positive lower bound that varies with the width of the pos-

terior distribution. Hence this measure depends on input

parameters and makes it hard to compare algorithms.

One may also compute the error of the expected pose

∆E(P+
t , τt) = δ

(
∑

i

π
(i)
t · x

(i)
t , τt

)
. (4)

When the posterior distribution is multi-modal, the ex-

pected (mean) particle may fall in between modes and there-

fore provide a poor approximation of the posterior error by

itself.

Alternatively, we can estimate the error of the most likely

pose in the posterior distribution. For methods using parti-

cles, the MAP estimate is approximated by the particle with

the largest weight

∆MAP (P+
t , τt) = δ(x

(j)
t , τt), π

(j)
t = max

i
(π

(i)
t ). (5)

This measure can be unfair for particle filtering methods

since the posterior probability is a function of both the like-

lihood weights and the density of the particles. The MAP

estimate may fail to evaluate the error in regions that have

a high posterior probability due to high particle density but

small individual weights.

Alternatively, we propose a measure ∆R (Eq. 6) that is

appropriate for comparing the results of algorithms that use

Monte Carlo sampling in high dimensions. We use an op-

timistic error that is the minimum error over any pose that

is present in the sampled posterior. More specifically, we

take the minimum error over all particles regardless of their
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Figure 5: Different Likelihood Functions. SH →
silhouette maps; XY → edge maps, where X ∈
{Canny,Gradient} and Y ∈ {Chamfer,Smoothed}; (a)

Likelihood using only one edge or silhouette map; (b) Like-

lihood based on the silhouette map plus one edge map.

weight. We also include the error of the expected particle

which may not be in the particle set

∆R(P+
t , τt) = min

{
∆E(P+

t , τt),

mini

(
δ(x

(i)
t , τt)

)
.

(6)

This error measurement allows fair comparison between

different algorithms by providing a lower bound on the er-

ror. This measure is only informative in high dimensional

problems such as body tracking where the samples in the

posterior cover a small part of the search domain. In this

case, it is unlikely for the true pose to be sampled by chance.

For methods that have a parametric representation (e.g.

the Kalman filter) or that use a large number of particles

relative to the size of the state space, we can estimate the

optimistic error ∆̂R by considering only a small set of

n � N samples drawn according to the posterior distri-

bution (e.g. Monte Carlo sampling). Whenever possible,

sampling should be done without replacement for a better

error estimate

∆̂R(P+
t , τt) = min

{
∆E(P+

t , τt),

min
x
(j)
t ∼P+

t ,1≤j≤n

(
δ(x

(j)
t , τt)

)
.

(7)

3. Experiments

We have run our experiments on a portion of a circu-

lar walking sequence that contains a full 180◦ turn. Fixing

the number of likelihood evaluations at 1000 per frame, the

best results were obtained using annealed filtering with 200

particles, 5 layers of annealing, a likelihood based on sil-

houettes and smoothed gradients for edges, no temporal dy-

namics, and discarding particles corresponding to infeasible

body poses (penetrating limbs or joint angles outside of the

allowed range). We refer to this combination of tracking

parameters as the base configuration B∗. The computation
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Figure 6: Noisy Silhouettes. B∗ (with no edge likelihood

term) performance degrades as silhouette noise increases.

Noise level is given as a percentage of corrupted pixels

(50% indicates random binary noise).

time is about 45 seconds per frame on a standard PC with

software written in Matlab. The tracker has been initial-

ized with the ground truth. We have evaluated the results

using the measure from Eq. 7, sampling 10 different par-

ticles from the posterior. We performed 10 trials of each

experiment. We plot the mean error at each frame and com-

pute an average error over all 150 frames. We used a t-test

to formally compare tracking parameter choices; hence, we

report the mean and standard deviation of the average error

of each method2. Tracking results are shown in Figure 11.

Comparing Likelihood Functions. First we ran B∗ us-

ing either an edge- or a silhouette-based likelihood. Fig-

ure 5(a) shows that likelihoods using silhouettes are more

powerful than edges, confirmed by the t-test. Moreover,

smoothed Canny edges were statistically superior to any

edge map using Chamfer distance, while any other pair was

statistically insignificant. Combining silhouette maps with

edge maps [7] improves tracking, but the choice of any par-

ticular edge map is not statistically significant.

