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Abstract. We propose a hierarchical process for inferring the 3D pose of a per-
son from monocular images. First we infer a learned view-based 2D body model
from a single image using non-parametric belief propagation. This approach
integrates information from bottom-up body-part proposal processes and deals
with self-occlusion to compute distributions over limb poses. Then, we exploit a
learned Mixture of Experts model to infer a distribution of 3D poses conditioned
on 2D poses. This approach is more general than recent work on inferring 3D
pose directly from silhouettes since the 2D body model provides a richer repre-
sentation that includes the 2D joint angles and the poses of limbs that may be
unobserved in the silhouette. We demonstrate the method in a laboratory setting
where we evaluate the accuracy of the 3D poses against ground truth data. We
also estimate 3D body pose in a monocular image sequence. The resulting 3D es-
timates are sufficiently accurate to serve as proposals for the Bayesian inference
of 3D human motion over time.

1 Introduction

The estimation of 3D human pose and motion is relatively well understood in con-
trolled laboratory settings with multiple cameras where any number of Bayesian in-
ference methods can recover 3D human motion (e.g. [4]). All of these methods rely
on accurate background subtraction and edge information; this is a strong limitation
that prevents their use in more realistic and complex environments. When the back-
ground is changing or the camera is moving, reliable background subtraction is difficult
to achieve. The problems become particularly acute in the case of monocular tracking
where the mapping from the 2D image to the 3D body model is highly ambiguous. So-
lutions to the monocular (static camera) case have relied on strong prior models [18],
manual initialization [23] and/or accurate silhouettes [1, 2, 19, 23]. The fully automatic
case involving a monocular camera is the focus of this paper.

Recent work on 2D body pose estimation and tracking treats the body as a “card-
board person” [9] in which the limbs are represented by 2D planar (or affine) patches
connected by joints. Such models are lower-dimensional than the full 3D model and
recent work has shown that they can be estimated from 2D images [5, 14, 15]. The re-
sults are typically noisy and imprecise but they provide exactly the kind of information
necessary to generateproposalsfor the probabilistic inference of 3D human pose. Thus
we simplify the 3D problem by introducing an intermediate 2D estimation stage.
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Fig. 1. Example of the hierarchical inference process. (a) monocular input image with bot-
tom up limb proposals overlaid(b); (c) distribution over 2D limb poses computed using non-
parametric belief propagation;(d) sample of a 3D body pose generated from the 2D pose;(e)
illustration of tracking.

To infer 2D body pose we adopt an iterative bottom-up process. Simple body part
detectors provide noisy probabilistic proposals for the location and 2D pose (orienta-
tion and foreshortening) of visible limbs (Fig. 1(b)). To estimate the pose of the body
we exploit the idea of a 2D “loose-limbed” body model [20] which has been previously
used for 2D articulated pose estimation [21] and 3D pose estimation and body track-
ing [20]. In particular, we adopt the view-based approach of [21]. We use a variant of
non-parametric belief propagation (NBP) [8, 25] to infer probability distributions repre-
senting the belief in the 2D pose of each limb (Fig. 1(c)). The inference algorithm also
introduces hidden binary occlusion variables and marginalizes over them to account for
occlusion relationships between body parts. The conditional distributions linking 2D
body parts are learned from examples.

This process (limb proposals, NBP) provides reasonable guesses for 2D body pose
from which to estimate 3D pose. Agarwal and Triggs [1, 2] learned a probabilistic map-
ping from 2D silhouettes to 3D pose using a Mixture of Experts (MoE) model. We
generalize their approach to learn a mapping from 2D poses (including joint angles and
foreshortening information) to 3D poses. Sampling from this model provides predicted
3D poses (Fig. 1(d)), that are appropriate as proposals for a Bayesian temporal infer-
ence process (Fig. 1(e)). Our multi-stage approach overcomes many of the problems
inherent in inferring 3D pose directly from image features. We quantitatively evaluate
the 3D proposals using ground truth 2D poses. We also test the method on the monoc-
ular sequence in Fig. 1.

