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(7) ABSTRACT

A computer implemented method for object detection
includes providing a spatio-temporal model for an object to
be detected, providing a video including a plurality of
images including the object, and measuring the object as a
collection of components in each image. The method further
includes determining a probability that the object is in each
image, and detecting the object in any image upon compar-
ing the probabilities for each image to a threshold for
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GRAPHICAL OBJECT MODELS FOR DETECTION
AND TRACKING

[0001] This application claims priority to U.S. Provisional
Application Ser. No. 60/574,799, filed on May 27, 2004,
which is herein incorporated by reference in its entirety.

BACKGROUND OF THE INVENTION
[0002] 1. Technical Field

[0003] The present invention relates to image processing,
and more particularly to automatic detection and tracking of
objects in images.

[0004] 2. Discussion of Related Art

[0005] The problem of describing and recognizing catego-
ries of objects (e.g., faces, people, cars) is important to
computer vision applications. It is common to represent
objects as collections of features with distinctive appear-
ance, spatial extent, and position. There is however a large
variation in how many features are needed and how these
features are detected and represented.

[0006] Therefore, a need exists for a system and method of
detecting and tracking an object, implementing component
detection and performing inference over space and time.

SUMMARY OF THE INVENTION

[0007] According to an embodiment of the present disclo-
sure, a computer implemented method for object detection
comprises providing a spatio-temporal model for an object
to be detected, providing a video comprising a plurality of
images including the object, and measuring the object as a
collection of components in each image. The method further
comprises determining a probability that the object is in each
image, and detecting the object in any image upon compar-
ing the probabilities for each image to a threshold for
detecting the object.

[0008] Providing the spatio-temporal model for the object
to be detected comprises providing-detectors for each of the
collection of components.

[0009] The spatio-temporal model is a graphical model
comprising nodes corresponding to each of the collection of
components and to the object.

[0010] Determining the probability that the object is in
each image comprises detecting the object in a current image
according to measurements of the object as a collection of
components determined from a prior image and a later
image relative to the current image.

[0011] Providing the spatio-temporal model for the object
to be detected further comprises providing a temporal win-
dow defining a plurality of images in which measurements
of components detected therein are passed to components
detected in the current image.

[0012] Determining the probability that the object is in
each image comprises determining the probability for a
position and a size of the object in each image.

[0013] The threshold is provided for the object to be
detected, wherein the threshold is determined empirically.
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[0014] A joint probability distribution for the spatio-tem-
poral model with N components is:

P(XO, Xo0, Xgs oy Xo Moo, XEL X0, Xyt o XY ) =
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[0015] According to an embodiment of the present disclo-
sure, a program storage device is provided readable by
machine, tangibly embodying a program of instructions
executable by the machine to perform method steps for
object detection. The method steps comprising providing a
spatio-temporal model for an object to be detected, provid-
ing a video comprising a plurality of images including the
object, and measuring the object as a collection of compo-
nents in each image. The method further comprises deter-
mining a probability that the object is in each image, and
detecting the object in any image upon comparing the
probabilities for each image to a threshold for detecting the
object.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] Preferred embodiments of the present invention
will be described below in more detail, with reference to the
accompanying drawings:

[0017] FIG. 1 is a system according to an embodiment of
the present disclosure;

[0018] FIGS. 2A and 2B are graphic models for a pedes-
trian and vehicle, respectively, according to an embodiment
of the present disclosure;

[0019] FIG. 3 is an illustration of a pedestrian and iden-
tified components of the pedestrian according to an embodi-
ment of the present disclosure;

[0020] FIG. 4 is a flow chart of a method for message
passing in graphic models according to an embodiment of
the present disclosure; and

[0021] FIG. 5 is a flow chart of a method according to an
embodiment of the present disclosure.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

[0022] According to an embodiment of the present disclo-
sure, a probabilistic framework for automatic component-
based detection and tracking of objects in images and/or
video combines object detection with tracking in a unified
framework. Tracking makes use of object detection for
initialization and re-initialization during transient failures
for occlusions. Object detection considers the consistency of
the detection over time. Modeling objects by an arrangement
of image-base, and possibly overlapping, components facili-
tates detection of complex articulated objects as well as
helps in handling partial object occlusions or local illumi-
nation changes.

