Topics in AI (CPSC 532S): Mulltimodal Learning with Vision, Language and Sound

Lecture 9: Language Models and RNNs (Part 1)

Course Logistics

- Assignment 3

Representing a Word: One Hot Encoding

Vocabulary
dog
cat
person
holding
tree
computer
using

Representing a Word: One Hot Encoding

Vocabulary	
dog	1
cat	2
person	3
holding	4
tree	5
computer	6
using	7

Representing a Word: One Hot Encoding

Vocabulary		one-hot encodings
dog	1	$[1,0,0,0,0,0,0,0,0,0]$
cat	2	$[0,1,0,0,0,0,0,0,0,0]$
person	3	$[0,0,1,0,0,0,0,0,0,0]$
holding	4	$[0,0,0,1,0,0,0,0,0,0]$
tree	5	$[0,0,0,0,1,0,0,0,0,0]$
computer	6	$[0,0,0,0,0,1,0,0,0,0]$
using	7	$[0,0,0,0,0,0,1,0,0,0]$

Representing Phrases: Bag-of-Words

bag-of-words representation

Vocabulary
cat
 holding

Representing Phrases: Bag-of-Words

bag-of-words representation
person holding dog
$\{3,4,1\} \quad[1,0,1,1,0,0,0,0,0,0]$

Representing Phrases: Bag-of-Words

bag-of-words representation

person holding dog	$\{3,4,1\}$	$[1,0,1,1,0,0,0,0,0,0]$
person holding cat	$\{3,4,2\} \quad[1,1,0,1,0,0,0,0,0,0]$	

Representing Phrases: Bag-of-Words

bag-of-words representation

person holding dog	$\{3,4,1\}$	$[1,0,1,1,0,0,0,0,0,0]$
person holding cat	$\{3,4,2\}$	$[1,1,0,1,0,0,0,0,0,0]$
person using computer	$\{3,7,6\}$	$[0,0,0,1,0,1,1,0,0,0]$

Representing Phrases: Bag-of-Words

bag-of-words representation

person holding dog
$\{3,4,1\} \quad[1,0,1,1,0,0,0,0,0,0]$
person holding cat
$\{3,4,2\} \quad[1,1,0,1,0,0,0,0,0,0]$
person using computer
$\{3,7,6\}$
$[0,0,0,1,0,1,1,0,0,0]$
person using computer person holding cat

$$
\{3,3,7,6,2\} \quad[0,1,2,1,0,1,1,0,0,0]
$$

Representing Phrases: Bag-of-Words

bag-of-words representation
person holding dog
$\{3,4,1\} \quad[1,0,1,1,0,0,0,0,0,0]$
person holding cat
$\{3,4,2\} \quad[1,1,0,1,0,0,0,0,0,0]$
person using computer
$\{3,7,6\}$
[$0,0,0,1,0,1,1,0,0,0$]
person using computer person holding cat

$$
\{3,3,7,6,2\} \quad[0,1,2,1,0,1,1,0,0,0]
$$

What if we have large vocabulary?

Representing Phrases: Sparse Representation

bag-of-words representation
person holding dog
person holding cat
person using computer

bag-of-words representation		person	
indices $=[1,3,4]$	values $=[1,1,1]$	holding	
		computer	
indices $=[2,3,4]$	values $=[1,1,1]$	using	

person using computer person holding cat

Bag-of-Words Representations

- Really easy to use
- Can encode phrases, sentences, paragraph, documents
- Good for classification, clustering or to compute distance between text

Bag-of-Words Representations

- Really easy to use
- Can encode phrases, sentences, paragraph, documents
- Good for classification, clustering or to compute distance between text

Problem: hard to distinguish sentences that have same words

Bag-of-Words Representations

- Really easy to use
- Can encode phrases, sentences, paragraph, documents
- Good for classification, clustering or to compute distance between text

Problem: hard to distinguish sentences that have same words my friend makes a nice meal
my nice friend makes a meal

