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Abstract. Automatic recovery of 3d pose of multiple interacting sub-
jects from unconstrained monocular image sequence is a challenging and
largely unaddressed problem. We observe, however, that by tacking the
interactions explicitly into account, treating individual subjects as mu-
tual “context” for one another, performance on this challenging problem
can be improved. Building on this observation, in this paper we develop
an approach that first jointly estimates 2d poses of people using multi-
person extension of the pictorial structures model and then lifts them to
3d. We illustrate effectiveness of our method on a new dataset of dancing
couples and challenging videos from dance competitions.

1 Introduction and Related Work

Human pose estimation and tracking have been a focal point of research in
vision for well over 20 years. Despite much progress, most research focuses on
estimation of pose for single well separated subjects. Occlusions and part-person
ambiguities, that arise when two people are in close proximity to one another,
make the problem of pose inference for interacting people a very challenging task.
We argue that the knowledge of pose for one person, involved in an interaction,
can help in resolving the pose ambiguities for the other, and vice versa; in other
words, two people involved in an interaction (e.g., dance, handshake) can serve
as mutual context for one another.

Recent tracking-by-detection (TbD) methods [1] have shown impressive re-
sults in real world scenarios, but with a few exceptions [2], are restricted to
individual people performing simple cyclic activities (e.g., walking). Despite suc-
cesses, TbD methods ignore all contextual information provided by the scene,
objects and other people in it. As a result, in close interactions, independent
pose estimates, ignorant of one another, compete and significantly degrade the
overall performance. In contrast, [3, 4] argue that context is an important cue for
resolving pose ambiguities, and show that human-object context improves pose
estimation. Inspired by these recent advances, in this paper, we advocate the use
of human-to-human context to facilitate 3d pose inference of multiple interacting
people. This differs from prior work where interactions are either ignored [1, 5]
or are only considered in the form of partial occlusions [6].
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Fig. 1. Complete overview for the proposed method illustrated through an actual result
obtained with our framework on a real competition dance sequence.

Contributions: Our key contribution is an automatic framework for estimating
3d pose of interacting people performing complex activities from monocular ob-
servations. In developing this hierarchical framework we incorporate and analyze
the role of modeling interactions, in the form of human-human context, at all
levels. We introduce a novel multi-aspect flexible pictorial structure (MaFPS)
model to facilitate joint 2d inference over pairs of people. The aspects encode the
modes of interaction and result in non-tree structured model for which we intro-
duce efficient approximate inference. We show results on challenging monocular
sequences that contain dancing couples. The couples in our dataset (to be made
publicly available) appear on cluttered background and are engaged in consider-
ably more challenging and diverse set of motions than is typical of state-of-the-art
methods (e.g., walking people in street scenes [1]).

2 Method

To achieve our goal of estimating 3d poses of interacting people in images of
realistic complexity we leverage the recent progress in people detection, tracking
and pose estimation. We rely on layered hierarchical framework that combines
bottom-up and top-down information. At a high level, the approach can be ex-
pressed as a generative model for 3d human pose that combines rich bottom-up
likelihood with a top-down prior:

p(Y1, Y2|I) ∝ p(I|Y1, Y2)p(Y1, Y2), (1)

where I is a set of image observations and Yi = {yi, di} correspond to the
parameters of 3d pose, yi, and camera parameters required to project the pose
into the image, di, for the i-th person. The inference amounts to searching for a
maximum a posteriori (MAP) estimate of Y1 and Y2 with respect to the model
in Eq. (1). In our model we incorporate interactions at different levels and take
them into account both in the prior and likelihood terms.
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The 3d pose prior, p(Y1, Y2), captures the activity-induced correlations be-
tween poses of the two subjects and also models the relative orientation and
position of the subjects with respect to one another. We rely on the Gaussian
Process Dynamical Model (GPDM) [7] and learn parameters of the prior model
from the motion capture data. The use of GPDM also allows us to learn the
model of dynamics for stitching individual 3d poses together when tracking.

