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Abstract

While research on articulated human motion and pose estimation has progressed rapidly in the last few years,
there has been no systematic quantitative evaluation of competing methods to establish the current state of the art.
We present data obtained using a hardware system that is ableto capture synchronized video and ground-truth 3D
motion. The resulting HUMAN EVA datasets contain multiple subjects performing a set of predefined actions with
a number of repetitions. On the order of40, 000 frames of synchronized motion capture and multi-view video
(resulting in over one quarter million image frames in total) were collected at60 Hz with an additional37, 000 time
instants of pure motion capture data. A standard set of errormeasures is defined for evaluating both 2D and 3D
pose estimation and tracking algorithms. We also describe abaseline algorithm for 3D articulated tracking that uses
a relatively standard Bayesian framework with optimization in the form of Sequential Importance Resampling and
Annealed Particle Filtering. In the context of this baseline algorithm we explore a variety of likelihood functions, prior
models of human motion and the effects of algorithm parameters. Our experiments suggest that image observation
models and motion priors play important roles in performance, and that in a multi-view laboratory environment,
where initialization is available, Bayesian filtering tends to perform well. The datasets and the software are made
available to the research community. This infrastructure will support the development of new articulated motion and
pose estimation algorithms, will provide a baseline for theevaluation and comparison of new methods, and will help
establish the current state of the art in human pose estimation and tracking.

1 Introduction

The recovery of articulated human motion and pose from videohas been studied extensively in the past20 years
with the earliest work dating to the early 1980’s [28, 53]. A variety of statistical [1, 2, 7, 17, 30, 74, 75, 76] as well
as deterministic methods [46, 83, 69] have been developed for tracking people from single [1, 2, 21, 30, 36, 45, 46,
58, 59, 60, 63, 75] or multiple [7, 17, 26, 74] views. All thesemethods make different choices regarding the state
space representation of the human body and the image observations required to infer this state from the image data.
Despite clear advances in the field, evaluation of these methods remains mostly heuristic and qualitative. As a result,

∗The first two authors contributed equally to this work.
†The work was conducted at Brown University.
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it is difficult to evaluate the current state of the art with any certainty or even to compare different methods with any
rigor.

Quantitative evaluation of human pose estimation and tracking is currently limited due to the lack of common
datasets containing “ground truth” with which to test and compare algorithms. Instead qualitative tests are still widely
used and evaluation often relies on visual inspection of results. This is usually achieved by projecting the estimated 3D
body pose into the image (or set of images) and visually assessing how the estimates explain the image [17, 21, 60].
Another form of inspection involves applying the estimatedmotion to a virtual character to see if the movements
appear natural [76]. The lack of the quantitative experimentation at least in part can be attributed to the difficulty of
obtaining 3D ground-truth data that specify the true pose ofthe body observed in video sequences.

To obtain some form of ground truth, previous approaches have resorted to custom action-specific schemes;
e.g.motion of the arm along a circular path of known diameter [34]. Alternatively, synthetic data have been ex-
tensively used [1, 2, 26, 69, 76] for quantitative evaluation. With packages such as POSER(e frontier, Scotts Valley,
CA) or MAYA (Autodesk, San Rafael, CA), semi-realistic images of humans can be rendered and used for evaluation.
Such images, however, typically lack realistic camera noise, often contain very simple backgrounds and provide sim-
plified types of clothing. While synthetic data allow quantitative evaluation, current datasets are still too simplistic to
capture the complexities of natural images of people and scenes.

In the last few years, there have been a few successful attempts [23, 35, 47, 65] to simultaneously capture video
and ground truth 3D motion data (in the form of marker-based tracking); some groups were also able to capture 2D
motion ground truth data in a similar fashion [89]. Typically hardware systems similar to the one proposed here have
been employed [35] where the video and motion capture data were captured either independently (and synchronized
in software off-line) or with hardware synchronization. While this allowed some quantitative analysis of results [23,
35, 47, 65, 89], to our knowledge none of the synchronized data captured by these groups (with the exception of [89],
discussed in Section 2) has been made available to the community at large, making it hard for competing approaches
to compare performance directly. For 2D human pose/motion estimation, quantitative evaluation is more common and
typically uses hand-labeled data [30, 58, 59]. Furthermore, for both 2D and 3D methods, no standard error measures
exist and results are reported in a variety of ways which prevent direct comparison;e.g.average root-mean-squared
(RMS) angular error [1, 2, 76], normalized error in joint angles [69], silhouette overlap [58, 59], joint center distance
[7, 26, 36, 39, 41, 74, 75],etc.

Here we describe two datasets containing human activity with associated ground truth that can be used for quanti-
tative evaluation and comparison of both 2D and 3D methods. We hope that the creation of these datasets, which we
call HUMAN EVA , will advance the state of the art in human motion and pose estimation by providing a structured,
comprehensive, development dataset with support code and quantitative evaluation measures. The motivation behind
the design of the HUMAN EVA datasets is that, as a research community, we need to answer the following questions:

• What is the state-of-the art in human pose estimation?

• What is the state-of-the art in human motion tracking?

• What algorithm design decisions affect human pose estimation and tracking performance and to what extent?

• What are the strengths and weaknesses of different pose estimation and tracking algorithms?

• What are the main unsolved problems in human pose estimationand tracking?

In answering these questions, comparisons must be made across a variety of different methods and models to find
which choices are most important for a practical and robust solution. To support this analysis, the HUMAN EVA

datasets contain a number of subjects performing repetitions (trials) of a varied set of predefined actions. The datasets
are broken into training, validation, and test sub-sets. For the testing subset, the ground truth data are withheld and a
web-based evaluation system is provided. A set of error measures is defined and made available as part of the dataset.
These error measures are general enough to be applicable to most current pose estimation and tracking algorithms
and body models. Support software for manipulating the dataand evaluating results is also made available as part
of the HUMAN EVA datasets. This support code shows how the data and error measures can be used and provides an
easy-to-use Matlab (The Mathworks, Natick, MA) interface to the data. This allows different methods to be fairly
compared using the same data and the same error measures.
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In addition we provide a baseline algorithm for 3D articulated tracking in the form of simple Bayesian filtering.
We analyze the performance of the baseline algorithm under avariety of parameter choices and show how these
parameters affect the performance. The reported results onthe HUMAN EVA -II dataset are intended to be the baseline
against which future algorithms that use the dataset can be compared. In addition, this Bayesian filtering software
is freely available, and can serve as a foundation for new algorithm development and experimentation with image
likelihood models and new prior models of human motion.

In systematically addressing the problems of articulated human pose estimation and tracking using the HUMAN -
EVA datasets, other related research areas may benefit as well, such as foreground/background segmentation, appear-
ance modeling and voxel carving. It is worth noting that similar efforts have been made in related areas including the
development of datasets for face detection [55, 56], human gait identification [27, 67], dense stereo vision [68] and
optical flow [4]. These efforts have helped advance the state-of-the-art in their respective fields. Our hope is that the
HUMAN EVA datasets will lead to similar advances in articulated humanpose and motion estimation. In the short time
that the dataset has been made available to the research community, it has already helped with the development and
evaluation of new approaches for articulated motion estimation [8, 9, 38, 40, 41, 50, 62, 84, 88, 91]. The dataset has
also served as a basis for a series of workshops on Evaluationof Human Motion and Pose Estimation (EHuM)1 set
forth by the authors.

2 Related work

Articulated Pose and Motion Estimation. Classically the solutions to articulated human motion estimation fall into
two categories: pose estimation and tracking.Pose estimationis usually formulated as the inference of the articulated
human pose from a single image (or in a multi-view setting, from multiple images captured at the same time).Tracking,
on the other hand, is formulated as inference of the human pose over a set of consecutive image frames throughout an
image sequence. Tracking approaches often assume knowledge of the initial pose of the body in the first frame and
focus on the evolution of this pose over time. These approaches can be combined [74, 76], such that tracking benefits
from automatic initialization and failure recovery in the form of static pose estimation and pose estimation benefits
from temporal coherence constraints.

It is important to note that both tracking and pose estimation can be performed in 2D, 2.5D, or 3D, corresponding
to different ways of modeling the human body. In each case, the body is typically represented by an articulated
set of parts corresponding naturally to body parts (limbs, head, hands, feet,etc.). Here 2D refers to models of the
body that are defined directly in the image plane while 2.5D approaches also allow the model to have relative depth
information. Finally 3D approaches typically model the human body using simplified 3-dimensional parts such as
cylinders or superquadrics. A short summary of different approaches with evaluation and error measures employed
(when appropriate) can be seen in Table 1; for a more completetaxonomy, particularly of older work, we refer readers
to [24] and [44].