Bag-of-Words Representations

- Really easy to use
- Can encode phrases, sentences, paragraph, documents
- Good for classification, clustering or to compute distance between text

Problem: hard to distinguish sentences that have same words my friend makes a nice meal

These would be the same using bag-of-words my nice friend makes a meal

Bag-of-Bigrams

- Really easy to use
- Can encode phrases, sentences, paragraph, documents
- Good for classification, clustering or to compute distance between text

Problem: hard to distinguish sentences that have same words my friend makes a nice meal
\{my nice, nice friend, friend makes, makes a, a meal\}
my nice friend makes a meal
\{my friend, friend makes, makes a, a nice, nice meal\}

Bag-of-Bigrams

- Really easy to use
- Can encode phrases, sentences, paragraph, documents
- Good for classification, clustering or to compute distance between text

Problem: hard to distinguish sentences that have same words my friend makes a nice meal
\{my nice, nice friend, friend makes, makes a, a meal\}
indices $=[10132,21342,43233,53123,64233]$
values $=[1,1,1,1,1]$
my nice friend makes a meal
\{my friend, friend makes, makes a, a nice, nice meal\}
indices $=[10232,43133,21342,43233,54233]$
values $=[1,1,1,1,1]$

Word Representations

1. One-hot encodings - only non-zero at the index of the word

$$
\text { e.g., }[0,1,0,0,0, \ldots, 0,0,0]
$$

Good: simple
Bad: not compact, distance between words always same (e.g., synonyms vs. antonyms)

Word Representations

1. One-hot encodings - only non-zero at the index of the word

$$
\text { e.g., }[0,1,0,0,0, \ldots, 0,0,0]
$$

Good: simple
Bad: not compact, distance between words always same (e.g., synonyms vs. antonyms)
2. Word feature representations - manually define "good" features
e.g., $[1,1,0,30,0, \ldots ., 0,0,0]$-> 300-dimensional irrespective of dictionary
e.g., word ends on -ing

Word Representations

1. One-hot encodings - only non-zero at the index of the word

$$
\text { e.g., }[0,1,0,0,0, \ldots, 0,0,0]
$$

Good: simple
Bad: not compact, distance between words always same (e.g., synonyms vs. antonyms)
2. Word feature representations - manually define "good" features
e.g., $[1,1,0,30,0, \ldots, 0,0,0]$-> 300-dimensional irrespective of dictionary
e.g., word ends on -ing
3. Learned word representations - vector should approximate "meaning" of the word
e.g., $[1,1,0,30,0, \ldots ., 0,0,0$] -> 300-dimensional irrespective of dictionary

Good: compact, distance between words is semantic

Distributional Hypothesis

- At least certain aspects of the meaning of lexical expressions depend on their distributional properties in the linguistic contexts
- The degree of semantic similarity between two linguistic expressions is a function of the similarity of the two linguistic contexts in which they can appear

What is the meaning of "bardiwac"?

- He handed her glass of bardiwac.
- Beef dishes are made to complement the bardiwacs.
- Nigel staggered to his feet, face flushed from too much bardiwac.
- Malbec, one of the lesser-known bardiwac grapes, responds well to

Australia's sunshine.

- I dined off bread and cheese and this excellent bardiwac.
-The drinks were delicious: blood-red bardiwac as well as light, sweet Rhenish.

What is the meaning of "bardiwac"?

- He handed her glass of bardiwac.
- Beef dishes are made to complement the bardiwacs.
- Nigel staggered to his feet, face flushed from too much bardiwac.
- Malbec, one of the lesser-known bardiwac grapes, responds well to

Australia's sunshine.

- I dined off bread and cheese and this excellent bardiwac.
-The drinks were delicious: blood-red bardiwac as well as light, sweet Rhenish.