We added binary noise to the silhouette maps to evaluate

tolerance to poor background subtraction (Figure 6). Here

we evaluate B∗ without the edge term to isolate the effect

of noise on the silhouettes. We observed a statistically sig-

nificant decrease in performance starting at 30% noise level,

however tracking results are remarkably stable even at 40%.

Comparing Temporal Dynamics and Priors. Reducing

the domain of the allowable poses by imposing joint angle

limits and disallowing limb inter-penetration benefits track-

ing significantly (Figure 7(a)).

Contrary to our expectations, our implementation using

constant angular velocity dynamics performs worse than

zero angular velocity (fig 7(b-c)). Moreover, it does not

track more than twenty frames without constraining the do-

main of the allowable poses. We observe that it is more

2We used a 2-tail non-directional t-test with a pooled estimate of the

standard deviation, having 18df and a 95% significance level (α = 0.05).
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Figure 7: Priors and Temporal Dynamics. (a) B∗ with

and without imposing constraints on the joint angles; (b)

1st- and (c) 2nd-order dynamics; APF corresponds to B∗;

SIR runs with 1000 particles; same tracking parameters as

B∗.

prone to accumulation of error and conclude that better prior

models are needed to overcome this problem.

Comparing Regular and Annealed Particle Filtering.

Since the bulk of the computation involves evaluating the

likelihood, we keep the number of likelihood evaluations

the same when comparing APF and SIR (Figure 7(b-c)).

Hence, the number of particles used for SIR (i.e. 1000) is

the product of the number of layers and the number of par-

ticles per layer in the annealed method. Based on a 1-tailed

t-test, APF performs significantly better than SIR at 95%

confidence level, regardless of the prior model used. Effec-

tively however, the difference in performance is not great.

Varying the Number of Particles. We observe in Figure

8(b) a linear trend on the log scale of the number of particles

with respect to performance error of the APF. This suggests

that the number of particles needed to linearly improve the

accuracy of particle filters grows exponentially.

Varying the Number of Camera Views. Figure 9 shows

that at least three cameras are necessary for tracking, and a

forth one does not significantly improve tracking accuracy.

It is worth noting however that in our setup, cameras 1 and

4 are facing each other and therefore the silhouettes are ex-

pected to be almost the same albeit reflected (see Figure 1).

Tracking fails on average after 65 frames using two cam-

eras, while monocular tracking fails after 40.
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Figure 8: Different Number of Particles. (a) Performance

results using B∗ with different number of particles Ns; (b)

Results plotted on a log scale of the number of particles

exhibit a linear relationship.
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Figure 9: Different Number of Cameras. Zero cameras

means a uniform likelihood function was used. We are not

able to reliably track with B∗ more than 65 frames using

less than three camera views.

Error for Limbs. Body extremities such as lower arms

and lower legs are the hardest body parts to track while the

pelvis is tracked fairly consistently (Figure 10(a)).

4 Discussion and Future Work

While we treat the Vicon data as the “ground truth” it

is worth noting that the “true” human motion is somewhat

elusive. Our model of the body is only an approximation to

the the human body (though it is fairly typical of the state of

the art). Additionally, the synchronization between the mo-

tion capture and the video is estimated from data and likely

has estimation errors that are difficult to quantify. Finally,

while the marker locations are estimated to millimeter accu-

racy they may move relative to the rigid structures (bones)

of the body and hence, even the highest quality motion cap-

ture data can only provide an approximation to the true limb

locations.

Here we made the common assumption that the body can

be represented by rigid limbs (e.g. truncated cones) con-

nected by revolute joints. We make no attempt to fit the

limbs shape to the image measurements. Note that Smichis-

escu and Triggs [18] use superquadrics which may fit the

observations better. More generally, one may want to fit a
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Figure 11: Tracking Results using B∗. Every 15th frame from cameras 2 (top) and 3 (bottom).
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deformable limb model to the data [12]. Evaluating whether

this improves tracking would be interesting future work.

Our evaluation measures are appropriate for the 3D mo-

tion capture task but may be less appropriate for methods

that infer 3D pose from monocular images. In such situa-

tions, ambiguities in depth may make the 3D solution very

bad (under our measures) while the joint angles or the image

projection of the 3D points are actually quite good. Conse-

quently it is worth developing additional measures for these

monocular cases.