2 Previous Work

There are now numerous methods for detecting the 2D pose of people in static images
(with [5, 21] and without [7, 12–16] background subtraction). For example dynamic
programming (DP) or other search methods can be used to compute possible 2D poses
[5, 13–15]. While efficient DP methods exist [5], they require a discretization of the
state space of 2D limb poses and simple forms for the conditional distributions relating
connected limbs. They also require a tree structure, which does not allow long-range
interactions between parts that are required for occlusion reasoning.
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Alternatively, we adopt a graphical model representation of the body [21] that, in
addition to kinematic constraints, also encodes the possible occlusion relationships be-
tween limbs (this leads to loops in the graph representation of the body). Pose estimation
is formulated as inference in this loopy graphical model and is solved using a variant of
Non-parametric Belief Propagation (NBP) [8, 25]. This leads to a number of advantages
over DP methods. For example, limb positions and orientations need not be discretized
as in [5]. Unlike previous methods [5, 21] we infer 2D pose as an intermediate step to
inferring the full 3D articulated body pose.

Lee and Cohen [11] also use a bottom-up proposal process and infer 3D pose pa-
rameters using a data-driven MCMC procedure. Our approach differs in that we break
the problem into simpler pieces: generate 2D proposals, inference of 2D pose, and pre-
diction from 2D to 3D.

This final stage has received a good deal of attention with a variety of geometric [13,
26] and machine learning methods [1, 2, 17, 19, 22] being employed. These previous
approaches have focused on directly inferring 3D pose from 2D silhouettes which may
be difficult to obtain in general. Additionally silhouettes contain less information than
our 2D models which represent all the limbs, the joint angles, and foreshortening. This
helps reduce the ambiguities found in matching silhouettes to 3D models [23] but does
not remove ambiguities altogether. Consequently we learn a conditional distribution
using a MoE model similar to that of Agarwal and Triggs [1, 2]. Our work is similar in
spirit to [6] in which 3D poses are inferred from 2D tracking results, but our approach
can infer 3D pose from a single image and does not require manual initialization.

3 Modeling a Person

We model a 3D human body using a set ofP (hereP = 10) tapered cylinders cor-
responding to body parts and connected by revolute joints (see Fig. 3 (a)). Each part
has an associated set of fixed parameters that are assumed to be known (e.g. length
and cross-sectional radius at the two joints). We represent the overall pose of the body
Yt = [Ξ,Γ, θ]T at timet using a set of joint anglesθ, a global positionΞ, and global
orientationΓ in 3D. Joint angles are represented with respect to the kinematic chain
along which they are defined using unit quaternions. For our body model, this results in
Yt ∈ R47, orYt ∈ R55 depending on whether one chooses to model the clavicle joints.

In 2D the limbs in the image plane are modeled by trapezoids, and the overall body
pose is defined using a redundant representationX = {X1, X2, ..., XP} in terms of 2D
position, rotation, scale and foreshortening of parts,Xi ∈ R5. This redundant represen-
tation stems from the inference algorithm that we will employ to infer the pose of the
body in 2D. Notice we drop the temporal sub-scriptt for convenience.

4 Finding a Person in 2D

4.1 Limb Proposals

At the lowest level of our hierarchical approach are body part proposals. We need plau-
sible poses/states for some or all the parts of the body to localize the search. There
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Fig. 2. Proposals and NBP. Example of the belief propagation process. Left: bottom-up pro-
posals for the limbs. Center: 100 samples from the belief at each node/limb after 5 iterations
of NBP (NBP was run with100 particles, producing messages represented by800-component
kernel densities). Right: most likely sample drawn form the belief at each node.

exist a number of approaches for detecting body parts in an image. Among them are ap-
proaches for face detection, skin-color-based limb segmentation [11], and color-based
segmentation exploiting the homogeneity and the relative spatial extent of body parts
[11,13, 16]. In this paper we took a simpler approach, and constructed our set of propos-
als by simply discretizing the state space and evaluating the likelihood function (below)
at these discrete locations, choosing the100 most likely states as a particle based pro-
posal distribution for belief propagation (BP). It is important to note that not all parts
need to be detected. An example of the proposals for various parts of the body are
shown in Fig. 1(b) and 2.

4.2 Likelihoods

The likelihood model for an individual limb is built to account for possible occlusions
between body parts for a given view-based 2D model. To simplify the occlusion rea-
soning as in [21], we assume that for a given view there is a fixed and known depth
ordering of parts. Assuming pixel independence, we can then write the local image
likelihoodφ(I|Xi), for parti as a product of individual pixel probabilities defined over
disjoint image regions. For a more detailed description of the occlusion-sensitive like-
lihoods, and how one can approximate the global likelihoodφ(I|X) with a product of
local termsφ(I|Xi), we refer the reader to [21, 24]. In definingφ(I|Xi) we use silhou-
ette and color features and combine them using an independence assumption.