[0023] Referring to FIGS. 2A and 2B, object detection
and tracking is formulated as an inference in a two-layer
graphical model in which a coarse layer node represents the



US 2005/0286738 Al

whole object and fine layer nodes represent multiple com-
ponents of the object. Directed edges between nodes repre-
sent learned spatial and temporal probabilistic constraints.
Each node in the graphical model corresponds to a position
and scale of the component or the object as a whole in an
image at a given time instant. Each node also has an
associated Adaptive Boosting (Adaboost) detector that is
used to define the local image likelihood and a proposal
process. Typically the likelihoods and dependencies are not
Gaussian. To infer the 2D position and scale at each node a
non-parametric belief propagation (BP) is implemented that
uses a variation of particle filtering and can be applied over
a loopy graph.

[0024] Tt is to be understood that the present invention
may be implemented in various forms of hardware, soft-
ware, firmware, special purpose processors, or a combina-
tion thereof. In one embodiment, the present invention may
be implemented in software as an application program
tangibly embodied on a program storage device. The appli-
cation program may be uploaded to, and executed by, a
machine comprising any suitable architecture.

[0025] Referring to FIG. 1, according to an embodiment
of the present disclosure, a computer system 101 for imple-
menting an object detection and tracking method can com-
prise, inter alia, a central processing unit (CPU) 102, a
memory 103 and an input/output (I/O) interface 104. The
computer system 101 is generally coupled through the I/O
interface 104 to a display 105 and various input devices 106
such as a mouse and keyboard. The support circuits can
include circuits such as cache, power supplies, clock cir-
cuits, and-a communications bus. The memory 103 can
include random access memory (RAM), read only memory
(ROM), disk drive, tape drive, etc., or a combination thereof.
The present invention can be implemented as a routine 107
that is stored in memory 103 and executed by the CPU 102
to process the signal from the signal source 108. As such, the
computer system 101 is a general purpose computer system
that becomes a specific purpose computer system when
executing the routine 107 of the present invention.

[0026] The computer platform 101 also includes an oper-
ating system and micro instruction code. The various pro-
cesses and functions described herein may either be part of
the micro instruction code or part of the application program
(or a combination thereof), which is executed via the oper-
ating system. In addition, various other peripheral devices
may be connected to the computer platform such as an
additional data storage device and a printing device.

[0027] It is to be further understood that, because some of
the constituent system components and method steps
depicted in the accompanying figures may be implemented
in software, the actual connections between the system
components (or the process steps) may differ depending
upon the manner in which the present invention is pro-
grammed. Given the teachings of the present invention
provided herein, one of ordinary skill in the related art will
be able to contemplate these and similar implementations or
configurations of the present invention.

[0028] Graphical Object Models; An object, such as an
automobile (see FIG. 2B), is modeled as a spatio-temporal
directed graphical model. Each node in the graph represents
either the object or a component of the object at time t.
Nodes have an associated state vector X'=(x,y,s) defining
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the component’s real-valued position and scale within an
image (where X,y,s,E%). The joint probability distribution
for this spatio-temporal graphical object model with N
components can be written as:

P(XS, Xo®, Xg s o Xo oo XRL X0, Xt XY ) =

1
ZH wy(x?, x9)
H Y (X0, X )H Pul(X, Xf’)]_[ sixO| | #ilx*)
it i i*

ik

[0029] where X, and X,€ is the state of the object, O, and
object’s n-th component, C,, at time t respectively (n €(1,N)
and t €(1,T); wik(Xio,XiCk) is the temporal compatibility of
object state between frames i and j; },(X;%,X©) is the
spatial compatibility of the object and it’s components at
frame 1; (X, ,X;€) is the spatial compatibility between
object components at frame i and ¢;(X;°) and q)i(XiCk)denote
the local evidence for the object and component states
respectively.

[0030] According to an embodiment of the present disclo-
sure, a system comprises the following modules: a graphical
model modules, an inference module providing the ability to
infer a state of each node in the graph, a local evidence
distribution (or image likelihood) module, a proposal pro-
cess module for some or all nodes in a graphical model, and
a module comprising a set of spatial and/or temporal con-
straints corresponding to the edges in a graph.

[0031] Building the Graphical Model; For a single frame,
objects are represented using a two-layer spatial graphical
model, for example as shown in FIGS. 2A and 2B. The fine,
component, layer 201 includes a set of loosely connected
parts, e.g., 202. The course, object, layer 203 corresponds to
an entire appearance model of the object and is connected to
all constituent components, e.g., 202. Examples of such
models for pedestrian and vehicle detection are shown in the
shaded regions of FIGS. 2A and 2B, respectively. In both
cases objects are modeled using four overlapping image
components. For the vehicle the components are: top-left
(TL) 204, top-right (TR) 205, bottom-right (BR) 206 and
bottom-left (BL) 207 corners; while for an image 301 of the
pedestrian, they are: head (HD) 208, left arm (LA) 209, right
arm (RA) 210 and legs (LG) 202 (see FIG. 3).

