

THE UNIVERSITY OF BRITISH COLUMBIA

Topics in AI (CPSC 532S): **Multimodal Learning with Vision, Language and Sound**

Lecture 9: Language Models and RNNs (Part 1)

Course Logistics

– Assignment 3

Representing a Word: One Hot Encoding

Vocabulary

dog

cat

person

holding

tree

computer

using

Representing a Word: One Hot Encoding

Vocabulary

- dog 1
- cat 2
- person 3
- holding 4
- tree 5
- computer 6
- using 7

Representing a Word: One Hot Encoding

Vocabulary

- dog 1
- cat 2
- person 3
- holding 4
- tree 5
- computer 6
- using 7

one-hot encodings

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0] [0, 1, 0, 0, 0, 0, 0, 0, 0, 0][0, 0, 1, 0, 0, 0, 0, 0, 0, 0][0, 0, 0, **1**, 0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 1, 0, 0, 0, 0][0, 0, 0, 0, 0, 1, 0, 0, 0][0,0,0,0,0,0,1,0,0]

bag-of-words representation

Vocabulary

dog	1
cat	2
person	3
holding	4
tree	5
computer	6
using	7

dog cat person holding tree tree using

person holding dog $\{3, 4, 1\}$ [1, 0, 1, 1, 0, 0, 0, 0, 0, 0]

bag-of-words representation

Vocabulary

dog	1
cat	2
person	3
holding	4
tree	5
computer	6
using	7

dog cat person holding tree tree tree using

person holding dog

person holding cat

bag-of-words representation **{3, 4, 1} [1, 0, 1, 1, 0, 0, 0, 0, 0, 0]**

 $\{3, 4, 2\}$ [1, 1, 0, 1, 0, 0, 0, 0, 0, 0]

dog cat person holding tree tree using

Vocabulary

dog	1
cat	2
person	3
holding	4
tree	5
computer	6
using	7

person holding dog $\{3, 4, 1\}$ [1, 0, 1, 1, 0, 0, 0, 0, 0, 0]

- person holding cat
- person using computer $\{3, 7, 6\}$ [0, 0, 0, 1, 0, 1, 1, 0, 0, 0]

bag-of-words representation

- $\{3, 4, 2\}$ [1, 1, 0, 1, 0, 0, 0, 0, 0]

 - dog cat person holding tree tree using

Vocabulary

dog	1
cat	2
person	3
holding	4
tree	5
computer	6
using	7

person holding dog $\{3, 4, 1\}$ [1, 0, 1, 1, 0, 0, 0, 0, 0, 0]

- person holding cat
- person using computer $\{3, 7, 6\}$ [0, 0, 0, 1, 0, 1, 1, 0, 0, 0]

person using computer person holding cat

 $\{3, 3, 7, 6, 2\}$ [0, 1, 2, 1, 0, 1, 1, 0, 0, 0]

bag-of-words representation

 $\{3, 4, 2\}$ [1, 1, 0, 1, 0, 0, 0, 0, 0]

- dog cat person holding tree computer using

Vocabulary

dog	1
cat	2
person	3
holding	4
tree	5
computer	6
using	7

person holding dog $\{3, 4, 1\}$ [1, 0, 1, 1, 0, 0, 0, 0, 0, 0]

- person holding cat
- person using computer $\{3, 7, 6\}$ [0, 0, 0, 1, 0, 1, 1, 0, 0, 0]

person using computer person holding cat

bag-of-words representation

 $\{3, 4, 2\}$ [1, 1, 0, 1, 0, 0, 0, 0, 0]

- dog cat person holding tree computer using

Vocabulary

dog	1
cat	2
person	3
holding	4
tree	5
computer	6
using	7

 $\{3, 3, 7, 6, 2\}$ [0, 1, 2, 1, 0, 1, 1, 0, 0, 0]

What if we have large vocabulary?

Representing Phrases: Sparse Representation

- person holding dog indices = [1, 3, 4] values = [1, 1, 1]
- person holding cat indices = [2, 3, 4] values = [1, 1, 1]
- person using computer values = [1, 1, 1]indices = [3, 7, 6]

person using computer person holding cat

bag-of-words representation

Vocabulary

dog	1
cat	2
person	3
holding	4
tree	5
computer	6
using	7

indices = [3, 7, 6, 2] values = [2, 1, 1, 1]

- Really easy to use
- Can encode phrases, sentences, paragraph, documents
- Good for classification, clustering or to compute distance between text

- Really easy to use
- Can encode phrases, sentences, paragraph, documents
- Good for classification, clustering or to compute distance between text