> bardiwac is an alcoholic beverage made from grapes

Geometric Interpretation: Co-occurrence as feature

- Row vector describes usage of word in a corpus of text
- Can be seen as coordinates of the
point in an n-dimensional Euclidian space

	get	see	use	hear	eat	kill
knife	51	20	84	0	3	0
cat	52	58	4	4	6	26
dog	115	83	10	42	33	17
boat	59	39	23	4	0	0
cup	98	14	6	2	1	0
pig	12	17	3	2	9	27
banana	11	2	2	0	18	0

Co-occurrence Matrix

Geometric Interpretation: Co-occurrence as feature

- Row vector describes usage of word in a corpus of text
- Can be seen as coordinates of the
point in an n-dimensional Euclidian space

\downarrow						
	get	see	use	hear	eat	kill
knife	51	20	84	0	3	0
cat	52	58	4	4	6	26
dog	115	83	10	42	33	17
boat	59	39	23	4	0	0
cup	98	14	6	2	1	0
pig	12	17	3	2	9	27
banana	11	2	2	0	18	0

Co-occurrence Matrix

Distance and Similarity

- Illustrated in two dimensions
- Similarity = spatial proximity (Euclidian distance)
- Location depends on frequency of a noun (dog is 27 times as frequent as cat)

Two dimensions of English V-Obj DSM

* Slides from Louis-Philippe Morency

Angle and Similarity

- direction is more important than location
- normalize length of vectors (or use angle \& as a distance measure)

Angle and Similarity

- direction is more important than location
- normalize length of vectors
- or use angle as a distance measure

Geometric Interpretation: Co-occurrence as feature

- Row vector describes usage of word in a corpus of text
- Can be seen as coordinates of the
point in an n-dimensional Euclidian space

\downarrow						
	get	see	use	hear	eat	kill
knife	51	20	84	0	3	0
cat	52	58	4	4	6	26
dog	115	83	10	42	33	17
boat	59	39	23	4	0	0
cup	98	14	6	2	1	0
pig	12	17	3	2	9	27
banana	11	2	2	0	18	0

Co-occurrence Matrix

Geometric Interpretation: Co-occurrence as feature

- Row vector describes usage of word in a corpus of text
- Can be seen as coordinates of the point in an n-dimensional Euclidian space

\downarrow						
	get	see	use	hear	eat	kill
knife	51	20	84	0	3	0
cat	52	58	4	4	6	26
dog	115	83	10	42	33	17
boat	59	39	23	4	0	0
cup	98	14	6	2	1	0
pig	12	17	3	2	9	27
banana	11	2	2	0	18	0

Co-occurrence Matrix

SVD for Dimensionality Reduction

Learned Word Vector Visualization

We can also use other methods, like LLE here:

Issues with SVD

Computational cost for a $d \times n$ matrix is $\mathcal{O}\left(d n^{2}\right)$, where $d<n$

- Makes it not possible for large number of word vocabularies or documents

It is hard to incorporate out of sample (new) words or documents

word2vec: Representing the Meaning of Words [mikolov e tal., 2013]

Key idea: Predict surrounding words of every word

Benefits: Faster and easier to incorporate new document, words, etc.

word2vec: Representing the Meaning of Words [mikolovetal., 2013]

Key idea: Predict surrounding words of every word

Benefits: Faster and easier to incorporate new document, words, etc.

CBOW

INPUT PROJECTION OUTPUT

Skip-gram

Continuous Bag of Words (CBOW): use context words in a window to predict middle word

Skip-gram: use the middle word to predict surrounding ones in a window

CBOW: Continuous Bag of Words

Example: "The cat sat on floor" (window size 2)

CBOW: Continuous Bag of Words

CBOW: Continuous Bag of Words

Input layer

CBOW: Continuous Bag of Words

CBOW: Continuous Bag of Words

Input layer

Size of the word vector (e.g., 300)
*slide from Vagelis Hristidis

CBOW: Continuous Bag of Words

Input layer

CBOW: Continuous Bag of Words

CBOW: Continuous Bag of Words

CBOW: Continuous Bag of Words

Input layer

CBOW: Continuous Bag of Words

Input layer

CBOW: Continuous Bag of Words

Input layer

CBOW: Continuous Bag of Words

CBOW: Interesting Observation

Input layer
There are two representations for same word!