Common Datasets. While HUMAN EVA is the most extensive dataset for evaluation of human pose and motion
estimation, there have been several related efforts. A similar approach was employed by Wanget al. [89] where syn-
chronized motion capture and monocular video was collected. The dataset, used by the authors to analyze performance
of 2D articulated tracking algorithms, is available to the public5. The dataset, however, only contains4 sequences (2
of which come from old movie footage and required manual labeling); only 2D ground truth marker positions are
provided. The INRIA Perception Group also employed a similar approach for collection of ground truth data [35],
however, only the multi-view video data is currently made available to the public.

The CMU Graphics Lab Motion Capture Database [15] is by far the most extensive dataset of publicly available
motion capture data. It has been used by many researchers within the community to build prior models of human
motion. The dataset, however, is not well suited for evaluating video-based tracking performance. While, for many
of the motion capture sequences, low-resolution monocularvideos are available, the calibration information required

1While the workshops did not have any printed proceedings, submissions can be viewed on-line:
http://www.cs.brown.edu/people/ls/ehum/
http://www.cs.brown.edu/people/ls/ehum2/

5http://www.cc.gt.atl.ga.us/grads/w/Ping.Wang/Projec t/FigureTracking.html
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Table 1: Short survey of the human motion and tracking algorithms. Methods are listed in the chronological order
by the first author.Typerefers to the type of the approach, where (P) corresponds to the pose-estimation and (T)
to tracking. Approaches that employ (⋆) and (⋆⋆) evaluation measures are consistent with the evaluation measures
proposed in this paper.

Year First Author Model Type Parts Dim Type Evaluation Measure

1983 Hogg [28] Cylinders 14 2.5 T Qualitative
1996 Ju [33] Patches 2 2 T Qualitative
1996 Kakadiaris [34] D Silhouettes 2 3 T Quantitative
1998 Bregler [11] Ellipsoids 10 3 T Qualitative*
2000 Rosales [64] Stick-Figure 10 3 P Synthetic ⋆2

2000 Sidenbladh [73] Cylinders 2/10 3 T Qualitative
2002 Ronfard [63] Patches 15 2 P Hand Labeled
2002 Sidenbladh [71] Cylinders 2/10 3 T Qualitative
2003 Grauman [26] Mesh N/A 3 P Synthetic/POSER ⋆
2003 Ramanan [59] Rectangles 10 2 T,P Hand Labeled ⋄⋄
2003 Shakhnarovich [69] Mesh N/A 3 P Synthetic/POSER ‡

2003 Sminchisescu [78, 79] Superquadric Ellip. 15 3 T Qualitative3

2004 Agarwal [1, 2] Mesh N/A 3 P Synthetic/POSER †
2004 Deutscher [17] R-Elliptical Cones 15 3 T Qualitative
2004 Lan [37] Rectangles 10 2 T,P Qualitative
2004 Mori [46] Stick-Figure 9 3 P Qualitative
2004 Roberts [61] Prob. Template 10 2 P Qualitative
2004 Sigal [74] R-Elliptical Cones 10 3 T,P Motion Capture ⋆⋆
2005 Balan [7] R-Elliptical Cones 10 3 T Motion Capture ⋆⋆
2005 Felzenszwalb [21] Rectangles 10 2 P Qualitative
2005 Hua [30] Quadrangular 10 2 P Hand Labeled ♮
2005 Lan [36] Rectangles 10 2 P Motion Capture ⋆
2005 Ramanan [58] Rectangles 10 2 T,P Hand Labeled ⋄⋄
2005 Ren [60] Stick-Figure 9 2 P Qualitative
2005 Sminchisescu [76] Mesh N/A 3 T,P Synthetic/POSER †
2006 Gall [23] Mesh N/A 3 T Motion Capture †

2006 Lee [39] R-Elliptical Cones 5/10 3 T,P Hand Labeled ⋆⋆4

2006 Li [41] R-Elliptical Cones 10 3 T HUMAN EVA ⋆⋆
2006 Rosenhahn [65] Free-form surface patches N/A 3 T Motion Capture †
2006 Sigal [75] Quadrangular 10 2 P Motion Capture ⋆
2006 Urtasun [85] Stick-figure 15 3 T Qualitative
2006 Wang [89] SPM + templates 10 2 T Motion Capture ⋆ and⋄
2007 Lee [38] Joint centers N/A 3 T HUMAN EVA ⋆⋆
2007 Mundermann [47] SCAPE 15 3 T Motion Capture ⋆⋆ and⋄
2007 Navaratnam [48] Mesh N/A 3 P Motion Capture †
2007 Srinivasan [82] Exemplars 6 2 P Hand Labeled ⋆ and⋄
2007 Xu [91] Cylinders 10 3 T HUMAN EVA ⋆⋆
2008 Bo [9] Joint centers N/A 3 P HUMAN EVA ⋆⋆
2008 Ning [50] Stick-figure 10 3 P HUMAN EVA †
2008 Rogez [62] Joint centers 10 2/3 P HUMAN EVA ⋆
2008 Urtasun [84] Joint centers N/A 3 P HUMAN EVA ⋆⋆
2008 Vondrak [88] Ellipsoids + prisms 13 3 T HUMAN EVA ⋆⋆

⋆ - Mean squared distance in 2D between the set ofM = 15 (or fewer) virtual markers corresponding to the joint
centers and limb ends. Measured in pixels (pix).

D(x, x̂) = 1
M

∑

M

i=1 ‖ mi(x) − mi(x̂) ‖, wheremi(x) ∈ R
2 is the location of 2D markeri with respect to posex.

⋆⋆ - Mean squared distance in 3D between the set ofM = 15 virtual markers corresponding to the joint
centers and limb ends. Measured in millimeters (mm).

D(x, x̂) = 1
M

∑

M

i=1 ‖ mi(x) − mi(x̂) ‖, wheremi(x) ∈ R
3 is the location of 3D markeri with respect to posex.

† - Root mean square (RMS) error in joint angle. Measured in degrees (deg).
D(θ, θ̂) = 1

N

∑

N

i=1 |(θi − θ̂i)mod ± 180◦|, whereθ ∈ R
N is the pose in terms of joint angles.

‡ - Normalized error in joint angle. Measured as a fraction from 0 to 1.
D(θ, θ̂) =

∑

N

i=1 1 − cos(θi − θ̂i), whereθ ∈ R
N is the pose in terms of joint angles.

⋄/ ⋄ ⋄ - Pixel overlap / Pixel overlap based threshold resulting inbinary0/1 detection measure.
♮ - Mean distance from 4 endpoints of quadrangular shape representing the limb.

2 Error units were in fractions of the subject’s height.
3 While only qualitative analysis of the overall tracking performance was presented, a quantitative analysis of the number of local minima
in the posterior was performed.
4 Additional per-limb weighting was applied to downweight the error proportionally with the size of the limb.
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Table 2: Comparison of HUMAN EVA to other datasets available and employed by the community.

HUMAN EVA Wanget al. INRIA Perception [35] CMU MoCap CMU MoBo
Datasets [89] Multi-Cam Dataset Dataset [15] Dataset [27]

# of Subjects 4 3 Unknown > 100 25
# of Frames ≈ 80, 000 ≈ 450 Unknown Unknown ≈ 200, 000
# of Sequences 56 4 13 2,605 100
Video Data

# of Cameras 4/7 1 8/34 1 6
Calib. Available Yes No Yes No Yes

Dataset Content
Motion Walk Walk Dance Many Walk

Jog Dance Exercise
Throw/Catch Jumping Jacks

Gesture
Box

Combo
Appearance Natural Natural / Natural / MoCap Suit Natural

MoCap Suit MoCap Suit
Ground Truth

Content 3D 2D None 3D 2D
Source MoCap MoCap / None MoCap Manual Label [92]

Manual Label

to project the 3D models into the images is not. Nevertheless, the video data has proved useful for the analysis of
discriminative methods that do not estimate 3D body location e.g.[48]. In addition, the subjects are dressed in tight
fitting motion capture suits and hence lack the realistic clothing variations exhibited in less controlled environments.

The CMU Motion of Body (MoBo) Database [27], initially developed for gait analysis, has also proved useful in
analyzing the performance of articulated tracking algorithms [20, 92]. While the initial dataset, which contains an
extensive collection of walking motions, did not contain joint-level ground truth information, manually labeled data
has been made available6 by Zhanget al.

A more direct comparison of HUMAN EVA to other datasets that are available to the community is given in Table 2.