To avoid depth and observation ambiguities, typical in monocular inference,
we define a rich likelihood model, p(I|Y1, Y2), that encodes consistency between
the projected 3d poses and 2d posteriors over body part locations. Characterizing
2d posteriors, and hence the likelihood, involves inference over 2d pose of the
body that takes into account spatial configuration of parts and discriminatively
learned part appearances. For further robustness and temporal consistency of
2d pose estimates, we condition the 2d model on position and scale of person
detections.

Formally, we introduce a set of auxiliary variables Li = {Lti} which corre-
spond to 2d configuration of the body and Di = {Dt

i} which correspond to
position and scale of the i-th subject in each frame of the sequence; with t being
the frame index. We make a first-order Markov assumption over Di and assume
conditional independence of 2d poses Li given positions of people in each frame
so that:
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2, I), on the right-hand side of the equation corre-

sponds to the joint multi-aspect flexible pictorial structure (MaFPS) model for
the two interacting subjects, which we describe in detail in Sec. 2.2.

To properly account for uncertainty in the 2d pose estimates we define the
likelihood in Eq. (1) by evaluating the projection of the 3d pose under the
posterior distribution given by Eq. (2). We define the likelihood of the pose
sequence as:

p(I|Y1, Y2) =
∏
t,n

pL1,n(πn(Y t1 ))pL2,n(πn(Y t2 )), (3)

where pL1,n denotes the marginal posterior distribution of the n-th body part of
the configuration L1 and πn(Y t1 ) corresponds to the projection of the n-th part
into the image.

In order to obtain a MAP estimate for the posterior in Eq. (1) we adopt
a multi-stage approach in which we first infer auxiliary variables Di and Li
and then infer the 3d poses using local optimization, while keeping the aux-
iliary variables fixed. To further simplify inference we make an observation
that in most sequences person detection and our tracking and grouping pro-
cedure are reliable enough to allow us to infer Di first by obtaining modes
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2.1 Person Detections and Grouping

As a first step towards inferring 3d poses of people we proceed with recovering
positions of potentially interacting people and tracking them over time. This
corresponds to estimating the values of the variables D1 and D2 in Eq. (2).

We employ the tracking-by-detection approach described in [1] and find
tracks of people by connecting hypothesis obtained with the person detector [8].
We then identify pairs of tracks that maintain close proximity to one another
over all frames, and use them as estimates for D1 and D2.

Denoting the set of people detection hypothesis in frame t by ht and a track
corresponding to a sequence of selected1 hypothesis over T frames by hα =
{htαt

; t = 1, . . . , T}, we are looking for two such tracks that are both consistent
over time (with respect to position and scale) and at the same time are likely
to correspond to the interacting persons. In this work we use spatial proximity
of detections as the main cue for interaction and focus of finding two tracks
that maintain close proximity to one another over all frames. Ideally, we would
like to jointly estimate the assignment of hypothesis to both tracks. However,
we found that the following greedy procedure works well in practice. We first
identify tracks of individual people by optimizing the following objective with
Viterbi-decoding2:

p(hα) = p(h1α1
)

T∏
t=2

p(htαt
)p(htαt

, htαt−1
), (4)

where the unary terms correspond to the confidence score of the person detec-
tor and the binary terms are zero-mean Gaussian with respect to the relative
distance in position and scale.

Given a set of single person tracks we associate two tracks using the closest
distance. We define the distance between two tracks hα1

and hα2
as the average

distance between corresponding track hypothesis:

D(hα1 , hα2) =
1

t2 − t1

t2∑
t=t1

‖x(hα1,t)− x(hα1,t)‖, (5)

where x(·) is the centroid of detection and t1 and t2 are the first and last frame
contained in both tracks. We only link two tracks with distance less than a
predefined threshold and link tracks with the smallest distance if multiple tracks
are sufficiently close to each other. Finally we merge all the tracks that were
assigned to each other into disjoint groups and independently infer poses of
people for each such group.

