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Abstract. Discriminative approaches for human pose estimation model
the functional mapping, or conditional distribution, between image fea-
tures and 3D pose. Learning such multi-modal models in high dimen-
sional spaces, however, is challenging with limited training data; often
resulting in over-fitting and poor generalization. To address these issues
latent variable models (LVMs) have been introduced. Shared LVMs at-
tempt to learn a coherent, typically non-linear, latent space shared by
image features and 3D poses, distribution of data in that latent space,
and conditional distributions to and from this latent space to carry out
inference. Discovering the shared manifold structure can, in itself, how-
ever, be challenging. In addition, shared LVMs models are most often
non-parametric, requiring the model representation to be a function of
the training set size. We present a parametric framework that addresses
these shortcoming. In particular, we learn latent spaces, and distribu-
tions within them, for image features and 3D poses separately first, and
then learn a multi-modal conditional density between these two low-
dimensional spaces in the form of Gaussian Mixture Regression. Using
our model we can address the issue of over-fitting and generalization,
since the data is denser in the learned latent space, as well as avoid
the necessity of learning a shared manifold for the data. We quantita-
tively evaluate and compare the performance of the proposed method to
several state-of-the-art alternatives, and show that our method gives a
competitive performance.

1 Introduction

Monocular pose estimation has been a focus of much research in vision due to
abundance of applications for marker-less motion capture in activity recognition
and human computer interaction. Despite much research, however, monocular
pose estimation remains a difficult task; challenges include high-dimensionality
of the state space, image clutter, occlusions, lighting and appearance variations,
to name a few.

Most prior works can be classified into two classes of approaches: genera-
tive and discriminative. Generative approaches [1, 2] define an image formation
model by predicting appearance of the body x given a hypothesized state of
the body (pose) y; an inference framework is then used to infer the posterior,
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Fig. 1. Graphical model representations of models used for discriminative human pose
estimation, including Regression Models [3, 13], Mixture Models (e.g., Mixture of Ex-
perts (MoE) [4, 14]), Spectral Latent Variable Models (SLVM) [11], Gaussian Process
Latent Variable Models [17, 12] and Shared Kernel Information Embeddings (sKIE)
[18]. In all illustrations x denotes observed input variable corresponding to image fea-
tures, y denotes the inferred 3D pose, and z corresponds to auxiliary latent variables
(in case of Mixture of Gaussians (MoE) corresponding to the latent mixture component
identity).

p(y|x) ∝ p(x|y)p(y) over time. Since the inference often takes the form of non-
convex search in a high-dimensional space of body articulations, these methods
are computationally expensive and can suffer from local convergence (typically
requiring a good initial guess for pose to seed the search).

Discriminative approaches [3–16] avoid building an explicit imaging model,
and instead opt to learn regression function, y = f(x), that maps from im-
age features, x, to 3D pose, y; or probabilistically, a conditional distribution
p(y|x) directly. The main goal is to learn a model from labeled training data,
{x(i),y(i)}Ni=1, that provides efficient and effective generalization for new ex-
amples at test time. The difficulty with this class of methods is twofold: (1)
the conditional probability of pose given image features, p(y|x), is typically
multi-modal: different image features can be explained by several poses; and (2)
learning high dimensional regression functions, or conditional distributions, us-
ing limited training data is challenging and often results in over-fitting. Here we
focus on discriminative pose estimation.

Discriminative methods can further be categorized into: parametric and non-
parametric. Parametric methods are appealing because the model representation
is fixed1. Simple parametric models, e.g., Linear Regression (LR) [3] or Relevance
Vector Machine (RVM) [3, 10], however, are (i) unable to deal with a multi-modal
nature of the problem and (ii) unable to model the fine non-linear relationship be-
tween image features and pose. Non-parametric methods, e.g., Nearest Neighbor
Regression [13] or Kernel Regression [13], are able to model arbitrary complex
relationships between input features and output poses, subject to the availability
of the training data.