3 HUMAN EVA Datasets

To simultaneously capture video and motion information, our subjects wore natural clothing (as opposed to tight-
fitting motion capture suits typically used for pure motion capture sessions [15]) on which reflective markers were
attached using invisible adhesive tape.7 Our motivation was to obtain “natural” looking image data that contained all
the complexity posed by moving clothing. One negative outcome of this is that the markers tend to move more than
they would with a tight-fitting motion capture suit. As a result, our ground truth motion capture data may not always
be as accurate as that obtained by more traditional methods;we felt that the trade-off of accuracy for realism here
was acceptable. We have applied minimal post-processing tothe motion capture data, steering away from the use of
complex software packages (e.g.Motion Builder) that may introduce biases or alter the motion data in the process.
As a result, motion capture data for some frames in some sequences are missing markers or are inaccurate. We made
an effort to detect such cases and exclude them from the quantitative comparison. Note that the presence of markers
on the body may also alter thenatural appearance of the body. Given that the marker locations are known, it would

6http://www.cs.cmu.edu/ ˜ zhangjy/
7Participation in the collection process was voluntary and each subject was required to read, understand, and sign an Institutional Review Board

(IRB) approved consent form for collection and distribution of data. A copy of the consent form for the “Video and Motion Capture Project”
is available by writing to the authors. Subjects were informed that the data, including video images, would be made available to the research
community and could appear in scientific publications.
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be possible to provide a pixel mask in each image covering themarker locations; these pixels could then be excluded
from further analysis. We felt this was unnecessary since the markers are often barely noticeable at video resolution
and hence will likely have an insignificant impact on the performance of image-based tracking algorithms.

We have developed two datasets that we call HUMAN EVA -I and HUMAN EVA -II. H UMAN EVA -I was captured
earlier and is the larger of the two sets. HUMAN EVA -II was captured using a more sophisticated hardware systemthat
allowed better quality motion capture data and hardware synchronization. The differences between these two datasets
are outlined in the Figure 1.

Since all the data was captured in a laboratory setting, the sequences do not contain any external occlusions or
significant clutter, but do exhibit the challenges imposed by strong illumination (e.g. strong shadows that tend to
confuse background subtraction); grayscale cameras used in the HUMAN EVA -I dataset present additional challenges
when it comes to background subtraction and image features.Even at 60 Hz the images still exhibit a fair amount of
motion blur.

The split of the training and test data was specifically designed to emphasize the ability of the pose and motion
estimation approaches to generalize to novel subjects and unobserved motions. To this end, one subject and one
motion for all subjects were withheld from the training and validation dataset for which ground truth is given out. We
believe the proposed datasets exhibit a moderately complexand varied set of motions under realistic indoor imaging
conditions that are applicable to most pose and motion estimation techniques proposed to date.

3.1 HumanEva-I

HUMAN EVA -I contains data from4 subjects performing a set of6 predefined actions in three repetitions (twice
with video and motion capture, and once with motion capture alone). A short description of the actions is provided in
Figure 1. Example images of a subject walking are shown in Figure 2 where data from7 synchronized video cameras
is illustrated with an overlay of ground truth body pose.

3.1.1 Hardware

Ground truth motion of the body was captured using a commercial motion capture (MoCap) system from Vicon-
Peak8. The system uses reflective markers and six 1M-pixel camerasto recover the 3D position of the markers and
thereby estimate the 3D articulated pose of the body.

Video data was captured using two commercial video capture systems. One from Spica Technology Corporation9

and one from IO Industries10. The Spica system captured video using four Pulnix11 TM6710 grayscale cameras
(grayscale, progressive scan, 644x488 resolution, frame rate of up to 120 Hz). The IO Industries system used three
UniQ 12 UC685CL 10-bit color cameras with 659x494 resolution and a frame rate of up to 110 Hz. The raw frames
were re-scaled from 659x494 to 640x480 by IO Industries software. To achieve better image quality under natural
indoor lighting conditions both video systems were set up tocapture at 60 Hz. The rough relative placement of
cameras is illustrated in Figure 1 (left).

The motion capture system and video capture systems were notsynchronized in hardware, and hence a software
synchronization was employed. The synchronization and calibration procedures are described in Sections 3.3 and 3.4
respectively.

3.2 HumanEva-II

HUMAN EVA -II contains only2 subjects (both also appear in the HUMAN EVA -I dataset) performing an extended
sequence of actions that we callCombo. In this sequence a subject starts by walking along an elliptical path, then
continues on to jog in the same direction and concludes with the subject alternatively balancing on each of the two feet
roughly in the center of the viewing volume. Unlike HUMAN EVA -I, this later dataset contains a relatively small test

8http://www.vicon.com/
9http://www.spicatek.com/

10http://www.ioindustries.com/
11http://www.pulnix.com/
12http://www.uniqvision.com/
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HUMAN EVA -I HUMAN EVA -II
M

oC
ap

Hardware System
Manufacturer ViconPeak ViconPeak
Number of cameras 6 12
Camera resolution 1M-pixel MX13 1.3M-pixel
Frame rate 120 Hz 120 Hz

V
id

eo
C

ap
tu

re
S

ys
te

m

Color Cameras
Number of cameras 3 4
Frame grabber IO Industries ViconPeak
Camera model UniQ UC685CL Basler A602fc
Sensor Progressive Scan Progressive Scan
Camera resolution 659 x 494 pixels 656 x 490 pixels
Frame rate 60 Hz 60 Hz

Grayscale Cameras
Number of cameras 4
Frame grabber Spica Tech
Camera model Pulnix TM6710
Sensor Progressive Scan
Camera resolution 644 x 448 pixels
Frame rate 60 Hz

Synchronization Software Hardware

D
at

a

Actions (1) Walking, (2) Jogging, (3) Gesturing Combo
(4) Throwing and Catching a ball,
(5) Boxing, (6) Combo

Number of subjects 4 2
Number of frames

Training (synchronized) 6,800 frames
Training (MoCap only) 37,000 frames
Validation 6,800 frames
Testing 24,000 frames 2,460 frames

C
ap

tu
re

S
pa

ce
L

ay
ou

t

BW3

Control Station

Capture SpaceC2 C3

C1
BW4

BW1 BW2

3 m

2 m

C1

Control Station

Capture Space

C4

C3 C2

3 m

2 m

Figure 1: HUMAN EVA Datasets. The table illustrates the hardware system and configuration used to capture the two
datasets, HUMAN EVA -I and HUMAN EVA -II. The main difference between the hardware systems lies in hardware
synchronization employed in HUMAN EVA -II. The contents of the two datasets in terms subjects, motion and amount
of data are also noted. The bird’s eye view sketch of the capture configuration is also shown with rough dimensions
of the capture space and placement of video and motion capture cameras. The color video cameras (C) are designated
by RGB stripped pattern, grayscale video cameras (BW) by theempty camera icon and motion capture cameras are
denoted by gray circles.
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C1 C2 C3

BW1 BW2

BW3 BW4

Figure 2: Example data from the HUMAN EVA -I database.Example images of walking subject (S1) from7 syn-
chronized video cameras (three colored and four grayscale)are shown with overlaid synchronized motion capture
data.

set of synchronized frames (≈ 2, 500). The HUMAN EVA -I training and validation data is intended to be shared across
the two datasets with test results primarily being reportedon HUMAN EVA -II.

3.2.1 Hardware

As with HUMAN EVA -I, the ground truth motion capture data was acquired using asystem from ViconPeak. How-
ever, here we used a more recentVicon MX system with twelve 1.3M-pixel cameras. This newer system produced
more accurate motion capture data.

Video data was captured using a4-camera reference system provided by ViconPeak which allowed for frame-
accurate synchronization (using theVicon MX Control module) of the video and motion capture data. Video was
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C1 C2

C3 C4

Figure 3:Example data from the HUMAN EVA -II database.Example images of subject (S4) from4 synchronized
color video cameras performing a combo motion (that includes jogging as shown).

captured using four Basler13 A602fc progressive scan cameras with 656x490 resolution operated at60 Hz. The rough
relative placement of cameras is illustrated in Figure 1 (right). A calibration procedure to align the Vicon and Basler
coordinate systems is discussed in the next section.

3.3 Calibration

The motion capture system was calibrated using Vicon’s proprietary software and protocol. Calibration of the
intrinsic parameters for the video capture systems was doneusing a standard checker-board calibration grid and the
Camera Calibration Toolbox for Matlab [10]. Focal length (Fc ∈ R

2), principle point (Cc ∈ R
2) and radial distortion

coefficients (Kc ∈ R
5) were estimated for each camerac ∈ C. We assume square pixels and let the skewαc = 0 for

all camerasc ∈ C.
The extrinsic parameters corresponding to the rotation,Rc ∈ SO(3), and translation,Tc ∈ R

3, of the camera
with respect to the global (shared) coordinate frame were solved for using a semi-automated procedure to align the
global coordinate axis of each video camera with the global coordinate axis of the Vicon motion capture system. A
single moving marker was captured by the video cameras and the motion capture system for a number of synchronized
frames (> 1000). The resulting 3D tracked position of the markerΓ

(3D)
t , t ∈ {1 . . . T (3D)} was recovered using the

Vicon software. The 2D position of the marker in the video,Γ
(2D)
t , t ∈ {1 . . . T (2D)}, was recovered using a Hough

circle transform [29] that was manually initialized in the first frame and subsequently tracked. The projection of the

13http://www.baslerweb.com/
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3D marker positionf(Γ
(3D)
t ; Rc, Tc) onto the image was then optimized directly for each camera byminimizing

min
Rc,Tc,Ac,Bc

T (2D)
∑

t=1

δ(t; Ac, Bc)‖Γ
(2D)
t − f(Γ

(3D)
tAc+Bc

; Rc, Tc)‖
2 (1)

for the rotation,Rc, and translation,Tc. Note that the video cameras were calibrated with respect tothe calibration
parameters of the Vicon system, as opposed to from the imagesdirectly.