CBOW: Interesting Observation

Another way to look at it: Maximize similarity between context word representation and the word representation itself

$$
p(w \mid c)=\frac{\exp \left[\left(\sum_{c} \mathbf{W} \mathbf{x}_{c}\right)^{T}\left(\mathbf{W} \mathbf{x}_{w}\right)\right]}{\sum_{i}^{|V|} \exp \left[\left(\mathbf{W} \mathbf{x}_{i}\right)^{T}\left(\mathbf{W} \mathbf{x}_{w}\right)\right]}
$$

CBOW: Interesting Observation

Another way to look at it: Maximize similarity between context word representation and the word representation itself

$$
\begin{gathered}
J(\mathbf{W})=-\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \leq j \leq m ; j \neq 0} \log p\left(w_{t+j} \mid w_{t}\right) \\
p\left(w_{t+j} \mid w_{t}\right)=\frac{\exp \left(\mathbf{w}_{t+j}^{T} \mathbf{w}_{t}\right)}{\sum_{i=1}^{|V|} \exp \left(\mathbf{w}_{i}^{T} \mathbf{w}_{t}\right)}
\end{gathered}
$$

Skip-Gram Model

Comparison

- CBOW is not great for rare words and typically needs less data to train
- Skip-gram better for rate words and needs more data to train the model

Model	Vector Dimensionality	Training words	Accuracy [\%]		
			Semantic	Syntactic	Total
Collobert-Weston NNLM	50	660 M	9.3	12.3	11.0
Turian NNLM	50	37 M	1.4	2.6	2.1
Turian NNLM	200	37 M	1.4	2.2	1.8
Mnih NNLM	50	37 M	1.8	9.1	5.8
Mnih NNLM	100	37 M	3.3	13.2	8.8
Mikolov RNNLM	80	320 M	4.9	18.4	12.7
Mikolov RNNLM	640	320 M	8.6	36.5	24.6
Huang NNLM	50	990 M	13.3	11.6	12.3
Our NNLM	20	6 B	12.9	26.4	20.3
Our NNLM	50	6 B	27.9	55.8	43.2
Our NNLM	100	6 B	34.2	$\mathbf{6 4 . 5}$	50.8
CBOW	300	783 M	15.5	53.1	36.1
Skip-gram	300	783 M	$\mathbf{5 0 . 0}$	55.9	$\mathbf{5 3 . 3}$

Interesting Results: Word Analogies

Test for linear relationships, examined by Mikolov et al. (2014)

$$
\mathrm{a}: \mathrm{b}:: \mathrm{c}: ? \quad \rightarrow \quad d=\underset{x}{\arg \max } \frac{\left(w_{b}-w_{a}+w_{c}\right)^{T} w_{x}}{\left\|w_{b}-w_{a}+w_{c}\right\|}
$$

man:woman :: king:?

+ king [0.30 0.70]
- man
[0.200 .20]
+ woman
[0.600 .30]

Interesting Results: Word Analogies

Language Models

Model the probability of a sentence; ideally be able to sample plausible sentences

Language Models

Model the probability of a sentence; ideally be able to sample plausible sentences

Why is this useful?