1 The index of selected hypothesis at frame t is denoted by αt.
2 We extract multiple tracks by stopping the Viterbi inference once at least one of the

transition probabilities between frames falls below a predefined threshold and repeat
the optimization using hypothesis have not been assigned to a track yet. Following
the initial optimization we filter all the tracks that are too short or have too low
score.
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Fig. 2. Flexible body model: Traditional 10-part PS model [9] on left, and the
proposed 22-part flexible PS model in the middle; half-limbs for all body parts, that
are allowed to slide with respect to one another, are illustrate in red and yellow; torso
is modeled using 4 flexible parts in green.

2.2 2D Pose Estimation

In our approach we define the likelihood of 3d body pose using estimates of the
2d projections of the body joints. This allows us to leverage the recent results in
2d pose estimation and rely on the discriminativly trained body part detectors
and robust local appearance features [9–11].

Basic pictorial structures model: We denote the 2d configuration of subject
i in frame t by by Lti = (lti0, . . . , l

t
iN ), where ltij = (xtij , θ

t
ij , s

t
ij) correspond to

the image position, rotation and scale of the j-th body part; N = 10 denotes
the total number of parts, which are traditionally chosen to correspond to torso,
head, lower and upper legs, forearms and upper arms [12, 11, 9]. Given the im-
age evidence It the posterior over 2d body configuration is proportional to the
product of likelihood and prior terms: p(Lti|I) ∝ p(It|Lti)p(Lti).

In the absence of interactions, one can rely on the tree-structured pictorial
structures model to represent the posterior over Lti. In addition, we assume that
the likelihood term factorizes into the product of individual part likelihoods
p(It|lti), which we model using boosted body part detectors as in [9]. Since rep-
resenting joint posterior over 2d configurations is intractable, for 3d likelihood
in Eq. (3), we approximate this posterior as a product over posterior marginals
of individual body parts: p(Lti|I) ≈

∏
n p(l

t
in|I).

Flexible pictorial structure model: The use of traditional 10-part PS model
commonly employed in the literature [3, 9, 11, 13] presents a number of challenges
when applied in our setting. Focusing on individual people, traditional PS model:
(i) does not properly model foreshortening of parts because parts are represented
with rigid rectangles of fixed size and (ii) is not effective in inference of poses
across variety of camera views. To address (ii) view-based [1] and multi-pose
[3] models have been introduced. These amount to a collection of PS models
trained with view-specific or pose-specific spatial priors. In our case, where we
are after jointly modeling multiple people, such mixture models will result in
an exponential number of PS models. Instead, following [14, 15] we propose a
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more flexible extension that is able to deal with both (i) foreshortening and (ii)
diverse camera views using one coherent PS model.

In our model we represent human body with an extended 22-part pictorial
structures model shown on Fig. 2. In this model each of the body limbs is repre-
sented with two parts (half limbs) attached to the ends of the limb. These parts
are allowed to slide along the part axis with respect to each other, capturing the
foreshortening of the limb. In addition, we model the torso with 4 parts attached
to shoulders and hips so that the model is capable of representing various torso
orientations by shifting this parts with respect to each other. The 4 torso parts
are connected in a star-shape pattern. In Fig. 2 (right) shows example of body
configuration inferred with our 22-part model on the “People” dataset from [11].
Note, that the model could properly adjust to the orientation of the torso which
also resulted in better estimate of the other body parts (for more see Fig. 3).

Conditioning on person detection: One of the challenges of recovering pose
of multiple people using pictorial structures is double-counting. The double-
counting problem, in this context, refers to the fact that since the two subjects
are conditionally independent3 the model is likely to find location of the two
subjects one on top of another situated on the most salient person in the image.
While we use posterior for the 3d pose likelihood, weak modes that appear on
the less salient subject still cause problems. To address the double-counting issue
one can use: (1) repulsive potentials that penalize substantial overlap between
parts [16], or (2) resort to pixel-wise occlusion reasoning by introducing and
marginalizing over image layers [17].

We take a different approach, that stems from an observation that our per-
son detection and grouping works remarkably well in separating out interacting
couples. To ensure that body-part hypothesis of both subjects are well repre-
sented and have substantial probability mass in the posteriors we condition 2d
pose inference process on the estimated positions of both people given by Dt

1

and Dt
2. This bares some similarity to the progressive search approach of [18].