In the HUMAN EVA -I dataset, the video and motion capture systems were not temporally synchronized in hardware,
hence we also solved for the relative temporal scaling,Ac ∈ R, between the video and Vicon cameras, and the temporal
offsetBc ∈ R. In doing so we assumed that the temporal scaling was constant over the length of a capture sequence14

(i.e. no temporal drift). The 3D positionf(Γ
(3D)
tAc+Bc

; Rc, Tc) was linearly interpolated to cope with non-integer indices
tAc + Bc. Finally, in Eq. (1),δ(t; Ac, Bc) is defined as:

δ(t; Ac, Bc) =







0 if tAc + Bc > T (3D)

0 if tAc + Bc < 1
1 otherwise.

(2)

The calibration accuracy of the video cameras appears most accurate in the center of the viewing volume (close to the
world origin).

For the HUMAN EVA -II data, frame-accurate synchronization was achieved in hardware and we used fixed values
Ac = 2 andBc = 0 for the temporal scaling and offset.

3.4 Synchronization

While the extrinsic calibration parameters and temporal scaling,Ac, can be estimated once per camera (the Vicon
system was only re-calibrated when cameras moved15), without hardware synchronization, the temporal offsetBc was
different for every sequence captured. To temporally synchronize the motion capture and the video in software, for
HUMAN EVA -I we manually labeled visible markers on the body for a smallsub-set of images (6 images were used
with several marker positions labeled per frame). These labeled frames were subsequently used in the optimization
procedure above but with fixed values forRc, Tc, andAc to recover a least squares estimate of the temporal offsetBc

for every sequence captured.

4 Evaluation Measures

Various evaluation measures have been proposed for human motion tracking and pose estimation. For example,
a number of papers have suggested using joint-angle difference as the error measure (see Table 1). This measure,
however, assumes a particular parameterization of the human body and cannot be used to compare methods where the
body models have different degrees of freedom or have different parameterizations of the joint angles. For this dataset
we introduce a more widely applicable error measure based ona sparse set of virtual markers that correspond to the
locations of joints and limb endpoints. This error measure was first introduced for 3D pose estimation and tracking in
[74] and later extended in [7]. It has since been also used for3D tracking in [41] and for 2D pose estimation evaluation
in [36, 75].

Let x represent the pose of the body. We defineM = 15 virtual markers as{mi(x)}, i = 1 . . .M, where
mi(x) ∈ R

3 (or mi(x) ∈ R
2 if a 2D body model is used) is a function of the body pose that returns the position of the

i’th marker in the world (or image respectively). Notice thatdefining functionsmi(x) for any standard representation
of the body posex is trivial. The error between the estimated posex̂ and the ground truth posex is expressed as the
average Euclidean distance between individual virtual markers:

D(x, x̂) =
1

M

M
∑

i=1

||mi(x) − mi(x̂)||. (3)

14In practiceAc ≈ 2 since the frame rate of motion capture system was roughly120 Hz and video system is60 Hz.
15Calibration of the Vicon motion capture system changes the global coordinate frame and hence requires re-calibration of extrinsic parameters

of the video cameras as well.
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To ensure that we can compare algorithms that use different numbers of parts, we add a binary selection variable
per-marker̂∆ = {δ̂1, δ̂2, ..., δ̂M} and obtain the final error function

D(x, x̂, ∆̂) =
1

∑M
j=1 δ̂j

M
∑

i=1

δ̂i||mi(x) − mi(x̂)||, (4)

whereδ̂i = 1 if the algorithm is able to recover markeri, and0 otherwise.
For the sequence ofT frames we compute the average performance using the following:

µseq =
1

T

T
∑

t=1

D(xt, x̂t, ∆̂t). (5)

Since many tracking algorithms are stochastic in nature, anaverage error and the standard deviation computed over a
number of runs is most useful. As a convention from previous methods [7, 36, 74, 75] that have already used this error
measure, we compute the 3D error in millimeters (mm) and the 2D error directly in the image in pixels (pix).

The error measures formulated above are appropriate for measuring the performance of approaches that are able
to recover the full 3D articulated pose of the person in spaceor the 2D articulated pose of the person in an image.
Some approaches, however, are inherently developed to recover the pose but not the global position of the body (most
discriminative approaches fall into this category,e.g.[2, 48, 76]). To make the above error measures appropriate for
this class of approaches we employ arelativevariant

D̃(x, x̂) =
1

M

M
∑

i=1

||m̃i(x) − m̃i(x̂)||, (6)

with m̃i(x) = mi(x)−m0(x), wheremi(x) is defined as before andm0(x) is the position of the marker correspond-
ing to the origin of the root segment. The rest of the equations can also be modified accordingly. It is worth noting
that this measure assumes that the orientation of the body relative to the camera is recovered; this is typical of most
discriminative methods.

Note that the error measures assume that an algorithm returns a unique body pose estimate rather than a distribution
over poses. For algorithms that model the posterior distribution over poses as uni-modal, the mean pose is likely to give
a good estimate ofx. Most recent methods, however, model multi-modal posterior distributions implicitly or explicitly.
Here the maximum-a-posteriori estimate may be a more appropriate choice forx. This is discussed in greater detail in
[7]. Alternative error measures that compute lower-boundsfor sample- or kernel-based representations of the posterior
are discussed in [7].

5 Baseline Algorithm

In addition to the datasets and quantitative evaluation measures, we provide a baseline algorithm16 against which
future advances can be measured. While no “standard” algorithm exists in the community, we implemented a fairly
common Bayesian filtering method based on the methods of Deutscher and Reid [17] and Sidenbladhet al. [71].
Several variations on the base algorithm are explored with the goal of giving some insight into the important design
choices for human trackers. Quantitative results are presented in the following section.

5.1 Bayesian Filtering Formulation

We pose the tracking problem in a standard way as one of estimating theposteriorprobability distributionp(xt|y1:t)
for the statext of the human body at timet given a sequence of image observationsy1:t ≡ (y1, . . . ,yt). Assuming a
first-order Markov process

p(xt|x1:t−1) = p(xt|xt−1)

16The implementation is available for download fromhttp://vision.cs.brown.edu/humaneva/baseline.html
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with a sensor Markov assumption
p(yt|x1:t,y1:t−1) = p(yt|xt),

a recursive formula for the posterior can be derived [3, 19]:

p(xt|y1:t) ∝ p(yt|xt)

∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1. (7)

where the integral in Eq. 7 computes thepredictionusing the previous posterior and thetemporal diffusionmodel
p(xt|xt−1). The prediction is weighted by thelikelihoodp(yt|xt) of the new image observation conditioned on the
pose estimate.

5.1.1 Optimization

Non-parametric approximate methods represent posterior distributions by a set ofN random samples or particles
with associated normalized weights that are propagated over time using the temporal model and assigned new weights
according to the likelihood function. This is the basis of the Sequential Importance Resampling (SIR) algorithm, or
Condensation [3, 31]. A variation of SIR is the Annealed Particle Filter (APF) introduced for human tracking by
Deutscher and Reid [17]. An APF iterates these steps multiple times at each time instant in order to better localize the
modes of the posterior distribution, and relies on simulated annealing to avoid local optima.

We briefly summarize our implementation of the Annealed Particle Filter algorithm used here since this forms the
core of our baseline algorithm in the experiments that follow. The Sequential Importance Resampling algorithm is
also tested in the following section but is not described in detail as it is similar to APF.