One of the main conclusions of this study is that cur-

rent methods rely heavily on background subtraction. Even

when systems combine a variety of cues with background

subtraction, these other cues may be serving a secondary

role. We found that edge information helps in the pre-

cise localization of limbs (i.e. they improve accuracy) but

alone the tested edge likelihoods are not sufficient for reli-

able tracking. We also note that the exact form of the edge

term did not significantly change the results.

One of the key problems facing human tracking then is

the formulation of reliable image likelihood models that

apply across a wide range of imaging conditions and do

not rely on the knowledge of static backgrounds. Other

likelihoods have been proposed for human tracking and

should be evaluated in our framework. For example, more

principled edge likelihoods have been formulated using

phase information [13] and the learned statistics of filter re-

sponses [14]. Non-edge-based methods include optical flow

[3, 15, 19, 20], flow occlusion/disocclusion boundaries [18],

image templates [5], and principal component-based mod-

els of appearance [17]. The effect of the prior should also

be explored further, particularly in the case of monocular

tracking where strong priors [16] are likely to be important

in improving tracking results.

Further analysis should consider the importance of the

optimization method beyond the two explored here. For

example, experiments with hybrid Monte Carlo sampling

[6], partitioned sampling [7], or covariance-scaled sampling

[18] should be pursued.

Note that most models have parameters that must be

tuned; for example, limb lengths, likelihoods, priors, and

details of the optimization methods such as the number of

particles. The existence of ground truth allows these param-

eters to be set in a principled way by optimizing inference

over the training data.

While the annealed particle filter consistently outper-

formed the standard filter the practical difference was slight.

This may be due to the constrained training data which

limits the range of human motions. It has been observed

that particle filtering can perform well, even with high-

dimensional body models, when strong priors are enforced

to focus the particles to valid regions of the space [15]. Our

results are contrary to those reported by Deutscher et al. [7]

where the particle filter performed much worse than the an-

nealed filter. Again, we posit that this is due to their use

of a much broader prior model. In summary: good image

data means that one can use a weak prior and a simple al-

gorithm (SIR). When the data becomes less rich or the prior

less constraining the algorithm must work harder (APF).

One problem with the annealed approach emerged in

the experiments. When silhouette data was ambiguous or

noisy the annealed particle filter sometimes got “stuck” in

the wrong interpretation. The annealing forces the method



to represent one of the modes in the data. This is exactly

the wrong behavior when the interpretation of the data is

ambiguous and this is one of the reasons standard particle

filters have become popular. Thus in choosing a particular

method one must consider the quality of the input data. In

a controlled motion capture laboratory, the annealed parti-

cle filter works well but in a less constrained environment a

more general filter that can model ambiguity may be needed

(along with a better prior as suggested above).

While this study suggests current methods are quite re-

liable in controlled settings we are unable to predict when

marker-less motion capture will be a commercially viable

alternative to marker-based systems. If greater accuracy is

required, one would want to use cameras of higher image

quality and higher accuracy however we have not studied

the effect of image resolution on accuracy and can make

no predictions regarding what resolution might be needed

in practice. The limiting issue would appear to be the com-

putational challenge of processing full video streams (rather

than simple marker positions). Current commercial systems

run in real-time while any vision-based method based on

particle filtering is currently far from real-time (the unopti-

mized Matlab method here takes 45 seconds/frame).

5. Conclusions

We have presented the first quantitative evaluation of

Bayesian methods for the 3D tracking of humans in video.

In particular we explored the effect of various likelihood

terms (using background subtraction and edge measures)

and prior models. Additionally we compared standard par-

ticle filtering with annealed particle filtering. We found that

in the case of three or more cameras that both optimization

methods worked well and that the key component for suc-

cessful tracking was good background subtraction.

One of the contributions of this work is the creation of

novel ground truth sequences and an evaluation measure for

quantitatively comparing methods. The results suggest di-

rections for future work on human tracking. In particular,

to move beyond the controlled laboratory environment, bet-

ter likelihood models are needed that do not rely heavily

on known, static backgrounds. Furthermore, coping with

monocular sequences will likely require better priors. Here

we considered methods that assume manual initialization

yet fully automatic systems are necessary to recover from

tracking failures. Despite the limitations of current meth-

ods, the accuracy and reliability is such that an engineering

effort to build a highly accurate markerless motion capture

system seems within reach.
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