We assume that positions of body parts are conditionally independent of Dt
i

given the position of the root node lti0, so that conditioning the model on Dt
i

corresponds to replacing the uniform prior on position of root part p(lti0) with
conditional distribution p(lti0|Dt

i), which we assume to be Gaussian centered on
the image position given by Dt

i .

Multi-person pictorial structure model: Our joint model incorporates inter-
actions as a form of constraints on positions of the body parts of the interacting
people. Clearly, depending on the type of the interaction, positions of different
body parts of people involved will be dependent on each other. For example,
during the waltz arms of both subjects are typically close together, whereas
during the crossover motion in cha-cha partners will only hold one hand. In
order to accommodate these modes of interaction we introduce an interaction
aspect variable at which will specify the mode of interaction for the frame t.

3 Same is true for models with weak conditional dependence between parts as those
imposed by interaction aspects.
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Given the interaction aspect, the joint posterior distribution over configurations
of interacting people is given by

p(Lt1, L
t
2|It, at) ∝ p(It|Lt1)p(It|Lt2)p(Lt1, L

t
2|at), (6)

where we have assumed independence of the appearance of both people allowing
us to factorize the joint likelihood into the product of likelihoods of each person.
The joint prior on configurations of people is given by

p(Lt1, L
t
2|at) =

2∏
i=1

p(Lti)
∏

(n,m)∈W

p(lt1n, l
t
2m)a

t
nm , (7)

where p(Lti) is a tree structured prior, W is a set of edges between interacting
parts and atnm is a binary variable that turns the corresponding potential on and
off depending on the type of interaction. The interaction potential are given by
p(lt1n, l

t
2m) = N (xt1n−xt2m|µnm, Σnm), and specify the preferred relative distance

between the positions of the interacting parts.
We model 4 aspects that correspond to hand holding; these include: (1) no

hand holding, (2) left hand of one subject holding right hand of the other subject,
(3) left hand of one subject holding left hand of the other subject, and (4) two-
hand hold. These interaction aspects are motivated by our target application of
looking at dancing couples. That said, we want to emphasize that our joint 2d
pose estimation model is general and applicable to most interactions.
Inference in the multi-person model: Modeling dependencies between sub-
jects comes at a cost of more expensive inference. In tree-structured model in-
ference can be made efficient with the use of convolution [12]. The dependencies
between subjects can introduce loops (as is the case with the two-hand hold
that we model) which makes exact inference prohibitively expensive. In order
to make the inference tractable, we rely on the following two-stage procedure.
In the first stage we ignore interaction factors and perform the inference in the
tree-structured model only. We then sample a fixed number4 of positions for each
body part of each subject from the marginal of the tree-structured model, and
repeat the inference with the full model using the sampled positions as a state-
space. This inference procedure relates to branch and bound method proposed
by Tian et al. [19].

2.3 3D Pose Estimation

To estimate 3d poses of interacting people we rely on a prior model that in-
corporates three types of dependencies between subjects: dependencies between
body pose, relative orientation and position between subjects. To capture these
dependencies we rely on a joint Gaussian process dynamical model (GPDM) [7]
trained using motion capture sequence of couples dancing. We train one GPDM
model for each dance move, performed by 3 to 4 couples.

4 In our implementation we sample positions 2000 times for each part and remove the
repeating samples.
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Joint 3d prior model: Typically, GPDM is used to learn a latent model of
motion for a single subject. In our case, we are interested in learning a joint
model over two interacting people. To do so, we express our training samples as
Y = (Y1, Y2, Yδ, Yθ1 , Yθ1→2), where Y1 and Y2 are 3d poses of the two subjects,
Yδ is relative position of subject 2 with respect to 1, Yθ1 is the root orientation
of first subject in a canonical frame of reference and Yθ1→2

is the orientation of
subject 2 with respect to 1. For convenience, we collect all training samples in
our dataset D into Y = {Y ∈ D}. We learn a joint GPDM model by minimizing
negative log of posterior p(X, ᾱ, β̄|Y) with respect to latent positions X ∈ Rd×|D|
and hyperparameters ᾱ and β̄ 5.