Language Models

Model the probability of a sentence; ideally be able to sample plausible sentences

Why is this useful?
$\arg \max P($ wordsequence \mid acoustics $)=$
wordsequence

$$
\underset{\text { wordsequence }}{\arg \max } \frac{P(\text { acoustics } \mid \text { wordsequence }) \times P(\text { wordsequence })}{P(\text { acoustics })}
$$

$\arg \max P($ acoustics \mid wordsequence $) \times P($ wordsequence $)$ wordsequence

Language Models

Model the probability of a sentence; ideally be able to sample plausible sentences

Why is this useful?
$\arg \max P($ wordsequence \mid acoustics $)=$
wordsequence

$$
\underset{\text { wordsequence }}{\arg \max } \frac{P(\text { acoustics } \mid \text { wordsequence }) \times P(\text { wordsequence })}{P(\text { acoustics })}
$$

$\arg \max P($ acoustics \mid wordsequence $) \times P($ wordsequence $)$
wordsequence

Simple Language Models: N-Grams

Given a word sequence: $w_{1: n}=\left[w_{1}, w_{2}, \ldots, w_{n}\right]$

We want to estimate $p\left(w_{1: n}\right)$

Simple Language Models: N-Grams

Given a word sequence: $w_{1: n}=\left[w_{1}, w_{2}, \ldots, w_{n}\right]$
We want to estimate $p\left(w_{1: n}\right)$
Using Chain Rule of probabilities:

$$
p\left(w_{1: n}\right)=p\left(w_{1}\right) p\left(w_{2} \mid w_{1}\right) p\left(w_{3} \mid w_{1}, w_{2}\right) \cdots p\left(w_{n} \mid w_{1: n-1}\right)
$$

Simple Language Models: N-Grams

Given a word sequence: $w_{1: n}=\left[w_{1}, w_{2}, \ldots, w_{n}\right]$
We want to estimate $p\left(w_{1: n}\right)$
Using Chain Rule of probabilities:

$$
p\left(w_{1: n}\right)=p\left(w_{1}\right) p\left(w_{2} \mid w_{1}\right) p\left(w_{3} \mid w_{1}, w_{2}\right) \cdots p\left(w_{n} \mid w_{1: n-1}\right)
$$

Bi-gram Approximation:

$$
p\left(w_{1: n}\right)=\prod_{k=1}^{n} p\left(w_{k} \mid w_{k-1}\right)
$$

N-gram Approximation:

$$
p\left(w_{1: n}\right)=\prod_{k=1}^{n} p\left(w_{k} \mid w_{k-N+1: k-1}\right)
$$

Estimating Probabilities

N -gram conditional probabilities can be estimated based on raw concurrence counts in the observed sequences

Bi-gram:

$$
p\left(w_{n} \mid w_{n-1}\right)=\frac{C\left(w_{n-1} w_{n}\right)}{C\left(w_{n-1}\right)}
$$

N-gram:

$$
p\left(w_{n} \mid w_{n-N-1: n-1}\right)=\frac{C\left(w_{n-N-1: n-1} w_{n}\right)}{C\left(w_{n-N-1: n-1}\right)}
$$

Neural-based Unigram Language Mode

Neural-based Unigram Language Mode

Problem: Does not model sequential information (too local)

Neural-based Unigram Language Mode

Problem: Does not model sequential information (too local)

We need sequence modeling!

Sequence Modeling

Why Model Sequences?

Multi-modal tasks

[Vinyals et al., 2015]

Sequences where you don't expect them ...

Classify images by taking a series of "glimpses"
[Gregor et al., ICML 2015]
[Mnih et al., ICLR 2015]

2	3	8	2	9	1	1	7	1	8
3	3	2	8	6	9	6	5	1	3
8	8	1	8	1	6	9	8	3	4
1	0	2	7	6	0	9	1	4	5
7	7	4	4	4	4	4	4	7	9
3	1	8	7	3	4	2	7	7	3
6	6	1	6	3	1	3	3	9	0
8	1	0	4	7	5	7	8	3	4
9	9	1	1	3	0	5	9	5	4
1	7	8	6	9	8	3	2	1	8

Sequences where you don't expect them ...