[0032] To integrate temporal constraints the spatial
graphical models are extended over time to an arbitrary
length temporal window. The resulting spatio-temporal
graphical models are shown in FIGS. 2A and 2B. Having a
two-layer graphical model allows the inference process to
reason explicitly about the object as a whole, e.g., 203, and
reduce the complexity of the graphical model by allowing
the assumption of the conditional independence of compo-
nents, e.g., 202 and 208-210, over time given the overall
object appearance. Alternatively, a single object layer model
can be built with bi-directional temporal constraints.

[0033] As can be seen in FIGS. 2A and 2B, an object at
a current time is denoted as O, with an earlier model denoted
as Oy_(w_1y» and a later model denoted as Oy, 1,2
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[0034] Tearning Spatial and Temporal Constraints; Each
directed edge between components i and j has an associated
potential function };(X;,X;) that encodes the compatibility
between pairs of node states. The potential };(X;,X;) is
modeled using a mixture of M;; Gaussians:

Wi (X, X)) =2ON (X py, Ay) + (1 =29

Mij
Z OymN (X3 Fijm(Xi, X), Gy (X;, X))

m=1

[0035] where A° is a fixed outlier probability, t;; and A;; are
the mean and covariance of the Gaussian outlier process, and
Fiim() and Gy (-) are functions that return the mean and
covariance matrix respectively of the m-th Gaussian mixture
component. d;,, is the relative weight of an individual
component and

[0036] For experiments described herein M;;=2 mixture
components were used.

[0037] Given a set of labeled images, where each compo-
nent is associated with a single reference point, an iterative
Expectation-Maximization (EM) method with K-means ini-
tialization is implemented to learn Fy;,(-) of the form:

T u 1
B 1 (
Fym(X;, Xj>:X;+[ s W

iim  Mijm

[0038] where "t " 1S the mean position and
scale of component or object j relative to i. Gy, () is
assumed to be diagonal matrix, representing the variance in
relative position and scale.

[0039] AdaBoost Image Likelihoods; A likelihood ¢/(X;)
models the probability of observing the image conditioned
on the state X; of the node i. A likelihood model according
to an embodiment of the present disclosure uses a boosted
classifier and is robust to partial occlusions and the vari-
ability of image statistics across many different inputs.

[0040] Boosted detectors are trained for each component.
For simplicity AdaBoost may be used without a cascade.
Training with a cascade would likely improve the compu-
tational efficiency of the system. To reduce the number of
false positives produced by the detectors, a bootstrapping
method iteratively adds false positives that are collected by
running the trained strong classifier over the set of back-
ground images (e.g., those not containing the desired object)
and the detectors are retrained using the old positive and the
new extended negative sets.

Dec. 29, 2005

[0041] Given a set of labeled patterns the AdaBoost pro-
cedure learns a weighted combination of base weak classi-
fiers,

K
B =" achd,

k=1

[0042] where I is an image pattern, and h,(I) is the weak
classifier chosen for the round k of boosting, and a,_is the
corresponding weight. A weak classifier method is imple-
mented: (xk(I)=pk([(fk(I))'3k]1/ Bk<6k) where f(I) is a feature
of the pattern I computed by convolving I with the delta
function over the extent of a spatial template; 6, is a
threshold, p, is the polarity indicating the direction of
inequality, and B,E{1,2} allowing for a symmetric two
sided pulse classification.

[0043] The output of the AdaBoost classifier is a confi-
dence h,(I) that the given pattern I is of the desired class. An
object is considered present if

1 K
h(l)zsz:; .

[0044] This confidence is converted into a likelihood
function by normalizing the o’s, so that h()&[0,1], and
exponentiating:

P1IXp o exp(h(D)/T) @
[0045] where T is a temperature parameter that controls
the smoothness of the likelihood function, with smaller
values of T leading to a peakier distribution. Consequently
the likelihood can be annealed by deriving a schedule with
which T changes. An exponential annealing schedule
T=T,u"* has been determined where To is the initial tem-
perature, v is a fraction &(0,1), and k is the annealing
iteration, to work well in practice.

[0046] Depending on an object one may or may not have
a likelihood or a proposal process for the object layer nodes.
For example, if the whole appearance of an object is too
complicated to model as a whole (e.g., arbitrary size
vehicles) and can only be modeled in terms of components,
a uniform likelihood can be assumed over the object state
space. In such cases the object layer nodes simply fuse the
component information to produce estimates for the object
state that are consistent over time.