4.3 2D Loose-Limbed Body Model

Following the framework of [20,21] we implement the search for the 2D body using
a spatial undirected graphical model, where each nodei in a graph represents a body
part (limb), and links between nodes represent the kinematic and occlusion constraints
encoded statistically using conditional distributions. Each body part has an associated
state vectorXi ∈ R5 that encodes 2D position, rotation, scale, and foreshortening.
The joint probability for this spatial graphical model withP body parts, can be writ-
ten asp(X1, X2, ..., XP |I, V ) ∝

∏
ij ψ

K
ij (Xi, Xj|V )

∏
ij ψ

O
ij(Xi, Xj|V )

∏
i φ(I|Xi),

whereXi represents the state of the limbi; V ∈ {1..8} the discrete view;ψK
ij (Xi, Xj |V )

andψO
ij(Xi, Xj |V ) are the kinematic and occlusion constraints between the connected
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or potentially occluding nodesi andj for view V andφ(I|Xi) is the local image like-
lihood defined above. This model has a number of advantages [21] and has been shown
to produce favorable results for the 3D body estimation in a multi-view setting [20].
The graphical model structure corresponding to our model can be seen in Fig. 3 (b).

Inferring the state of the 2D body in our graphical model representation corresponds
to estimating the belief (marginal) at each node in a graph. We use a form of continuous
non-parametric belief propagation [8], Particle Message Passing (PAMPAS), to deal with
this task. The approach is a generalization of particle filtering which allows inference
over arbitrary graphs rather then a simple chain. In this generalization the message
used in standard belief propagation is approximated using a kernel density (formed by
propagating particles through a conditional density represented by a mixture model [20,
21]). For the details on how the message updates can be carried out using the stratified
sampling from the products of messages and proposal distribution see [20].

5 Proposing 3D body model from 2D

In order to produce estimates for the body in 3D from the 2D body poses, we need to
model the conditional distributionp(Y |X) of the 3D body stateY given 2D body state
X. Intuitively this conditional mapping should be related to the inverse of the camera
projection matrix and, as with many inverse problems, is highly ambiguous.

To model this non-linear relationship we use a Mixtures of Experts (MoE) model to
represent the conditionals [1, 2, 22]. The parameters of the MoE model are learned by
maximizing the log-likelihood of the training data setD = {X1, ..., XN , Y 1, ..., YN}
consisting ofN input-output pairs(Xi, Y i). We use an iterative Bayesian EM algo-
rithm, based on type-II maximum likelihood, to learn parameters of the MoE. Our
model for the conditional can be written as:

p(Y |X) ∝
M∑

k=1

pe,k(Y |X,Θe,k)pg,k(k|X,Θg,k) (1)

wherepe,k is the probability of choosing poseY given the inputX according to the
k-th expert, andpg,k is the probability of that input being assigned to thek-th expert
using an input sensitive gating network; in both casesΘ represents the parameters of
the mixture and gate distributions.

For simplicity and to reduce complexity of the experts we choose linear regression
with constant offsetY = AX + C as our expert model, which allows us to solve for
the parametersΘe,k = {Ak, Ck, Λk} analytically using the weighted linear regression,

wherepe,k(Y |X,Θe,k) = 1√
(2π)n|Λk|

exp− 1
2 ∆T

k Λ−1
k

∆k , and∆k = Y −AkX −Ck.

Pose estimation is a high dimensional and ill-conditioned problem, so simple least
squares estimation of the linear regression matrix parameters typically produces severe
over-fitting and poor generalization. To reduce this, we add smoothness constraints on
the learned mapping. We use a damped regularization termR(A) = λ||A||2 that pe-
nalizes large values in the coefficient matrixA, whereλ is a regularization parameter.
Larger values ofλ will result in overdamping, where the solution will be underesti-
mated, small values ofλ will result in overfitting and possibly ill-conditioning. Since
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Fig. 3. Hierarchical Inference . Graphical model representation of the hierarchical inference pro-
cess;(a) illustrates the 3D body model;(b) the corresponding 2D body model used for inference
of the 2D pose at every frame, with kinematic constraints marked in black, and occlusion con-
straints in blue, and(d) the Hidden Markov Model (HMM) used for inferring and tracking the
state of the 3D body,Yt, over timet ∈ {1..T}, using the hierarchical inference proposed, in
which proposals for each node,Y , are constructed from 2D body poseX using the model in(c).