To deal with multi-modality, on the parametric side, mixture models were
introduced, e.g., Mixture of Regressors [4] or Mixture of Experts [14]. On the
non-parametric side, local models that cluster data into convex sets and use

1 Complexity of the model is not a function of the number of training examples.
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uni-modal predictions within each cluster became popular (e.g., Local Gaussian
Process Latent Variable Models (Local GPLVM) [16]). In both cases over-fitting
and generalization remained an issue, due to the need for large training datasets,
as noted in [12].

To alleviate this problem Latent Variable Models (LVMs) were introduced as
an intermediate representation. Kanaujia et al., [11], proposed Spectral LVMs to
learn a non-linear latent embedding of the 3D pose data and a separately trained
mixture model to map from the image features to the plausible latent positions
in the sub-space. The relationship between the image features and latent space,
however, was assumed to be linear within each mixture component. As an alter-
native, Shared Gaussian Processes Latent Variable Model (Shared GPLVM) was
introduced in [12] and [17], where the latent embedding was learned to preserve
the joint structure of image features and 3D poses simultaneously; the forward
non-linear mappings from the latent space to the input and output spaces were
also learned at the same time. Due to the lack of backward mapping from the
image features to the latent space, inference remained expensive, requiring mul-
tiple optimizations at the cost of O(N2), where N is the number of training
examples. Shared Kernel Information Embeddings (sKIE) [18] provided closed
form mappings to and from the latent space reducing the training and inference
complexity by an order of magnitude. Both Shared GPLVM and sKIE are non-
parametric, with the model complexity being a function of the training set size;
this makes them less appealing for use with larger datasets.

We present a parametric counterpart framework to the non-parametric latent
models discussed above.

1. We learn a multi-modal joint density model between the image features and
the 3D pose, in the form of a Gaussian Mixture Model (GMM). GMM allows
us to deal with multi-modality in the data and derive explicit conditional dis-
tributions for inference, in the form of Gaussian Mixture Regression (GMR).

2. To alleviate the need for large training sets while at the same time limiting
over-fitting, we formulate the GMM learning in the latent spaces for both
image features and 3D pose.

3. Since the manifold structure of both image features and 3D poses is complex
and cannot be well approximated by simple linear latent spaces, we propose
to use Locality Preserving Projections (LPP) [19] that while learning linear
mapping can discover non-linear manifold structure [19]. LPP also provides
us with closed form forward and backward mappings between the latent
space(s) and input/output space(s).

As a result our model is able to: (1) deal with multi-modalities in the data, (2)
model complex structure of the image feature and pose manifolds, (3) provides
both forward and backwards mapping between the respective manifolds and
original image feature or pose spaces, and (4) alleviates the need for learning, a
sometimes hard to obtain2, shared manifold structure.

2 Shared manifold structure can be hard to obtain, for example, if the input and
output features have vastly different dimensionality.
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2 Gaussian Mixture Regression

Non-parametric regression methods rely on manifold local smoothness in a typ-
ically high-dimensional input/output spaces to model the regression function;
however, they can suffer from local sparsity problems. When the data is sparse
(which is typically the case for high-dimensional spaces) and a test point is far
from the training data, the kernels tend to produce poor estimates. In addition,
the complexity of non-parametric methods is typically a function of the training
set size (e.g., O(N) for KIE and O(N2) for GPLVM), making them hard to
scale to large datasets. In this paper, we employ a parametric Gaussian Mixture
Regression to address these problems.

Given observations (e.g., image features), x ∈ Rdx , and targets (e.g., 3D
poses), y ∈ Rdy , where dx is dimensionality of the observation, and dy is dimen-
sionality of the target space, we assume the joint data samples, (x,y), follow the
Gaussian mixture distribution with K mixture components,

P (x,y) =

K∑
k=1

πkP (x,y;µk,Λk) (1)

where P (x,y;µk,Λk) is the multivariate Gaussian density function. The param-
eters of model include prior weights, πk, means, µk = [µk,x µk,y]T , and variances,
Λk = [Λk,x Λk,xy; Λk,yx Λk,y], of each Gaussian component.