Classify images by taking a series of "glimpses"
[Gregor et al., ICML 2015]
[Mnih et al., ICLR 2015]

2	3	8	2	9	1	1	7	1	8
3	3	2	8	6	9	6	5	1	3
8	8	1	8	1	6	9	8	3	4
1	0	2	7	6	0	9	1	4	5
7	7	4	4	4	4	4	4	7	9
3	1	8	7	3	4	2	7	7	3
6	6	1	6	3	1	3	3	9	0
8	1	0	4	7	5	7	8	3	4
9	9	1	1	3	0	5	9	5	4
1	7	8	6	9	8	3	2	1	8

Sequences where you don't expect them ...

Vision transformers

Sequences in Inputs or Outputs?

one to one

Input: No sequence
Output: No seq.
Example:
"standard"
classification /
regression problems

Sequences in Inputs or Outputs?

one to one

Input: No sequence
Output: No seq.
Example:
"standard"
classification /
regression problems
one to many

Input: No
sequence
Output:
Sequence
Example:
Im2Caption

Sequences in Inputs or Outputs?

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Sequences in Inputs or Outputs?

one to one

Input: No sequence
Output: No seq.
Example:
"standard"
classification /
regression problems
one to many

Input: No sequence
Output:
Sequence
Example:
Im2Caption
many to one

Input: Sequence Output: No seq.
Example: sentence classification, multiple-choice question answering
many to many

many to many

Input: Sequence
Output: Sequence
Example: machine translation, video captioning, open-ended question answering, video question answering

Key Conceptual Ideas

Parameter Sharing

- in computational graphs = adding gradients
"Unrolling"
- in computational graphs with parameter sharing

Parameter Sharing + "Unrolling"

- Allows modeling arbitrary length sequences!
- Keeps number of parameters in check

Recurrent Neural Network

Recurrent Neural Network

Recurrent Neural Network

We can process a sequence of vectors \mathbf{x} by applying a recurrence formula at every time step:

Recurrent Neural Network

We can process a sequence of vectors \mathbf{x} by applying a recurrence formula at every time step:

$$
h_{t}=f_{W}\left(h_{t-1}, x_{t}\right)
$$

Note: the same function and the same set of parameters are used at every time step

(Vanilla) Recurrent Neural Network

(Vanilla) Recurrent Neural Network

$$
\begin{gathered}
h_{t}=f_{W}\left(h_{t-1}, x_{t}\right) \\
\downarrow \\
h_{t}=\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}+b_{h}\right)
\end{gathered}
$$

(Vanilla) Recurrent Neural Network

$$
\begin{gathered}
y_{t}=W_{h y} h_{t}+b_{y} \\
h_{t}=f_{W}\left(h_{t-1}, x_{t}\right) \\
\downarrow \\
h_{t}=\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}+b_{h}\right)
\end{gathered}
$$

(Vanilla) Recurrent Neural Network

Intuition: RNN incorporates one element of sequence at a time (e.g. letter, word, video frame, etc.)

$$
\begin{aligned}
& \text { building up a representation of the sequence "so far" } \\
& h_{t}=\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}+b_{h}\right)
\end{aligned}
$$

(Vanilla) Recurrent Neural Network

Intuition: RNN incorporates one element of sequence at a time (e.g. letter, word, video frame, etc.)
building up a representation of the sequence "so far"

Alternative: RNN computes a representation of sequence element (e.g. letter, word, video frame, etc.)
with context provided by all previous processed elements

$$
h_{t}=\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}+b_{h}\right)
$$

(Vanilla) Recurrent Neural Network

(Vanilla) Recurrent Neural Network

Vocabulary	one-hot encodings	
dog	1	$[1,0,0,0,0,0,0,0,0,0]$
cat	2	$[0,1,0,0,0,0,0,0,0,0]$
person	3	$[0,0,1,0,0,0,0,0,0,0]$
holding	4	$[0,0,0,1,0,0,0,0,0,0]$
tree	5	$[0,0,0,0,1,0,0,0,0,0]$
computer	6	$[0,0,0,0,0,1,0,0,0,0]$
using	7	$[0,0,0,0,0,0,1,0,0,0]$

person holding dog

$$
\begin{gathered}
{[0,0,0.64,0.76,0,0,0,0,0,0]} \\
h_{t}=\tanh \left(W_{k h} h_{t-1}+W_{x h} x_{t}+e_{k}\right) \\
{[0,0,0.76,0,0,0,0,0,0,0]}
\end{gathered}
$$