[0047] Non-parametric BP; Inferring the state of the object
and its components in a framework is defined as estimating
belief in a graphical model. A form of non-parametric belief
propagation PAMPAS (proposed by M. Isard in “PAMPAS:
Real-valued graphical models for computer vision”, in the
Proceedings of IEEE International Conference on Computer
Vision and Pattern Recognition, vol. I, pp. 421-428, 2004.)
is implemented to deal with this task. The approach is a
generalization of particle filtering, which allows inference
over arbitrary graphs rather then a simple chain. In this
generalization the message used in belief propagation is
approximated with a kernel density, formed by propagating
a particle set through a mixture of Gaussians density, and the
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conditional distribution used in standard particle filtering is
replaced by product of incoming messages. Most of the
computational complexity lies in sampling from a product of
kernel densities required for message passing and belief
estimation; we use efficient sequential multiscale Gibbs
sampling and epsilon-exact-sampling to address this prob-
lem.

[0048] Individual messages may not constrain a node well,
however the product over all incoming messages into the
node tends to produce a very tight distribution in the state
space. For example, any given component of a vehicle is
incapable of estimating the height of the vehicle reliably,
however once information from all components is inter-
graded in the object layer node, an estimate for the overall
object size can be determined.

[0049] More formally a message m;; is written as

3
my(X)) = f WX X)X || matxod X,

kel A}

[0050] where A, is the set of neighbors of node i, {A\j} is
the set of neighbors of node i except node j, and ¢(X;) is the
local evidence (or likelihood) associated with the node i, and
P;(X;,X;) is the potential designating the compatibility
between the states of node i and j. The details of how the
message updates can be carried out by stratified sampling
from belief and proposal function is illustrated in FIG. 4.

[0051] Referring to FIG. 4, a method for passing mes-
sages between nodes of the graphical model includes deter-
mining a likelihood associated with node i 401, observing an
image conditioned on the state of node i 402, determining a
potential designating the compatibility between states of
nodes i and i, nodes 1 and k and nodes i and 1 403. Messages
405 are passed between nodes to propagate information
about what states neighboring nodes would be 404.

[0052] While it is possible to perform inference over the
spatio-temporal model defined for the entire image
sequence, there are many applications for which this is not
an option due to the lengthy off-line processing needed. A
w-frame windowed smoothing algorithm is used where w is
an odd integer =1. There are two ways one can do win-
dowed smoothing: in an object-detection centric way or a
tracking centric way. In the former all nodes are re-initial-
ized every time a window is shifted, hence the temporal
integration is only applied in the window of size w. In the
tracking centric way only the nodes associated with a new
frame are initialized, which tends to enforce temporal con-
sistency from before t—-(w-1)/2. While the tracking-centric
way tends to converge faster and produce more consistent
results over time, it is also less sensitive to objects entering
and leaving the scene. Note that with w=1, the algorithm
resembles single frame component-based fusion.

[0053] Proposal Process; To reliably detect and track the
object non-parametric BP makes use of the bottom-up
proposal process, that constantly looks for and suggests
alternative hypothesis for the state of the object and com-
ponents. Proposal distribution is modeled using a weighted
particle set. To form a proposal particle set for a component,
a corresponding AdaBoost detector is run over an image at
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a number of scales to produce a set of detection results that
score above the

[0054] threshold. While this set tends to be manageable for
the entire appearance model, it is large for non-specific
component detectors (e.g., a few thousand locations can
easily be found). To reduce the dimensionality only the top
P scoring detections are kept, where P is on the order of a
100 to 200. To achieve breadth of search sample particles
from the proposal were imported using uniform distribution.

[0055] Referring to FIG. 5, a computer implemented
method for object detection includes providing a spatio-
temporal model, e.g., see FIGS. 2A and 2B, for an object
501, providing a video including a plurality of images
including the object 502, and measuring the object as a
collection of components in each image of the video 503.
The method further includes determining a probability that
the object is in each image 504 by using message passing
between components represented as nodes of the spatio-
temporal model, and detecting the object in any image upon
comparing the probabilities for each image to a threshold for
detecting the object 505.

[0056] Experiments; Tests were performed using a set of
images collected with a single car-mounted grayscale cam-
era. The result of vehicle detection and tracking over a
sequence of 55 consecutive frames was evaluated. A 3-frame
spatio-temporal object model was used and was shifted in a
tracking centric way over time. BP was run with 30 particles
for 10 iterations at every frame. For comparison a simple
fusion scheme was implemented that averages the best
detection result from each of the four components to pro-
duce an estimate for the vehicle position and scale indepen-
dently at every frame. The performance of the simple fusion
detection is poor suggesting that the noisy component detec-
tors often do not have the global maximum at the correct
position and scale. In contrast, the spatio-temporal object
model consistently combines the evidence for accurate esti-
mates throughout the sequence.