The joint density can be expressed as the sum of the products of the marginal
density of x, and the probability density function of y conditioned on x:

P (x,y) =

K∑
k=1

πkP (y|x;mk, σ
2
k)P (x;µk,x,Λk,x). (2)

Similarly, the marginal distribution,

P (x) =
∑
y

P (x,y) =

K∑
k=1

πkP (x;µk,x,Λk,x), (3)

is also a mixture.
The global regression function can be obtained by combing (2) and (3):

P (y|x) =
P (x,y)

P (x)
=

∑K
k=1 πkP (x;µk,x,Λk,x)P (y|x;mk, σ

2
k)∑K

k=1 πkP (x;µk,x,Λk,x)
(4)

This can be expressed as a mixture of conditional distributions, P (y|x) =∑K
k=1 ωkP (y|x;mk, σ

2
k), where the mixing weights ωk are defined as:

ωk =
πkP (x;µk,x,Λk,x)∑K
j=1 πjP (x;µj,x,Λj,x)

. (5)
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The mean and the variance of the conditional distribution P (y|x) can be ac-
quired in closed form by:

mk = µk,x + Λk,yxΛ−1
k,x(x− µk,x) (6)

σ2
k = Λk,y −Λk,yxΛ−1

k,xΛk,xy (7)

The learning can be achieved with a simple Gaussian Mixture Model, using
Expectation Maximization (EM) procedure with K-means initialization. The
prediction given a new input can be obtained by computing expectation over
P (y|x):

E[P (y|x)] =

K∑
k=1

ωkmk. (8)

Alternatively, if the conditional relationship is truly multi-modal, it is better to
look at the modes given by mj directly. In general, we can have up to K distinct
modes in the conditional distribution for a given input, x.

Relationship to Other Methods. Notice that the regression function (8) de-
rived from the joint mixture Gaussian density is of the form of a kernel estimator.
However, there is a key difference with non-parametric regression: the mixture
weights, ωk, are not determined by the local structure of the data, but rather
by the components of a global Gaussian mixture model.

The Nadaraya-Watson kernel smoother [20] is a Gaussian Mixture Regression
model with K = N components, where N is the total number of training points.
At the other end of the spectrum, K = 1 is approximately the classical linear
regression model. Hence, the Gaussian Mixture Regression model can, in princi-
pal, represent a spectrum of regression models, ranging from the non-parametric
kernel regression, where K = N , to the classical linear regression, K = 1.

Mixture Gaussian Regression is also closely related to the Mixture of Regres-
sion model and Mixture of Experts model (with a particular form of experts and
gaits). For more discussion of this, see [21], Section 2.2.3.

3 Latent GMR Body Pose Estimation

As described in the previous section, we could use image features for inputs and
3D poses for targets and learn a GMR model in the original high-dimensional
space. This has two shortcomings, however: (1) this would involve estimation of
large number of parameters and hence require lots of training data, and (2) this
assumes essentially a piece-wise multi-linear relationship between image features
and 3D pose. For these reasons, we postulate that learning GMR in the latent
space of both, image features and pose, actually results in better generalization
and overall quality of the model.

To test this assumption we run a simple illustrative experiment with canoni-
cal correlation analysis. Canonical correlation analysis (CCA) [22] is a technique
to extract common features from a pair of multivariate data. CCA, first proposed
by Hotelling in 1936 [23], finds linear basis vectors for two sets of variables, such
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Fig. 2. Canonical component analysis of the silhouette and the human pose in the
original and latent spaces (see text for more details).

that the correlation between the projections of variables onto these basis vectors
are mutually maximized. We learn two CCA models based on 200 image-pose
pairs: one for raw silhouette binary features ∈ R2450 and pose features encoded
using 3D joint positions ∈ R69 (Fig. 2 (left)); and one for latent projections of
the image and poses into 100 and 7 dimensional linear sub-spaces, obtained using
PCA (Fig. 2 (right)); we illustrate only the first dimension along each of the axis
in Fig. 2. It is clear from Fig. 2 that pose and image features are more closely
correlated when projected into latent spaces (which reduces noise and optimally
weights features). However, CCA is likely suffer from overfitting when having
small training sets, and regularizing the solution introduces additional param-
eters to tune. Moreover, to model non-linear relations between image features
and pose parameters kernel methods need to be applied, and it is unclear how
to learn the functional form of the kernel and the kernel parameters specially in
presence of limited training samples. In next section we propose to use Locality
Preserving Projection (LPP) as an efficient and effective dimensionality reduc-
tion algorithm to capture the subtle manifold structure of the data. Additionally,
LPP is not as prone to over-fitting and does not make assumptions about the
global distribution of the data.