At each time instant the APF algorithm proceeds in a set of “layers”, from layerM down to layer1, that update
the probability density over the state parameters. The state density at layerm + 1 is represented using a set ofN

particles with associated normalized weightsSt,m+1 ≡ {x
(i)
t,m+1, π

(i)
t,m+1}

N
i=1. For the prediction step at layerm, a

Gaussian diffusion model is implemented (section 5.1.4). Specifically, hypotheses are drawn with replacement using
Monte Carlo sampling from the state probability density at the previous layerm + 1 using

{x
(i)
t,m}N

i=1 ∼
N

∑

j=1

π
(j)
t,m+1N (x

(j)
t,m+1, α

M−mΣ) . (8)

The sampling covariance matrixΣ controls the breadth of the search at each layer with a largeΣ spreading sampled
particles more widely. From layer to layer we scaleΣ by a parameterα. This parameter is used to gradually reduce
the diffusion covariance matrixΣ at lower layers in order to drive the particles towards the modes of the posterior
distribution. Typicallyα is set to0.5.

Sampled poses that exceed the joint angle limits of the trained action model or result in inter-penetration of limbs
are rejected and not re-sampled within a layer. The remaining particles are assigned new normalized weights based on
an “annealed” version of the likelihood function (section 5.1.3)

π
(i)
t,m =

p(yt|x
(i)
t,m)βm

∑N
j=1 p(yt|x

(j)
t,m)βm

, i ∈ {1, . . . , N} , (9)

whereβm is a temperature parameter optimized so that approximatelyhalf the particles get selected for propaga-
tion/diffusion to the next layer by the Monte-Carlo sampler(Eq. 8). The resulting particle setSt,m ≡ {x

(i)
t,m, π

(i)
t,m}N

i=1

is then used to compute layerm−1 by re-applying Eqns. (8,9). In tracking, the top layer is initialized with the particle
set of the bottom layer at the previous time instant:St,M+1 = St−1,1.

Theexpectedas well as themaximum a posterioriposes at framet can be computed from the particle setSt,1 at
the bottom layer using:

x̂t =

N
∑

i=1

π
(i)
t,1x

(i)
t,1 (10)

x̂
MAP
t = x

(j)
t,1 , π

(j)
t,1 = max

i
(π

(i)
t,1) . (11)
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(a) (b) (c) (d)

Figure 4:(a) Input image.(b) Body Model. The body is represented as a kinematic tree with 15 body parts. The red
spheres represent the joint locations where virtual markers are placed for computing 3D error: pelvis joint, hips, knees
and ankles, shoulders, elbows and wrists, neck and the top ofthe head.(c) Smoothed gradient edge mapM e

t , with
values ranging from 0 (pure black) to 1 (pure white). Sparse points shown in red{ξe

xt
(j)} along the edges of the body

model are matched against the edges in the image.(d) Foreground silhouette mapMf
t , with the background being 0

and foreground 1. Sparse points shown in blue{ξf
xt

(j)} selected in a grid inside the body model are matched against
the foreground silhouette.

SIR is a special case of APF which has only one annealing layer(M = 1) and for which the effect of the annealing
temperature parameter is removed (βm = 1).

5.1.2 Parametrization of the skeleton

As is common in the literature, the skeleton of the body is modeled as a 3D kinematic tree with the limbs repre-
sented by truncated cones (Figure 4(b)). We consider 15 bodyparts: pelvis area, torso, head, upper and lower arms
and legs, hands and feet. There are two types of parameters that describe the pose and shape of the body. The shape
is given by the length and width of the limbs, which in our caseare assumed known and fixed. Our objective is to
recover the pose of the body, which is parametrized by a reduced set of 34 parameters comprising the global position
and orientation of the pelvis and the relative joint angles between neighboring limbs. The hips, shoulders and thorax
are modeled as ball and socket joints (3 DoF), the clavicles are allowed 2 DoFs, while the knees, ankles, elbows, wrists
and head are assumed to be hinge joints with 1 DoF.

The subjects in the dataset were all manually measured usinga standard Vicon protocol to obtain their height,
weight, limb width and shoulder joint offsets. Motion capture training data was then used to estimate limb lengths
for each subject as well as to learn static and dynamic priorsfor different motion styles. The raw data provided by
the Vicon motion capture system consists of the location andorientation of local coordinate systems at each joint,
with consecutive joints along the skeleton not constrainedto be a fixed distance from each other. Limb lengths are
computed as the median distance between pairs of corresponding joint locations over a large set of training motions
and are kept fixed during testing. We also derive joint angle limits and inter-frame joint angle variations from the
statistics of the relative joint angles between neighboring body parts.

5.1.3 Likelihoods

For each particle in the posterior representation, its likelihood represents how well the projection of a given body
pose fits the observed image(s). Many image features could beused, including appearance models and optical flow
constraints, however, most common approaches rely on silhouettes and edges [17].

Edge-based Likelihood Functions. We detect edges using image gradients that have been thresholded to obtain
binary maps [17]. An edge distance mapM e is then constructed for each image to determine the proximity of a pixel
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to an edge. This can be achieved by convolving the binary edgemap with a Gaussian kernel, and then re-mapping it
between 0 and 1. This can be thought of as representing the edge probability [17] at a given pixel.

The negative log-likelihood is then estimated by projecting into the edge map sparse points (for computational
efficiency) along the apparent boundaries of all model partsand computing the mean square error (MSE) of the edge
map responses:

− log pe(yt|xt) ∝
1

|{ξe
xt
}|

∑

j

(

1 − M e
t

(

ξe
xt

(j)
))2

, (12)

where{ξe
xt
} is the set of pixel locations corresponding to all projectedpoints (indexed byj) along all body part edges

induced by posext, andM e
t is the edge distance map at timet (Figure 4(c)). The reader is referred to [17] for a more

detailed discussion.

Silhouette-based Likelihood Function. Binary foreground silhouette mapsM
f
t are generated using a learned Gaus-

sian model for each pixel; the model is learned from 10 staticbackground images and silhouettes subsequently obtained
by comparing the background pixel probability to that of a uniform foreground model. We model the constraint that
the silhouette of the body model should project inside the image silhouette. As before, for computational efficiency,
we only check for a sparse number of points within the limbs (Figure 4(d)). The negative log-likelihood of the obser-
vations given posext is then estimated by taking a number of visible points insideall limbs and projecting them into
the image{ξf

xt
}. The MSE between the predicted and observed silhouette values for these points is computed [17]:

− log pf (yt|xt) ∝
1

|{ξf
xt
}|

∑

j

(

1 − M
f
t

(

ξf
xt

(j)
)

)2

. (13)

Bi-directional Silhouette-based Likelihood Function. The advantage of the previous silhouette likelihood formu-
lation is computational efficiency and similarity to the edge-based likelihood formulation. However, this comes at the
expense of being asymmetric: the body is constrained to lie inside the image silhouette, but not vice versa. This be-
comes a problem when the model predicts occluded parts and consequently does not fully cover the image silhouette.
In Figure 5(b) both legs track the same physical leg, but the penalty is minimal usingpf (yt|xt).

(a) (b) (c) (d) (e) (f) (g)

Figure 5: Silhouette-based Likelihood. (b–d): traditional silhouette likelihood.(e–g): Bi-directional likelihood.
(a) Foreground silhouette mapMf

t . The red pixels have value 1, and the background 0.(b) Tracking failure example
using standard likelihood; two legs explain the same silhouette pixels.(c) Body model silhouette mapM b

t , obtained by
rendering the cylinders to the image plane. TheBlue pixels have value 1, and the background 0.(d) Silhouette overlap
(Yellow). The standard silhouette likelihood does not penalize for the fact that theRed regions are not explained
by the model.(e) Tracking result with bi-direction silhouette term; both legs now correct.(f) Body model silhouette
projected into the image.(g) Silhouette overlap for bi-direction term; more image pixels are explained (Yellow pixels).

We can correct this by defining a symmetric silhouette likelihood [80, 81] that penalizes non-overlapping regions
for both silhouettes. For this it is convenient to use a pixel-dense silhouette representation. LetM b

t represent the
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binary silhouette map for the cylindrical body model andM
f
t the image foreground. Figure 5 (d) shows the overlap

between the two silhouettes. We seek to minimize the non-overlapping regions,Red andBlue, therefore maximizing
theYellow region. The size of each region can be computed by summing over all image pixelsp using

Rt =
∑

p

(

M
f
t (p)

(

1 − M b
t (p)

)

)

(14)

Bt =
∑

p

(

M b
t (p)

(

1 − M
f
t (p)

)

)

(15)

Yt =
∑

p

(

M
f
t (p)M b

t (p)
)

. (16)

The negative log-likelihood of a pose is then defined as a linear combination of the fractions of each silhouette not
explained by the other:

− log pd(yt|xt) ∝ (1 − a)
Bt

Bt + Yt
+ a

Rt

Rt + Yt
. (17)

We make the likelihood symmetric by settinga = 0.5. Whena is 0, we effectively get the behavior of the previous
1-sided silhouette likelihoodpf (yt|xt).