(Vanilla) Recurrent Neural Network

Vocabulary		one-hot encodings
dog	1	$[1,0,0,0,0,0,0,0,0,0]$
cat	2	$[0,1,0,0,0,0,0,0,0,0]$
person	3	$[0,0,1,0,0,0,0,0,0,0]$
holding	4	$[0,0,0,1,0,0,0,0,0,0]$
tree	5	$[0,0,0,0,1,0,0,0,0,0]$
computer	6	$[0,0,0,0,0,1,0,0,0,0]$
using	7	$[0,0,0,0,0,0,1,0,0,0]$

Like bag of words with some notion of recency

$$
\begin{gathered}
{[0,0,0.64,0.76,0,0,0,0,0,0] \quad[0,0,0,1,0,0,0,0,0,0]} \\
h_{t}=\tanh \left(W_{k h} h_{t-1}+W_{x h} x_{t}+b_{k}\right) \\
{[0,0,0.76,0,0,0,0,0,0,0]}
\end{gathered}
$$

RNN Computational Graph

RNN Computational Graph

RNN Computational Graph

RNN Computational Graph

Re-use the same weight matrix at every time-step

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph: Many to Many

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph: Many to Many

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph: Many to Many

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph: Many to One

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph: One to Many

Sequence to Sequence: Many to One + One to Many

Many to one: Encode input sequence in a single vector

Sequence to Sequence: Many to One + One to Many

Many to one: Encode input sequence in a single vector

One to many: Produce output sequence from single input vector

Example: Character-level Language Model

Vocabulary:

['h', ‘e', 'l', 'o']

Example training sequence:
"hello"

Example: Character-level Language Model

Vocabulary: ['h', 'e', 'l', 'o']

Example training sequence: "hello"

$$
h_{t}=\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}+b_{h}\right)
$$

Example: Character-level Language Model

Vocabulary:

['h', 'e’, 'l', 'o’]

Example training sequence:
"hello"

target chars:	"e"	" "	"'		"0"
	1.0	0.5	0.1		0.2
output layer	2.2	0.3	0.5		-1.5
output layer	-3.0	-1.0	1.9		-0.1
	4.1	1.2	-1.		2.2
			\uparrow		
	0.3	1.0	0.1	W_hh	-0.3
hidden layer	-0.1	0.3	-0.5		0.9
	0.9	0.1	-0.		0.7
			\uparrow		
	1	0	0		0
	0	1	0		0
input layer	0	0	1		1
	0	0	0		0
input chars:	"h"	"e"	" ${ }^{\prime}$		" ${ }^{\prime}$

Example: Character-level Language Model (Sampling)

Vocabulary:

['h', 'e', 'l', 'o']

At test time sample one character at a time and feed back to the model

Sample	"e"
	1
	. 03
Softmax	. 13
	. 00
	. 84
	\uparrow
	1.0
output layer	2.2
	-3.0
	4.1
	0.3
hidden layer	-0.1
	0.9
	\uparrow
	1
input layer	0
	0
	0
input chars:	"h"

Example: Character-level Language Model (Sampling)

Vocabulary:

['h', ‘e', 'l', 'o']

At test time sample one character at a time and feed back to the model

Example: Character-level Language Model (Sampling)

Vocabulary:

['h', ‘e', 'l', 'o']

At test time sample one character at a time and feed back to the model

Example: Character-level Language Model (Sampling)

Vocabulary:

['h', ‘e', 'l', 'o']

At test time sample one character at a time and feed back to the model

Sampling vs. ArgMax vs. Beam Search

Sampling: allows to generate diverse outputs

ArgMax: could be more stable in practice

Beam Search: typically gets the best results