3.1 Locality Preserving Projections

Nonlinear dimensionality reduction techniques like Isomap [24], Locally Linear
Embedding [10, 7], or Gaussian Process Latent Variable Models [12] identify a
low dimensional embedding of the data, but are defined only for the training data
points (i.e., only give a mapping from the manifold to the original data space);
it is unclear how to obtain a latent position for a new test points. This makes
inference challenging, often involving optimization [12] of the latent position
based on the initial guess given by a set of nearest neighbors in the original
space.

In contrast, the Locality Preserving Projections (LPP) [19], like PCA, can be
simply applied to any new data point to locate it in the reduced representation
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space by finding the optimal linear approximations to the eigenfunctions of the
Laplace Beltrami operator on the manifold. Therefore, we use LPP to find low-
dimensional embeddings of both image features and 3D poses.

For example, given a training dataset of N poses, Y = {y(1),y(2), ...,y(N)} ∈
Rdy×N , we want to find a transformation matrix A = [a1, ...,adz ]T of basis vec-
tors, ai, that maps these points to a set of latent points Z = {z(1), z(2), ..., z(N)} ∈
Rdz×N (dz � dy), such that z(i) is a low dimensional manifold embedding rep-
resentation of a high dimensional space pose y(i). Following [19], this can be
expressed as:

min
A

ATYLYTA

subject to ATYDYTA = I (9)

Where D is a diagonal matrix whose entries are column sums of weight matrix
W, and W incurs a heavy penalty if neighboring training points are mapped far
apart; L = D−W is Laplacian matrix.

3.2 Learning

Learning of the proposed model, is formulated as a three step procedure. Given a
dataset of labeled feature-pose pairs, {x(i),y(i)}Ni=1, we: (1) learn a low-dimensional
embedding of the 3D pose data, {y(1),y(2), ...,y(N)}, by solving optimization in
Eq. 9; (2) learn a low-dimensional embedding of the image features by solving
similar optimization for {x(1),x(2), ...,x(N)}; (3) learning a Gaussian Mixture

Model (GMM) for the latent features and pose representations, {z(i)x , z
(i)
y }Ni=1 ,

obtained in (1) and (2).

3.3 Inference

Given a learned model, the inference for a new test image, represented in terms
of image features x̂, involves: (1) getting a latent representation of x̂, ẑx, by
applying a learned LPP mapping, Ax; (2) closed form conditioning of Gaus-
sian Mixture Model (GMM), using ẑx, to obtain a Gaussian Mixture Regression
(GMR) function; (3) inferring the latent 3D pose, ẑy, by either computing expec-
tation over GMR (for uni-modal predictions) or using modes (for multi-modal
predictions); (4) reconstructing the high-dimensional 3D pose from the latent
estimate(s), by applying an inverse LPP mapping, Ay.

4 Experiments

4.1 Data sets

We test the performance of our method on three datasets: (1) Poser dataset
– synthetic sequences produced by Poser software [25], (2) CMU dataset – real
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Fig. 3. Synthesized data generated by Poser 7 software.

image/mocap dataset publicly available from [26], and (3) standard dataset with
provided error metrics made available by Agarwal and Triggs [3].

Poser dataset. We synthesize image data from motion capture sequences using
Poser 7 software. The motion sequences come from 8 categories: walk, run, dance,
fall, prone, sit, transitions and misc (see Fig. 3). A total of 5 sequences within
each category are broken into: 3 training and 2 testing sequences, with each
sequence containing approximately 500 frames. The size of each synthetic image
is 500 × 490. We represent body pose in terms of 3D positions of 23 joints,
resulting in dy = 69. All poses are represented in relative terms by subtracting
the skeleton root (pelvis) from all other joint centers in every frame.