Combining Likelihood Functions. We combine image measurements from multiple cameras or multiple likelihood
formulations as follows:

− log p(yt|xt) =
1

K

1

|L|

K
∑

k=1

∑

l∈L

− log pl(y
(k)
t |xt) , (18)

whereK is the number of cameras,y(k)
t is the image observation in thek-th camera andL ⊂ {e, f, d} is a set of

likelihood functions such as the ones in Eqns. (12,13,17).

5.1.4 Action Models: Temporal Diffusion and Pose Priors

Predictions from the posterior are made using temporal models. The simplest model applicable to generic motions
assumes no change in state from one time to the next:x̄t = xt−1 [17]. The predictions are diffused using normally
distributed random noise to account for errors in the assumption. The noise is drawn from a multi-variate Gaussian
with diagonal covarianceΣ where the sampling standard deviation of each body angle is set to equal the maximum
absolute inter-frame angular difference for a particular motion style [17].

We also implement a hard prior on individual poses to reduce the search space. Specifically, we reject (without
resampling) any particle corresponding to an implausible body pose. We check for angles exceeding joint angle bounds
and producing inter-penetrating limbs [79]. In our implementation we explicitly test for intersections between the torso
and the lower arms and between the left and the right calves.

We use the termaction model(AM) to denote the sampling covarianceΣ used for particle filtering and the valid
range of the joint angles. Action models can be learned specifically for a certain actor or for a particular motion style,
or they can be generic. We only learned subject-generic action models by combining the data from all three available
subjects in the training dataset.

Different motion styles influence the sampling covariance and joint angle limits used. The training data in the
HUMAN EVA -I dataset contains walking, jogging, hand gestures, throwing and catching a ball, and boxing action
styles from three different subjects. Subsets of these wereused to learn style-specific action models. For example, the
sampling covariance and the valid range of joint angles are typically smaller for walking than for jogging models,
making the problem simpler for walking test sequences. For sequences containing both walking and jogging, it
is typical for the flexion-extension movement of the elbow tocover disjoint angle intervals for the two styles. A
combined action model for walking and jogging can be learnedinstead.

To represent a generic (style-independent) action model, we use the entire HUMAN EVA -I training data to learn the
sampling covarianceΣG. For the joint limits, our training data is not diverse enough to be suitable for discovering the
full anatomical range of every joint angle, particularly for the leg joints. Instead we rely on standard anatomical joint
limits (AJL).
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6 Experiments

We performed a series of experiments with the two different algorithms (APF and SIR), several likelihoods and
various action models (priors); details of each variant aredescribed along with the corresponding experiment. Most of
these are variations of abase configuration (BC)that uses annealed filtering with 200 particles per layer, 5 layers of
annealing, a likelihood based on bi-directional silhouette matching (BiS), and an action model appropriate forgeneric
motions which enforces anatomical joint limits (G-AJL ). We also reject samples where the limbs penetrate each other
as described above. The experiments were conducted on the two sequences in the HUMAN EVA -II dataset. In each
case, ground truth was available in the first frame to initialize the tracker.

The error of an individual pose was computed using Eq. (4) which averages the Euclidean distance between virtual
markers placed as shown in Figure 4(b). Given the samples (particles) at each frame, we computed the error of the
expected pose using Eq. (10). This is appropriate for the APFsince we expect the posterior representation to be uni-
modal at the bottom layer of annealing. Alternatively we could have estimated the error of the most likely pose in
the posterior distribution. In our experiments we found this measure to be consistently worse than the error of the
expected pose by an average of 2 mm with noisier reconstructed joint angle trajectories. We attribute this to the fact
that particle filtering methods represent the posterior probability as a function of both the likelihood weights and the
density of particles. The MAP estimate may miss a region thathas a high posterior probability due to high particle
density but small individual weights.

Our optimization strategy is stochastic in nature and produces different results when running experiments with the
same configuration parameters. To get a measure of performance consistency and repeatability, we ran each experiment
five times for each of the sequences, unless explicitly notedotherwise. We plot the mean of our error measure (3D
or 2D depending on the experiment) for each time instant overall the runs, while for theBC we also highlight the
standard deviation as a gray overlay in Figures 6,9,10,11,12,13, and in the corresponding rows in the error tables.

The errors at each frame are combined to compute the average error µseq (Eq. 5) for each of the three activity
phases (walking, jogging and leg balancing), as well as the overall error over the two sequences. We report the mean
and standard deviation of the average errorµseq over multiple runs.17

Computation time. The computation time is directly proportional to the numberof particles, number of camera
views and number of layers used, and vastly depends on the choice of likelihood function. Performing full inference
using the one-sided silhouette likelihoodpf (yt|xt) jointly with the edge likelihoodpe(yt|xt) with 1,000 particles per
frame for 4 camera views takes about 40 seconds on a standard PC with software written in Matlab, as opposed to
250 seconds when using the bi-directional silhouette likelihoodpd(yt|xt). Likelihood evaluations dominate the overall
computation time; particle diffusion and checking for limbinter-penetration are relatively insignificant by comparison.

6.1 Performance of theBase Configuration BC.

Sample tracking results overlaid on the images using theBCare shown in Figures 14 and 15, and illustrate visually
what different amounts of error correspond to. The 5 runs ofBC suggest that the tracking performance is fairly stable
across runs. This is illustrated in Figure 6 for 3D errors. Performance results using other error measures are included
in Figure 7 to allow easy comparison with other methods.

The occasional spikes in the error correspond to the trackerlosing track of the arms or the legs swapping places
(e.g. frame 656 in Fig. 14). Since walking and jogging are periodic motions, the arms and legs are usually found again
during the next cycle. This is also illustrated when investigating the error for individual joints. Figure 8 shows that
limb extremities are the hardest to track. Large errors for the wrists are obtained when the elbow becomes fully flexed
and gets stuck in this position (e.g. frame 1030 in Fig. 15). From trial to trial, these events may or may not happen
due to the stochastic nature of the optimization, making theerror variance in these cases higher (identified in the plots
in Fig. 6 as spikes in the gray overlay).

The results also highlight the relative degree of difficultyof the two sequences. They are relatively similar, except
for the jogging phase where the second sequence is significantly more difficult to track than the first and presents a

17When computing the results, we ignore 38 frames (298-335) for sequence 2 where accurate ground truth was not available. The apparent gap
in the error plots during the walking phase is a result of this.
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Walking Phase Jogging Phase Balancing Phase

Run 1 Run 2 Run 3 Run 4 Run 5 Average

Sequence 1 Sequence 2 Overall
Walk Jog Balance Walk Jog Balance

Run 1 76mm 84mm 79mm 57mm 82mm 66mm 74mm

Run 2 82mm 81mm 105mm 61mm 87mm 71mm 81mm

Run 3 72mm 89mm 89mm 58mm 85mm 114mm 85mm

Run 4 80mm 82mm 80mm 58mm 85mm 66mm 75mm

Run 5 70mm 88mm 78mm 64mm 128mm 86mm 86mm

Average 76±5 mm 85±4 mm 86±11mm 60±3 mm 93±19mm 80±20mm 80±5 mm

Figure 6:Stability of the baseline algorithm. TheBCwas run 5 times to establish the stability of the method. Errors
for each run in the two sequences are plotted along with the standard deviation of the error in gray as a gray band in
the plots. The table shows the error for each run along with the average and standard deviation.

larger variance in performance. This is consistent with thefact that the second subject is jogging faster.

6.2 Comparing Temporal Diffusion Models.

Recall that our APF implementation uses a Gaussian diffusion model to sample new poses. This is a very weak
form of temporal prior which does not try to predict the pose at the next time instant from the current one; rather it adds
Gaussian noise to the current pose to expand the search rangeat the next time instant. This diffusion model depends
on the choice of the “sampling covariance”Σ.

The two test sequences contain walking and jogging styles, followed by balancing on both legs in turn. Training
data, however, only covered walking and jogging. We have therefore considered the following subject-independent
action models:

• Walking-style Action Model (W) - all walking training data were used to learn the sampling covariance and the
joint angle limits.

• Walking and Jogging-style Action Model (WJ) - all walking and jogging training data were used to learn the
sampling covariance and the joint angle limits.

• Generic Action Model with Anatomic Joint Limits (G-AJL ) - all training data were used to learn the sampling
covariance; joint limits were not derived from training data, but instead were set to bio-mechanical anatomical
limits. Note that this is the model used in theBC.

• Generic Action Model without Joint Limits (G-0JL) - all training data were used to learn the sampling covari-
ance; joint angle limits were not enforced.

All other tracking parameters were the same as theBC. Tracking results using the different models are shown in
Figure 9.