Problem: hard to distinguish sentences that have same words

- Really easy to use
- Can encode phrases, sentences, paragraph, documents
- Good for classification, clustering or to compute distance between text

Problem: hard to distinguish sentences that have same words my friend makes a nice meal

my nice friend makes a meal

- Really easy to use
- Can encode phrases, sentences, paragraph, documents
- Good for classification, clustering or to compute distance between text

Problem: hard to distinguish sentences that have same words my friend makes a nice meal

my nice friend makes a meal

- These would be the same using bag-of-words

Bag-of-**Bigrams**

- Really easy to use
- Can encode phrases, sentences, paragraph, documents

Problem: hard to distinguish sentences that have same words my friend makes a nice meal {my nice, nice friend, friend makes, makes a, a meal}

> my nice friend makes a meal {my friend, friend makes, makes a, a nice, nice meal}

- Good for classification, clustering or to compute distance between text

Bag-of-**Bigrams**

- Really easy to use
- Can encode phrases, sentences, paragraph, documents
- Good for classification, clustering or to compute distance between text

Problem: hard to distinguish sentences that have same words my friend makes a nice meal {my nice, nice friend, friend makes, makes a, a meal} indices = [10132, 21342, 43233, 53123, 64233]values = [1, 1, 1, 1, 1]my nice friend makes a meal {my friend, friend makes, makes a, a nice, nice meal} indices = [10232, 43133, 21342, 43233, 54233]values = [1, 1, 1, 1, 1]

Word Representations

1. One-hot encodings — only non-zero at the index of the word

e.g., [0, 1, 0, 0, 0,, 0, 0, 0]

Good: simple

Bad: not compact, distance between words always same (e.g., synonyms vs. antonyms)

Word Representations

1. One-hot encodings — only non-zero at the index of the word e.g., [0, 1, 0, 0, 0,, 0, 0, 0] **Good:** simple

Bad: not compact, distance between words always same (e.g., synonyms vs. antonyms)

2. Word feature representations — manually define "good" features e.g., [1, 1, 0, 30, 0,, 0, 0, 0] -> 300-dimensional irrespective of dictionary e.g., word ends on -ing

Word Representations

1. One-hot encodings — only non-zero at the index of the word e.g., [0, 1, 0, 0, 0,, 0, 0, 0] **Good:** simple

Bad: not compact, distance between words always same (e.g., synonyms vs. antonyms)

2. Word feature representations — manually define "good" features e.g., word ends on -ing

of the word

e.g., [1, 1, 0, 30, 0,, 0, 0, 0] -> 300-dimensional irrespective of dictionary **Good:** compact, distance between words is semantic

e.g., [1, 1, 0, 30, 0,, 0, 0, 0] -> 300-dimensional irrespective of dictionary

3. Learned word representations — vector should approximate "meaning"

Distributional Hypothesis

- At least certain aspects of the meaning of lexical expressions depend on their distributional properties in the linguistic contexts

- The degree of semantic similarity between two linguistic expressions is a function of the similarity of the two linguistic contexts in which they can appear

What is the meaning of "**bardiwac**"?

- He handed her glass of **bardiwac**.
- Beef dishes are made to complement the bardiwacs.
- Nigel staggered to his feet, face flushed from too much bardiwac.
- Malbec, one of the lesser-known **bardiwac** grapes, responds well to Australia's sunshine.
- I dined off bread and cheese and this excellent bardiwac.
- -The drinks were delicious: blood-red **bardiwac** as well as light, sweet Rhenish.

What is the meaning of "bardiwac"?

- He handed her glass of **bardiwac**.
- Beef dishes are made to complement the bardiwacs.
- Nigel staggered to his feet, face flushed from too much bardiwac.
- Malbec, one of the lesser-known **bardiwac** grapes, responds well to Australia's sunshine.
- I dined off bread and cheese and this excellent bardiwac.
- -The drinks were delicious: blood-red **bardiwac** as well as light, sweet Rhenish.

bardiwac is an alcoholic beverage made from grapes

Geometric Interpretation: Co-occurrence as feature

 Row vector describes usage of word in a corpus of text

 Can be seen as coordinates of the point in an n-dimensional Euclidian sp

Ç	
bace	

	get	see	use	hear	eat	ki
knife	51	20	84	0	3	0
cat	52	58	4	4	6	26
dog	115	83	10	42	33	17
boat	59	39	23	4	0	0
cup	98	14	6	2	1	0
pig	12	17	3	2	9	27
banana	11	2	2	0	18	0