CMU dataset. From CMU Graphics Lab Motion Capture Database (see Fig. 4),
we choose sequences of Subject 2 as training data, and use sequences in Subject
1, 8, 15 and 17 as test data. The size of each image is 240 × 352. We represent
body pose in terms of 3D positions of 31 joints, resulting in dy = 93. Again, all
poses are represented relative to the skeleton root (pelvis).

Image features. A number of representations for image features have been
introduced over the years, e.g., Scale invariant feature transform (SIFT) [15, 6]
or histogram of shape context [27, 3, 4, 14], to name a few. Similar to prior work,
we rely on silhouette features and encode them using a simpler 60D global shape
context representation.

Error measure. We use a standard average joint position error inline as done
by [18]. We report RMSE of average joint error in centimeters (cm).

Agarwal and Triggs dataset. To compare to other published techniques, we
also utilize a publicly available benchmark dataset, that contains 1927 training
and 418 test images, synthetically generated from mocap data. The pose is en-
coded using 54 joint angles in this case. The image features and error metric
are provided with the dataset [3]. Silhouette features are represented using 100-
dimensional feature vectors encoding the image silhouette using vector-quantized
shape contexts. The mean RMSE error is computed over joint angles and is mea-
sured in degrees (for details see [3]).

4.2 Comparison

We compare our Latent GMR model with a number of alternatives, includ-
ing: non-parametric regression model (kernel regression (KR)) and parametric
regression models (linear regression (LR), mixture of linear regressors (MLR),
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Error (cm) KR LR MLR [4] MoE [14] GMR Latent GMR

dance
S1 10.85 5.83 5.76 5.72 7.79 5.60
S2 10.37 5.23 5.10 5.04 6.23 4.91

falls
S1 15.32 10.40 10.27 10.25 10.82 10.05
S2 16.31 11.50 11.32 11.26 12.99 10.92

miscs
S1 8.32 3.59 3.53 3.42 3.86 3.28
S2 19.27 12.19 12.11 12.10 14.44 11.80

prone
S1 11.36 6.55 6.46 6.40 7.06 5.88
S2 12.46 6.36 6.32 6.28 7.00 6.19

run
S1 8.94 4.70 4.65 4.64 6.23 4.31
S2 11.65 5.96 5.85 5.79 6.89 5.62

sit
S1 18.56 13.29 13.24 13.20 14.14 13.01
S2 9.65 4.92 4.87 4.81 6.03 4.24

transition
S1 11.23 5.78 5.50 5.44 6.17 5.32
S2 10.65 6.07 5.92 5.91 6.50 5.81

walk
S1 11.65 6.36 6.18 6.06 6.71 5.93
S2 9.15 3.55 3.38 3.34 3.73 3.15

Average 12.23 7.01 6.90 6.85 7.91 6.62

Table 1. Evaluation of different algorithms on the Poser dataset (for details see text).

Error (cm) KR LR MLR [4] MoE [14] GMR Latent GMR

Subject 1
01-01 18.27 16.18 2.80 15.79 17.76 14.49
01-05 22.27 23.01 22.05 21.77 20.36 18.49
01-08 32.88 34.74 34.46 34.12 35.02 32.76

Subject 8
08-02 19.00 13.93 13.43 13.14 15.00 11.78
08-03 17.59 19.95 19.34 19.17 19.90 18.66
08-04 16.69 22.22 18.55 18.33 18.10 15.45

Subject 15
15-06 20.24 13.64 13.31 13.25 14.26 13.14
15-11 15.90 14.26 13.81 13.59 14.88 13.42
15-13 28.82 23.18 23.12 23.01 27.46 22.95

Subject 17
17-03 29.49 25.49 24.02 23.68 26.73 23.23
17-05 21.43 13.93 13.70 13.42 15.96 12.01
17-07 21.43 15.84 15.05 14.77 16.69 14.55

Average 21.99 19.68 18.83 18.61 20.13 17.54

Train time 0 0.06 75 79.18 17.82 19.38
Test time 10.28 0.02 0.16 0.17 14.89 1.14

Table 2. Evaluation of different algorithms in CMU motion capture database; the
learning and inference time is also given in (seconds).