All of these remain very weak models in that they do not explicitly describe how the body moves. Rather they are
heuristics that control how widely to search the state spacearound a given pose. We found that the most accurate results
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Cam 1 Cam 2 Cam 3 Cam 4 Average 2D Error

Sequence 1 Sequence 2 Overall
Walk Jog Balance Walk Jog Balance

Absolute 3D Error 76±5 mm 85±4 mm 86±11mm 60±3 mm 93±19mm 80±20mm 80±5 mm
Relative 3D Error 77±6 mm 82±3 mm 89±11mm 60±2 mm 95±21mm 79±20mm 81±5 mm
Average 2D Error 10.1±0.9pix 11.3±0.7pix 11.3±2.3pix 7.9±0.6pix 12.4±2.3pix 10.9±2.8pix 10.7±1.0pix

Figure 7:Performance for various error measures.The performance forBC is shown for the various error measures.
Top plots: absolute and relative 3D error. Middle plots: 2D pixel error for each camera and averaged over all cameras.
The absolute error is given by the average distance between predefined locations on the body (Eq. 4)), while the relative
error is computed after first globally aligning the ground truth model and the estimated model at the pelvic joint. We
found the two measures to be comparable as the pelvis location is fairly well estimated by the tracker.

were obtained when the activity matched the style-specific action model used. The walking modelW worked well
for walking but not for other activities. Walking performance was good in part because the constrained joint limits
prevented the legs from swapping places. Adding jogging to the training (WJ) increased the sampling covariance
and extended the joint limits, and consequently improved performance slightly on balancing without significantly
affecting performance on walking. As one might expect, however, theWJ model performed significantly better on
jogging. BothW andWJ failed to generalize to the balancing style because the joint angle limits were too narrow at
the hips and shoulders.

TheG-AJL extends the joint limits to anatomical values and performedvery well on the balancing portion. This
is expected since balancing is a very simple motion and is intuitively easier to track than jogging for example. Clearly
the learned anatomical joint limits forW andWJ prevented these models from generalizing to new poses. In addition,
G-AJL was able to generalize well to each of the 3 different styles,remaining relatively competitive with the style-
specific actions models. Finally, the performance ofG-0JL illustrates the importance of enforcing joint angle limits.
In this model the lack of such limits led to tracking failure even during the walking motions.

The experiments suggest that a generic action model with anatomic joint limits is the optimal choice for sequences
with free-style motion.

6.3 Comparing Likelihood Functions.

The bi-directional silhouette likelihoodBiS provides symmetric constraints between the image and modelsilhou-
ettes, but it is computationally expensive. The standard asymmetric silhouette likelihoodS is computationally more

18



200 400 600 800 1000 1200
0

50
100
150
200
250
300
350

E
rr

or
 (

m
m

) Walking Phase Jogging Phase Balancing Phase

Sequence 1

200 400 600 800 1000 1200
0

50
100
150
200
250
300
350

E
rr

or
 (

m
m

) Walking Phase Jogging Phase Balancing Phase

Sequence 2

 

 

Hip Knee Ankle Shoulder Elbow Wrist

Sequence 1 Sequence 2 Overall
Walk Jog Balance Walk Jog Balance

Hip 85±3 mm 81±3 mm 57±3 mm 65±3 mm 66±3 mm 58±5 mm 69±1 mm

Knee 59±13mm 70±6 mm 37±0 mm 54±9 mm 92±54mm 48±4 mm 60±10mm

Ankle 101±28 mm 101±11mm 44±1 mm 70±12mm 136±63mm 56±4 mm 85±11mm

Shoulder 61±4 mm 69±7 mm 113±5 mm 51±2 mm 75±9 mm 86±13mm 76±3 mm

Elbow 57±4 mm 77±8 mm 81±12mm 48±2 mm 83±4 mm 66±14mm 69±3 mm

Wrist 85±1 mm 116±9 mm 186±77 mm 45±2 mm 130±15mm 165±110mm 121±26mm

Figure 8:Error for selected individual joint locations. Errors for individual joint locations averaged over the left
and right side illustrate that the arms are harder to track than the legs due to occlusions by the torso. Limb extremities
such as wrists and ankles are less constrained and tend to getlost more often than the shoulders and hips. The spikes
in error for the ankles correspond to the two legs swapping places. The results come from tracking using theBC
configuration.

efficient, but provides weaker constraints. Previous work [7, 17] has shownS performs well when combined with
the edge likelihoodE using Eq. 18, which we denote byE+S. We compareBiS with E+S, as well as withE andS
separately, all in the context of theBC which uses a weak prior on motion (G-AJL ).

The results in Figure 10 illustrate that theBiS likelihood was the only one capable of tracking the subject over the
full length of both sequences, with no other likelihood being able to cope with the fast jogging motion. For the first
sequence even the walking motion turned out to be too hard to track. We therefore concentrate our analysis of the
likelihoods on sequence 2 during the walking phase only.

We found that relying solely on edges caused the model to drift off the subject and onto the background, with
little chance of recovering from tracking failures. Edges do help improve the performance of the standard silhouette
likelihood during walking, which otherwise performs poorly as well.

We attribute the fact that theE+S likelihood eventually loses track to the combination of a simple likelihood
formulation with a weak generic priorG-AJL that together allow for improbable poses that explain only part of the
image observations. To test this, we combined the same likelihood with a more specific prior (WJ), and found it
performed much better on walking and jogging data even with half the number of particles (cf. Fig. 10). This is
consistent with the results reported in [7]. At the same time, the strongerBiS can cope with the weaker prior.

Therefore, for methods that rely on strong priors, simple image observations may be enough, but in the absence
of appropriate priors, richer image observation measurements are necessary. Clearly better edge detection methods
could be employed and integration of edge information alongthe entire boundary (instead of sampling) might improve
results.

6.4 Algorithmic Choices

Comparing Regular and Annealed Particle Filtering. The main computational cost in both the APF and SIR is
the evaluation of the likelihood for each particle. To fairly compare the methods we keep the number of likelihood
evaluations constant in comparing across methods. Hence, the number of particles used for SIR (i.e. 1,000) is the
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W−AM WJ−AM G−AM AJL G−AM 0JL

Sequence 1 Sequence 2 Overall
Walk Jog Balance Walk Jog Balance

W 65±7 mm 88±4 mm 140±16mm 55±4 mm 138±43mm 97±7 mm 97±9 mm

WJ 66±11mm 71±4 mm 122±14mm 58±1 mm 79±3 mm 102±3 mm 83±3 mm

G-AJL 76±5 mm 85±4 mm 86±11mm 60±3 mm 93±19mm 80±20mm 80±5 mm

G-0JL 115mm 182mm 245mm 76mm 143mm 135mm 149mm

Figure 9:Comparison of priors. Experimental results forBCusing differentaction modelsare shown: walking (W),
walking and jogging (WJ) and generic (G). For the generic action model, the joint angle limits were not derived from
training data as in the case of walking or jogging, but ratherwere set to standard anatomical joint limits (AJL ). We use
0JL to denote when joint limits were not enforced. In this case performance degraded considerably and we only show
results for one run. ForW, WJ andG-AJL results were averaged over 5 different runs to more effectively compare
different action models.

product of the number of layers (5) and the number of particles per layer (200) in the annealing method. A comparison
of the methods is shown in Figure 11.

In contrast to the APF, the SIR could maintain multi-modal posterior distributions in which case computing the
error of the expected pose might not be appropriate. Therefore we also report the error of the most likely particle
(MAP). We found, however, that the difference in error between the expected pose and the most likely pose was
insignificant, and the error curves overlapped. Either way,relative to APF, SIR was significantly worse and more
prone to losing track of the subject during fast motions.

Varying the Number of Particles. We also varied the number of particles used in the baseline configuration. Using
more particles helps prevent the tracker from losing track and improves performance. The tracker is much more stable
when run using 200 particles. Using 100 particles or fewer makes the tracker unstable as illustrated by the significant
increase in error variance in Figure 12. Based on these results we conclude that the number of particles needed depends
on the type of motion being tracked, with more particles being needed for fast motions than for slow motions.

Varying the Number of Camera Views. The HUMAN EVA -II dataset used 4 cameras placed on the corners of a
rectangular area as shown in Figure 1. Assessing performance for different number of cameras depends on the choice
of cameras. We ran experiments withBC for all subsets of cameras, once for each camera configuration, combining
the errors for configurations with the same number of cameras. Mean errors and standard deviations are reported in
Figure 13 over 4 configurations for the one camera case, 6 pairs and 4 triples, respectively.