the solution of the ridge regressors is not symmetric under the scaling of the inputs, we
normalize the inputs{X1, X2, ..., XN} by the standard deviation in each dimension
respectively before solving1. We omit the details of weighted ridge regression due to
space limitations, and refer readers to [2, 22].

Maximization for the gate parameters can be done analytically as well. Given the
gate model,pg,k(k|X,Θg,k) = 1√

(2π)n|Σk|
exp− 1

2 (X−µk)T Σ−1
k (X−µk) maximization

of the gate parametersΘg,k = (Σk, µk) becomes similar to the mixture of Gaussians
estimation, whereµk =

∑N
n=1 z

n
kX

n/
∑N

n=1 z
n
k , Σk = 1∑N

n=1 zn
k

∑N
n=1 z

n
k (Xn −

µk)(Xn − µk)T , andzn
k is the the estimated ownership weight of the examplen by

the expertk estimated by expectationzn
k = pe,k(Y n |Xn,Θe,k)pg,k(k|Xn,Θg,k)∑

M
j=1 pe,j (Y n |Xn,Θe,j )pg,j(j|Xn,Θg,j)

.

The above outlines the full EM procedure for the MoE model. We learn MoE models
for two classes of actions: walking and dancing. Examples of the ground truth 2D query
pose with corresponding expected 3D body pose can be seen in Fig. 4(a) and (b)
respectively. Similar to [1, 2] we initialize the EM learning by clustering the output 3D
poses using the K-means procedure.

Implementation Details. Instead of learning the full conditional modelp(Y |X), we
learn two independent modelsp(Γ |X) andp(θ|X) one for the pose of the 3D body
p(θ|X) given the 2D body poseX, and one for the global orientation of the body
p(Γ |X). The reasoning for this is two fold. First, this partitions the learned mapping
into a fully camera-independent model for the posep(θ|X), and the more specific
camera-dependent model for the orientation of the body in the worldp(Γ |X). Sec-
ond, we found that the optimal damping coefficient is significantly different for the two

1 To avoid problems with 2D and 3D angles that wrap around at2π, we actually regress the
(cos(θ), sin(θ)) representation for 2D angles and unit quaternionq = (x, y, z,w) repre-
sentation for 3D angles. After the 3D pose is reconstructed we normalize the not-necessarily
normalized quaternions to valid 3D rotations. Since quaternions also suffer from the double
cover problem, where two unit quaternions correspond to every rotation, care must be taken to
ensure that consistent parameterization is used.
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(a) (b) (c) (d) (e)

Fig. 4. Proposed 3D pose. (a) Query 2D body pose;(b) expected 3D pose produced by the
learned Mixture of Experts (MoE) model.(c) Ground-truth 3D body pose;(d) and(e) illustrate
the projection of the expected 3D pose shown in(b) onto two alternative image views.

models that imposing a single joint conditional model (and hence a single coefficient)
would result in somewhat larger reconstruction error. Estimation of the depthp(Ξ|X)
is done analytically by considering the estimated overall scale of the 2D body.

6 Tracking in 3D

Once the distribution for the 3D body pose at every frame is inferred using the condi-
tional MoE model described, we can incorporate temporal constraints to regularize the
individual 3D pose estimates by tracking. We exploit the relatively standard [10] Hid-
den Markov Model (HMM) shown in Fig. 3(d). To infer the state ofYt at every framet
given the temporal constraintsψT (Yt|Yt+1) = ψT (Yt+1|Yt) ∼ N (0, ΣT ) with learned
covariance matrixΣT , we use the same inference framework of Non-parametric BP
introduced in Section 4.3. Unlike many competing approaches, we allow the model to
optimize the pose estimates not only forward but also backward in time in a batch.

The likelihood,φ(It|Yt), of observing the 3D poseYt at timet given image evidence
It is defined in terms of Chamfer distance of the projected poseYt to the silhouettes and
edges obtained fromIt using standard techniques. Further details are omitted, and the
reader is referred to [4] and [23] for similar likelihood model formulations.