Co-occurrence Matrix

Geometric Interpretation: Co-occurrence as feature

 Row vector describes usage of word in a corpus of text

Can be seen as coordinates of the point in an n-dimensional Euclidian space

	get	see	use	hear	eat	kil
knife	51	20	84	0	3	0
cat	52	58	4	4	6	26
dog	115	83	10	42	33	17
boat	59	39	23	4	0	0
cup	98	14	6	2	1	0
pig	12	17	3	2	9	27
banana	11	2	2	0	18	0

Co-occurrence Matrix

Distance and Similarity

Illustrated in two dimensions

 Similarity = spatial proximity (Euclidian distance)

 Location depends on frequency of a **NOUN** (dog is 27 times as frequent as cat)

use

Angle and Similarity

direction is more important than location

 normalize length of vectors (or use angle as a distance measure)

Two dimensions of English V–Obj DSM

Angle and Similarity

direction is more important than location

normalize length of vectors

- or use angle as a distance measure

Two dimensions of English V–Obj DSM

Geometric Interpretation: Co-occurrence as feature

 Row vector describes usage of word in a corpus of text

Can be seen as coordinates of the point in an n-dimensional Euclidian space

	get	see	use	hear	eat	kil
knife	51	20	84	0	3	0
cat	52	58	4	4	6	26
dog	115	83	10	42	33	17
boat	59	39	23	4	0	0
cup	98	14	6	2	1	0
pig	12	17	3	2	9	27
banana	11	2	2	0	18	0

Co-occurrence Matrix

Geometric Interpretation: Co-occurrence as feature

 Row vector describes usage of word in a corpus of text

Can be seen as coordinates of the point in an n-dimensional Euclidian space

Way too high dimensional!

	get	see	use	hear	eat	kil
knife	51	20	84	0	3	0
cat	52	58	4	4	6	26
dog	115	83	10	42	33	17
boat	59	39	23	4	0	0
cup	98	14	6	2	1	0
pig	12	17	3	2	9	27
banana	11	2	2	0	18	0

Co-occurrence Matrix

SVD for Dimensionality Reduction

Learned Word Vector Visualization

We can also use other methods, like LLE here:

Nonlinear dimensionality reduction by locally linear embedding. Sam Roweis & Lawrence Saul. Science, v.290,2000

[Roweis and Saul, 2000]

Issues with SVD

Computational cost for a $d \times n$ matrix is $\mathcal{O}(dn^2)$, where d < n

It is hard to incorporate out of sample (**new**) words or documents

- Makes it not possible for large number of word vocabularies or documents

word2vec: Representing the Meaning of Words [Mikolov et al., 2013]

Key idea: Predict surrounding words of every word

Benefits: Faster and easier to incorporate new document, words, etc.

word2vec: Representing the Meaning of Words [Mikolov et al., 2013]

Key idea: Predict surrounding words of every word

Benefits: Faster and easier to incorporate new document, words, etc.

middle word

Skip-gram: use the middle word to predict surrounding ones in a window

CBOW

Skip-gram

Continuous Bag of Words (CBOW): use context words in a window to predict

Example: "The cat sat on floor" (window size 2)

[Mikolov et al., 2013]

PROJECTION OUTPUT

SUM sat w(t)

[Mikolov et al., 2013]

[Mikolov et al., 2013]

[Mikolov et al., 2013]

Parameters to be learned

[Mikolov et al., 2013]

Parameters to be learned

Size of the word vector (e.g., 300)

[Mikolov et al., 2013]

[Mikolov et al., 2013]

$\mathbf{W}_{ V imes N }^{T}$	\times	\mathbf{x}_{cat}	=	\mathbf{v}_{ca}
		Cut		

2.4		0		3.2	 	 0.9	0.5	1.8	1.6	2.4).1
2.6		1 0		6.1	 	 3.6	1.5	2.9	1.4	2.6).5
	=	0	×		 	 					
		0			 	 					
1.8		0		1.2	 	 2.0	2.4	1.9	2.7	1.8).6
		0									
		0									
		0									

Ŀ	t			

[Mikolov et al., 2013]

$\mathbf{W}_{ V imes N }^{T}$	×	\mathbf{x}_{on}	=	\mathbf{V}_{O1}

			_ /								
1.8		0		3.2	 	 0.9	0.5	1.8	1.6	2.4).1
2.9		0		6.1	 	 3.6	1.5	2.9	1.4	2.6).5
	=	1	×		 	 					
		0			 	 					
1.9		0		1.2	 	 2.0	2.4	1.9	2.7	1.8).6
		0									
		0									
		0									