MAP pose inference: In our approach the 3d pose estimation corresponds to
finding the most likely values for Y1 and Y2 and the parameters of their projection
into the image, Q, given the set of image observations, I, and the GPDM prior
model learned above – MGPDM = (X,Y, ᾱ, β̄).

The projection parameters are given by Q = {rt, δt, γt1, γ2t , φt}, where rt is
the position of the first person in frame t, the γt1 and γ2t are the scales of first
and second person, φt is the absolute rotation of the canonical reference frame
for the couple (with respect to which Yθ1 is defined) and δt is the deviation in
the image position of the second person with respect to the position predicted
by the projection of Yδ into the image. Note, δt allows us to deviate from the
GPDM prior in order to generalize across closer and more distant embraces that
we were not able to explicitly model using few mocap sequence samples.

Assuming there is negligible uncertainty in the reconstruction mapping [20],
the 3d pose of both subjects in the canonical space, given a latent pose X, is
given by the mean of the Gaussian process: µY (X) = µ + YK−1Y kY (X) where
K−1Y is the inverse of a kernel matrix, and kY (X) is a kernel vector computed
between training points and the latent position X. With this observation the
likelihood in Eq. (1) can be expressed directly as a function of latent position
X and projection parameters Q. With slight abuse of notation, we can hence
re-write Eq. (1) as:

p(µY (X), Q|I) ∝ p(I|µY (X), Q)p(Y |X,MGPDM ) (8)

where p(Y |X,MGPDM ) = d
2 lnσ2(X) + 1

2‖X‖
2 and σ2(X) is a covariance of a

GPDM model defined as σ2(X) = kY (X,X)− kY (X)TK−1Y kY (X).

We approach the inference by directly optimizing Eq. (8) with respect to
X and Q using gradient-based continuous optimization (scaled conjugate gra-
dients). In order to define the gradients of the likelihood function Eq. (3) we
represent the posteriors of the 2d configurations Li using the kernel density es-
timate given by pL1,n(l) =

∑
k wkexp(‖l− lnk‖) + ε0, where lnk are the samples

from the posterior of part n used in the second stage of the inference proce-
dure described in Sec. 2.2 and wk are the value of posterior distribution for this
sample; ε0 = 0.02 is a uniform outlier probability to make the likelihood robust.

5 For details of learning we refer the reader to [7].
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Method Torso Upper leg Lower leg Upper arm Forearm Head Total

Cond. PS [9] (10 parts) 96.1 88.2 89.5 72.4 64.5 26.3 23.7 18.4 13.2 72.4 56.4

Flexible Cond. PS (22 parts) 100.0 92.1 96.1 75.0 89.5 46.1 42.1 32.9 25.0 96.1 69.4

MaFPS (joint model, 44 parts) 100.0 92.1 96.1 76.3 89.5 46.1 47.4 39.5 27.6 96.1 71.0

Table 1. Quantitative performance of 2d pose estimation: three models are
compared in all cases conditioned on the person detections. Numbers indicate percent-
age of body parts correctly found by the model.

Implementation details: We found that good initialization is important for
quick convergence of the optimization. In order to obtain a set of good initial
hypothesis we initialize the projection parameters Q from the estimates of peo-
ple positions given by Di and select a set of candidate poses from the training
set with the highest likelihood. We also found that the converges can be signifi-
cantly sped up by first optimizing the projection parameters Q while keeping the
latent positions X constant, and then jointly optimizing the pose and projection
parameters.

3 Experiments

We conduct experiments to validate modeling choices and show the role of en-
coding interactions at all levels.

Dataset: We collected a dataset of dancing couples consisting of 4 amateur
couples performing latin ballroom, mainly cha-cha. We first recorded mocap of
the subjects for training of GPDM models in mocap suites and video in their
natural clothes using 2 synchronized video cameras. Video recordings were then
annotated with 3d poses by clicking on joints in two views and optimizing 3d
pose to match 2d projections using a continuous optimization. We annotated
every 3-rd frame of the selected 3 sequences (corresponding to 3 common cha-
cha moves6 60 frames each) from 2 couples. Our dataset hence comprises of 120
annotated 3d frames. We use a subset of 40 frames from two of the cameras with
their 2d annotations for 2d experiments.