7 Experiments

Datasets. For all experiments presented in this paper we used two datasets that exhibit
two different types of actions:walking anddancing. Both datasets contain a number of
motion capture examples used for training, and a single synchronized motion capture
example with multi-view video used for testing. Video was captured using 4 stationary
grayscale cameras at 60 Hz, and 3D pose was captured using a Vicon system at 120
Hz. The motion capture (mocap) was aligned to video and sub-sampled to 60 Hz, to
produce synchronous video/mocap streams. All cameras were calibrated using standard
calibration procedures.Walking dataset [20] contains4587 training and1398 testing
poses/frames;dancing: 4151 training and2074 testing poses/frames.

Quantitative evaluation of 2D to 3D pose mapping. Learning the mapping from 2D
kinematic pose to 3D kinematic pose is one of the key contributions of this paper. We
learned two action-specific MoE modelsp(Y |X). For each of the action types we first
looked at how sensitive our learned mapping is to the parameters of the model (i.e. the
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Fig. 5. Quantitative evaluation of action-specificdancing conditional modelp(Y |X) =
p(Ξ|X)p(Γ |X)p(θ|X), computed by comparing the expectation of the(a) 3D poseE[p(θ|X)],
and of the(b) global orientationE[p(Γ |X)] to ground truth data. Error is averaged over4 trained
MoE models learned with parameters specified. In both cases,(a) and(b), it is clear that there is
benefit in using large number of mixture components (> 5), and a moderate value forλ.

number of mixture components, and the regularization termλ). The results fordancing
can be seen in Fig. 5. To quantitatively evaluate the performance we use the measure
of [20] computed by choosing 15 virtual markers corresponding to joints and “ends”
of limbs, and computing an expected absolute distance in (mm) over all the markers.
Once the optimal set of parameters was chosen, the resulting MoE models were applied
to the test data, and the error for the reconstructed 3D poses2 analyzed (see Fig. 6).

The key observation is thatwalking, being considerably simpler of the two action
types, can be recovered significantly better (with50% less error), than the more complex
dancing. The peaks in the error in both cases often correspond to singular or close to
singular cases where foreshortening in the pose of 2D limbs for example is severe.

Hierarchical inference from monocular image sequence. We also tested the full hi-
erarchical inference on the first50 frames from thewalking test sequence. The 3D
proposals obtained using the hierarchical inference process (Fig. 7) are accurate, and
sufficient to allow reliable Bayesian temporal inference (Fig. 8).

8 Summary and Conclusions

The automatic estimation of human pose and motion in monocular image data remains
a challenging problem. This is particularly so in the unconstrained environment where
good background subtraction is unavailable. Here we have proposed a system to address
this problem that uses a hierarchal Bayesian inference framework to go from crude body
part detections to a distribution over 3D body pose. We make modest assumptions about
the availability of noisy body part detectors and a reasonable image likelihood model.
We use belief propagation to infer 2D limb poses that are consistent with the human
body model. Our approach extends recent work on inferring 3D body models from 2D
silhouettes by using the inferred 2D articulated model instead. This provides a richer
representation which reduces ambiguities in the 2D to 3D mapping. We also show that
the 3D pose proposals can be used in a tracking framework, that can further regularize
the 3D pose estimates.

2 Supplementary videos are available fromhttp://www.cs.brown.edu/people/ls/.
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Fig. 6. Quantitative evaluation of action-specific conditional modelp(Y |X) =
p(Ξ|X)p(Γ |X)p(θ|X), computed by comparing the expectation to ground truth data for
two classes of motion. Per frame error for the reconstructed 3D poseθ, global orientationΓ , and
the full 3D state of the bodyY are shown for(a) dancing and(c) walking; the average per joint
error as compared to the ground truth is shown in(b) and(d) respectively.
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Fig. 8. Tracking in 3D. Tracking based on the 3D proposals (Fig. 7) at 10 frame increments. The
3D poses are projected into the image for clarity. The mean tracking error of66 (mm), computed
over first50 frames of the test sequence, is77% lower then the error reported for the same
dataset using single-view Annealed Particle Filter (APF) with manual initialization in [3]. The
best reported result in the literature on this data of41 (mm) was obtained using4-view APF [3].