[0057] A 3-frame spatio-temporal object model was run at
a single instance in time for two pedestrians in two different
scenes. Similar to the vehicle detection BP was run with 30
particles for 10 iterations. For both experiments the tem-
perature of the likelihood is set to T,=0.2.

[0058] According to an embodiment of the present disclo-
sure, an object detection and tracking framework exploits
boosted classifiers and non-parametric belief propagation.
The approach provides component-based detection and inte-
grates temporal information over an arbitrary size temporal
window. The performance of the framework is illustrated
with two classes of objects: vehicles and pedestrians. In both
cases position and scale of the objects and their components
can be reliably inferred.

[0059] Having described embodiments for a system and
method for a object detection and tracking, it is noted that
modifications and variations can be made by persons skilled
in the art in light of the above teachings. It is therefore to be
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understood that changes may be made in the particular
embodiments of the invention disclosed which are within the
scope and spirit of the invention as defined by the appended
claims. Having thus described the invention with the details
and particularity required by the patent laws, what is claimed
and desired protected by Letters Patent is set forth in the
appended claims.

What is claimed is:
1. A computer implemented method for object detection
comprising:

providing a spatio-temporal model for an object to be
detected;

providing a video comprising a plurality of images includ-
ing the object;

measuring the object as a collection of components in
each image;

determining a probability that the object is in each image;
and

detecting the object in any image upon comparing the
probabilities for each image to a threshold for detecting
the object.

2. The computer implemented method of claim 1, wherein
providing the spatio-temporal model for the object to be
detected comprises providing detectors for each of the
collection of components.

3. The computer implemented method of claim 1, wherein
the spatio-temporal model is a graphical model comprising
nodes corresponding to each of the collection of components
and to the object.

4. The computer implemented method of claim 1, wherein
determining the probability that the object is in each image
comprises detecting the object in a current image according
to measurements of the object as a collection of components
determined from a prior image and a later image relative to
the current image.

5. The computer implemented method of claim 1, wherein
providing the spatio-temporal model for the object to be
detected further comprises providing a temporal window
defining a plurality of images in which measurements of
components detected therein are passed to components
detected in the current image.

6. The computer implemented method of claim 1, wherein
determining the probability that the object is in each image
comprises determining the probability for a position and a
size of the object in each image.

7. The computer implemented method of claim 1, wherein
the threshold is provided for the object to be detected,
wherein the threshold is determined empirically.

8. The computer implemented method of claim 1, wherein
a joint probability distribution for the spatio-temporal model
with N components is:

C

P(XO, Xo®, Xo s oo s Xo M0 XR X0, XL, XY ) =

1
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z| |wg<xi,xj)
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-continued
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9. A program storage device readable by machine, tangi-
bly embodying a program of instructions executable by the
machine to perform method steps for object detection, the
method steps comprising:

providing a spatio-temporal model for an object to be
detected,

providing a video comprising a plurality of images includ-
ing the object;

measuring the object as a collection of components in
each image;

determining a probability that the object is in each image;
and

detecting the object in any image upon comparing the
probabilities for each image to a threshold for detecting
the object.

10. The method of claim 9, wherein providing the spatio-
temporal model for the object to be detected comprises
providing detectors for each of the collection of compo-
nents.

11. The method of claim 9, wherein the spatio-temporal
model is a graphical model comprising nodes corresponding
to each of the collection of components and to the object.

12. The method of claim 9, wherein determining the
probability that the object is in each image comprises
detecting the object in a current image according to mea-
surements of the object as a collection of components
determined from a prior image and a later image relative to
the current image.

13. The method of claim 9, wherein providing the spatio-
temporal model for the object to be detected further com-
prises providing a temporal window defining a plurality of
images in which measurements of components detected
therein are passed to components detected in the current
image.

14. The method of claim 9, wherein determining the
probability that the object is in each image comprises
determining the probability for a position and a size of the
object in each image.

15. The method of claim 9, wherein the threshold is
provided for the object to be detected, wherein the threshold
is determined empirically.

16. The method of claim 9, wherein a joint probability
distribution for the spatio-temporal model with N compo-
nents is:

PXOL Ko 2 Koty oo s Xo Ny X, X0 X XY ) =

1
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