Learning: We learn appearance for part detectors and spatial priors for PS
model from a public dataset of [13] to avoid overfitting to 8 people present in
our dataset.

Error: We conduct experiments on two levels with 2d pose and 3d pose es-
timation. For experiments in 2d we use a well established percentage of parts
correct (PCP) metric introduced in [18]. In 3d we measure error using average
Euclidean distance between joints. In all cases we report error average over both
interacting subjects.

Person detection: Person detector had a nearly perfect 100% true positive
rate (with few deviations in scale) on our dataset of 60 frames/seq. × 3 seq. ×
6 This included new yorker, underarm turn and basic enclosed. We train one GPDM

for each across couples.
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Fig. 3. 2D pose estimation: Comparison of results obtained with extensions pro-
posed in Sec. 2.2 on our dance dataset; corresponding quantitative results are in Ta-
ble 1. Top row: traditional cardboard PS [9] model – note the over-counting issue;
second row: [9] model but conditioned on the person detection; third row: conditional
model but with flexible parts; last row: our complete MaFPS model with interaction
aspects – note the difference in the arms. Aspects chosen for the image are illustrated
by inlay icons.

2 couples × 2 views = 720 images. The false positive rate was on average 2− 3
detections per frame, but all false positives were removed during grouping. In
the interest of space we forgo more formal evaluation.

2d pose estimation: We first evaluate extensions we make to the pictorial
structures (PS) model in Sec. 2.1 to support 2d inference of interacting people.
We illustrate typical behavior of the 4 models we consider and visual improve-
ments that we gain by conditioning on person detection, adding flexibility and
interaction aspects to the model in Fig. 3. Quantitatively, based on results in
Table 1, we gain 23% by adding flexibility to parts and 2.3% on average by
adding aspects. It is worth noting that even though the improvements that re-
sult from modeling interaction aspects are marginal on average, they are large
for the parts that are affected by the interaction (e.g., up to 20% improvement
for the forearm). We only report quantitative results for models conditioned on
detections; unconditioned PS model [9] lost one of the persons completely in
more then half of the frames due to double-counting (see Fig. 3 top left).
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(a) (b)

Fig. 4. Results of our method: (a) Several examples of 3D poses estimated by our
approach. Compared are the independent 3d prior model learned for each person indi-
vidually (left) and our joint 3d prior (right), both based on the same 2d pose estimates.
(b) 3D poses estimated from challenging monocular dance competition videos; notice
motion blur, variations in appearance, clothing, lighting, and pose.

3d pose estimation: We also compare the role of modeling 3d pose prior
jointly over the two subjects. Estimating poses of each subject independently
we achieve average joint error of 25 cm. Joint model that includes interactions
between subjects improves this result to 19 cm. Qualitative results are illustrated
in Fig. 4 (a). The joint prior model is particularly instrumental in determining
the proper global view of the subjects (see Fig. 4 (a) second and third row), and
resolving depth ambiguities (see Fig. 4 (a) first row).

Real sequences: Lastly, we illustrate performance on real image sequence ob-
tained at dance competition in Fig. 4 (b). Note, that dancers in these sequence
were more professional then those in our dataset. Despite this and variations
in performance style, we are still able to recover meaningful 3d motions in this
extremely challenging scenario.

4 Conclusions

We explore the role of human-human context in estimating 3d pose of danc-
ing couples from monocular video. To model interactions, we introduce a novel
layered model that leverages latest advances in person detection, 2d pose esti-
mation, and latent variable models for encoding 3d priors over pose trajectories.
In the process, we introduce extensions to the traditional PS model that are
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able to account for aspects of human-human interactions and better deal with
foreshortening and changing viewpoint. We illustrate performance on very chal-
lenging monocular images that contain couples performing dance motions. These
sequences go beyond what has been shown in state-of-the-art. In the future, we
intend to look at further extending the current model to also take into account
occlusions among the interacting subjects.
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