The results clearly show that monocular tracking is beyond the abilities of the present algorithm. Adding a second
camera view significantly improved the results but still thetracker could not cope with simple walking motions. At
least 3 camera views were needed to track walking motions and4 were needed for more complex motions such as
jogging. For walking motions there was no statistical difference between using 3 or 4 camera views.
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EG SH EG+SH BiSH

Sequence 1 Sequence 2 Overall
Walk Jog Balance Walk Jog Balance

Ea 315mm 1367mm 1298mm 116mm 530mm 344mm 662mm

S 184±20 mm 229±32mm 253±90mm 105±22mm 229±10mm 233±77mm 205±8 mm

E+S 118±32 mm 216±43mm 265±133mm 75±7 mm 199±24mm 356±116mm 205±22mm

BiS 76±5 mm 85±4 mm 86±11mm 60±3 mm 93±19mm 80±20mm 80±5 mm

E+Sb 90mm 95mm 161mm 68mm 100mm 132mm 111mm

aPerformance with the edge likelihood alone was so poor that we only show results for a single run.
bThis experiment was run once and differs fromBC in that it uses the WJ action model with only 100 particles instead of the G-AJL action

model with 200 particles. Its plot is not shown in the graph above.

Figure 10:Comparison of likelihoods. Edge, standard silhouette and bi-directional silhouette likelihoods are com-
pared. The bi-directional model is more computationally expensive, but it is the only one able to completely track the
subject using a generic prior. The E+S model is shown to be competitive when combined with a stronger prior that
matches the test motion.

7 Analysis of performance and failures

Model. Our model of the body is an approximation to the true human body shape (though it is fairly typical of the
state of the art). We make two key assumptions that (1) the body is made of rigid cylindrical or conical segments and
(2) joints only model the most significant degrees of freedom. We make no attempts to fit the shape of the limbs to the
image measurements. More accurate body models may lead to more accurate tracking results but this hypothesis needs
to be verified experimentally. Also, a more anatomically correct modeling of the DoF of the joints may be required
for applications in bio-mechanics [47].

Image likelihoods. One of the main observations of our experiments with the baseline algorithm is that results of
the approach heavily rely on the quality of the likelihood model. It is our belief that one of the key problems in human
motion tracking is the formulation of reliable image likelihood models that are general, do not require background
subtraction, and can be applied over a variety of imaging andlighting conditions. We have implemented relatively
standard likelihood measures, however, other likelihoodshave been proposed and should be evaluated.

For example, more principled edge likelihoods have been formulated using measurable model edge segments [90],
phase information [57] and the learned statistics of filter responses [66, 70]. Non-edge-based likelihood measures
include optical flow [11, 73], flow occlusion/disocclusion boundaries [79], segmented silhouettes based on level sets
[65], image templates [89], spatio-temporal templates [18], principal component-based models of appearance [72],
and robust on-line local [6, 85] and global appearance models [6].

Motion priors. While the action models used for diffusion within our framework work relatively well in a multi-
view setting, it is likely that monocular tracking can benefit from stronger prior models of human motion. The use
of strong18 prior motion models are common with early work concentrating on switching dynamical models [54] and

18By strong prior motion models here we mean models that bias inference towards a particular pre-defined class of motions.
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SIR SIR (MAP) APF

Sequence 1 Sequence 2 Overall
Walk Jog Balance Walk Jog Balance

SIR 101±6 mm 178±36mm 251±204mm 75±4 mm 201±35mm 188±148mm 166±50mm

SIR (MAP) 101±6 mm 176±36mm 254±203mm 76±5 mm 198±35mm 190±147mm 166±49mm

APF 76±5 mm 85±4 mm 86±11mm 60±3 mm 93±19mm 80±20mm 80±5 mm

Figure 11:Algorithm comparison. Performance of the Annealed Particle Filter (APF) and Sequential Importance Re-
sampling (SIR) methods is shown. SIR performed significantly worse than APF and started diverging during jogging,
which affected the performance during the balancing phase.

eigen-models of cyclic motions [51, 52, 73]. More recently,motion priors that utilize latent spaces as a means of
modeling classes of motions that are inherently low-dimensional in nature have become popular. Low-dimensional
non-linear latent variable priors were first (to our knowledge) introduced in [77] and later extended in [42]; Gaussian
Processes Latent Variable Models [86], Gaussian ProcessesDynamical Models [85] and Factor Analyzers [41] are
popular and effective choices particularly for instances where little training data is available. Weaker implicit priors
that utilize motion capture data directly [71] have also been effective. Lastly, priors based on abstracted [12] or
full-body [88] physical simulations recently have been proposed for specific classes of motions (e.g.walking).

Inference. While we explored two inference algorithms, SIR and APF, other promising methods do exist and may
lead to more robust or faster performance. For example, hybrid Monte Carlo sampling [57], partitioned sampling [43],
or covariance-scaled sampling [79] are all promising alternatives. Kalman filtering [90] is another alternative that may
be appropriate for the applications where one can ensure that the likelihood and the dynamics are uni-modal.

Failures. We have observed that it is generally harder to track the upper body, due to frequent occlusions between
the arms and the torso. We attribute these difficulties to thepoor likelihood functions that are not able to effectively
model internal structure within the silhouette region. Theupper body also tends to exhibit more stylistic variation
across people; the lower body must provide support and henceis more constrained by the dynamics of the motion
itself.

The infrequent failures of the baseline algorithm can be classified into two categories: (1) minor tracking failures
for individual body parts and (2)180-degree rotation in the overall body pose; the latter is muchharder to recover
from in practice. We suspect these failures at least to some extent can be attributed to the nature of annealing which
may not represent multi-modal distributions in the posterior effectively.

8 Conclusions and Discussions

We have introduced a dataset for evaluation of human pose estimation and tracking algorithms. This is a compre-
hensive dataset that contains synchronized video from multiple camera views, associated 3D ground truth, quantitative
evaluation measures, and a baseline human tracking algorithm. All the data and associated software is made freely
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50 particles 100 particles 200 particles

Sequence 1 Sequence 2 Overall
Walk Jog Balance Walk Jog Balance

50 particles 88±18mm 133±45mm 144±73 mm 70±5 mm 180±41mm 313±173mm 155±42mm

100 particles 83±10mm 109±14mm 121±49 mm 63±3 mm 123±65mm 154±156mm 109±45mm

200 particles 76±5 mm 85±4 mm 86±11mm 60±3 mm 93±19mm 80±20mm 80±5 mm

Figure 12:Number of particles. The effect of the number of particles on accuracy is plotted for the baseline (200)
as well as 50 and 100 particles. The number of particles needed depended on the type of motion being tracked, with
more particles being needed for fast motions than for slow motions.

available to the research community.19 We hope that this dataset will lead to further advances in articulated human
motion estimation as well as provide the means of establishing the state of the art performance of current algorithms.

While not new, the baseline algorithm, in addition to providing performance against which future advances on this
data can be measured, is designed to serve as a test-bed for future experiments with likelihood functions, prior models
and inference methods within the context of Bayesian filtering. We found that the annealed particle filter with 5 layers
and 200 particles per layer worked reliably in practice (better than SIR) and that four camera views were necessary for
stable tracking. Furthermore we found that the bi-directional silhouette likelihood performed significantly better than
the edges and/or standard silhouettes. A fairly weak (generic) “prior” (embodied here as the sampling covariance) that
enforced anatomic joint limits and non-interpenetration of parts worked well across activities; stronger models should
be explored.

While we treat the marker-based motion capture data as the “ground truth”, it is worth noting that thetrue human
motion is somewhat elusive. Even with perfect marker-basedmotion capture data, deriving the location of joints in the
human body is not a trivial task. For example, hip joints are not well defined and can only be measured to about2−10
(mm) accuracy given the marker protocol employed by the Vicon system [13]. The true gold standard in localizing
the position of hip joints is still debated in the bio-mechanics literature [16]. The placement of markers over regular
clothes and limits on the calibration accuracy of the video cameras with respect to the Vicon calibration may lead to
additional errors that are hard to quantify. While currently unavailable, it is clear that other methods of simultaneously
capturing video and motion capture data are necessary if notto allow better ground truth, then to at least lift the need
of performing the motion in a laboratory environment. Current research in non-marker-based methods for capturing
human motion [87] may prove to be viable alternatives in a fewyears.
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19Data and code available athttp://vision.cs.brown.edu/humaneva/
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1 camera 2 cameras 3 cameras 4 cameras

Sequence 1 Sequence 2 Overall
Walk Jog Balance Walk Jog Balance

1 camera 515±59mm 845±336mm 485±98mm 526±241mm 818±456mm 735±482mm 654±253mm
2 cameras 139±47mm 173±38mm 348±128mm 132±78mm 212±22mm 231±148mm 206±35mm
3 cameras 76±4 mm 111±42mm 174±179mm 63±5 mm 134±68mm 258±206mm 136±75mm

4 cameras 76±5 mm 85±4 mm 86±11mm 60±3 mm 93±19mm 80±20mm 80±5 mm

Figure 13: Number of cameras. At least 3 camera views are needed to track walking motions and at least 4 are
needed for more complex motions such as jogging.
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