mixture of experts (MoE), and Mixture Gaussian Regression (MGR)) in the
originals high-dimensional space. The results are shown in Table 1 and Table 2.
We use the same training and test datasets for all methods, and we also use
a fixed set of parameters, for all sequences. For example, we train all the mix-
ture models with K = 8 components. Other parameters are chosen by cross-
validation: e.g., the width of the RBF kernel in KR. In our method, the Locality
Preserving Projections (LPP) is trained to keep 95% of the original energy. The
results for [4, 14] in Table 1 and Table 2 are based on re-implementations of the
original work3. In all cases we compare the expectations computed under the
models with ground truth.

3 For the purpose of comparison, we do not explore the temporal prior which is em-
ployed in [10].



10 Authors Suppressed Due to Excessive Length

Error (cm) KR LR
MLR [4] MoE [14] GMR

Exp B8 Exp B8 Exp B8

Orig. Space 37.98 25.69 26.73 23.40 25.51 23.26 29.75 20.74

PCA 43.21 35.18 25.04 22.33 24.81 22.22 25.14 16.37

LPP 43.57 22.75 22.70 21.45 22.61 21.29 23.15 12.79

Table 3. Detailed experiments on CMU motion capture database. We train on Subject
17, Sequences 01–05 and test on Subject 17, Sequences 07–10.

We can see that since our features and data are sparse, kernel regression (KR)
tends to work poorly in these cases. The performance of mixture models degrades
as the data points start to fall close to the boundary between the two experts
(since we are using expectation for inference). For this reason, sometimes the
performance of mixture models is lower than that of uni-modal linear regression.
Our Latent GRM model tends to produce better performance than competing
methods.

Since the proposed Latent GMR contains two parts, i.e., latent representation
for the data and GMR model for inference, we attempt to study the interplay of
both by running additional experiments on sub-set of data. In addition to prior
experiments, we test PCA, as an alternative to LPP, for latent representation
and a variety of regression models for inference within the latent spaces. We also
show the performance of the expectation (Exp) as well as of multi-hypothesis
mode prediction (B8) (assuming existence of oracle that chooses among the 8
mixture components). The results are illustrated in Table 3.

Based on Table 3 we make the following 4 observations: (1) inference in
the latent space is nearly always better than in the original space; (2) LPP
outperforms PCA in terms ability to preserve the manifold structure; (3) LR,
MLR, MoE and GMR perform similarly on uni-modal prediction task; and (4)
GMR outperforms all other methods with multiple predictions. We belive that
(4) is due to the ability of GMR to generatively model the full density over the
latent features and poses (as opposed to other more direct regression methods).

Finally, to compare to published methods we run on Agarwal and Triggs
dataset [3], where we achieve error of 6.71 degrees, which is better the Nearest
Neighbor regression and Linear Regression as reported in [17] and [18] respec-
tively. However, we cannot match the performance of non-parametric shared
LVMs, like Shared GPLVM and Shared KIE, that achieve errors of 6.50 and
5.95 degrees respectively. This is not surprising given that non-parametric mod-
els can represent more complex manifold structure; however, they do come at a
cost of inference and learning which, unlike in our method, are a function of the
training set size.

5 Conclusions and Future Work

In this paper, we present a parametric discriminative framework for 3D pose
inference. Our model has a number of appealing properties, mainly: (1) it can
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Fig. 4. Evaluation on frames: 38, 48, 58, 68, 78, and 88 of the 08-04 sequence from the
CMU motion capture database.

deal with multi-modalities in the data, (2) model complex structure of the image
feature and pose manifolds, (3) provides both forward and backwards mapping
between the respective manifolds and original image feature or pose spaces, sim-
plifying the inference and (4) alleviates the need for learning, a sometimes hard
to obtain shared non-linear manifold structure. We show that our performance is
comparative or superior to parametric and non-parametric models in the original
high-dimensional space. In the future, we intend to look at learning the model in
a unified manner through a single (as opposed to stage-wise) learning procedure.
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