[Mikolov et al., 2013]

[Mikolov et al., 2013]

[Mikolov et al., 2013]

Optimize to get close to 1-hot encoding

[Mikolov et al., 2013]

CBOW: Interesting Observation

[Mikolov et al., 2013]

CBOW: Interesting Observation

representation and the word representation itself

Mikolov et al., 2013

Another way to look at it: Maximize similarity between context word

 $p(w|c) = \frac{\exp\left[\left(\sum_{c} \mathbf{W} \mathbf{x}_{c}\right)^{T} \left(\mathbf{W} \mathbf{x}_{w}\right)\right]}{\sum_{i}^{|V|} \exp\left[\left(\mathbf{W} \mathbf{x}_{i}\right)^{T} \left(\mathbf{W} \mathbf{x}_{w}\right)\right]}$

CBOW: Interesting Observation

representation and the word representation itself

$$J(\mathbf{W}) = -\frac{1}{T} \sum_{t=1}^{T} \frac{T}{t_{t}}$$

$$p(w_{t+j}|w_t) =$$

Mikolov et al., 2013

Another way to look at it: Maximize similarity between context word

 $\sum \log p(w_{t+j}|w_t)$ $m \le j \le m; j \ne 0$

 $= \frac{\exp(\mathbf{w}_{t+j}^T \mathbf{w}_t)}{\sum_{i=1}^{|V|} \exp(\mathbf{w}_i^T \mathbf{w}_t)}$

Skip-Gram Model

[Mikolov et al., 2013]

Comparison

Model Vecto Dimensio **Collobert-Weston NNLM** 50 **Turian NNLM** 50 **Turian NNLM** 200 Mnih NNLM 50 Mnih NNLM 100 Mikolov RNNLM 80 Mikolov RNNLM 640 Huang NNLM 50 20 Our NNLM Our NNLM 50 **Our NNLM** 100 CBOW 300 300 Skip-gram

Mikolov et al., 2013

- CBOW is not great for rare words and typically needs less data to train - Skip-gram better for rate words and needs more data to train the model

or	Training	Accuracy [%]							
nality	words								
		Semantic	Syntactic	Total					
	660M	9.3	12.3	11.0					
	37M	1.4	2.6	2.1					
	37M	1.4	2.2	1.8					
	37M	1.8	9.1	5.8					
)	37M	3.3	13.2	8.8					
	320M	4.9	18.4	12.7					
)	320M	8.6	36.5	24.6					
	990M	13.3	11.6	12.3					
	6B	12.9	26.4	20.3					
	6B	27.9	55.8	43.2					
	6B	34.2	64.5	50.8					
)	783M	15.5	53.1	36.1					
	783M	50.0	55.9	53.3					

Interesting Results: Word Analogies

Test for linear relationships, examined by Mikolov et al. (2014)

a:b :: c:?

man:woman :: king:?

- + king [0.300.70]
- man [0.200.20]
- + woman [0.60 0.30]

queen [0.70 0.80]

Interesting Results: Word Analogies

[Mikolov et al., 2013]

Model the **probability of a sentence**; ideally be able to sample plausible sentences

Model the **probability of a sentence**; ideally be able to sample plausible sentences

Why is this useful?

Model the **probability of a sentence**; ideally be able to sample plausible sentences

Why is this useful?

arg max P(wordsequence | acoustics) = wordsequence

arg max *P*(*acoustics* | *wordsequence*) × *P*(*wordsequence*)

wordsequence

$P(acoustics | wordsequence) \times P(wordsequence)$ P(acoustics)

Model the **probability of a sentence**; ideally be able to sample plausible sentences

Why is this useful?

arg max P(wordsequence | acoustics) = wordsequence

arg max *P*(*acoustics* | *wordsequence*) × *P*(*wordsequence*)

wordsequence

$P(acoustics \mid wordsequence) \times P(wordsequence)$ P(acoustics)

Simple Language Models: N-Grams

Given a word sequence: $w_{1:n} = [w_1, w_2, ..., w_n]$

We want to estimate $p(w_{1:n})$

Simple Language Models: N-Grams

Given a word sequence: $w_{1:n} = [w_1, w_2, ..., w_n]$

We want to estimate $p(w_{1:n})$

Using **Chain Rule** of probabilities:

 $p(w_{1:n}) = p(w_1)p(w_2|w_1)p(w_3|w_1, w_2) \cdots p(w_n|w_{1:n-1})$

Simple Language Models: N-Grams

Given a word sequence: $w_{1:n} = [w_1, w_2, ..., w_n]$

We want to estimate $p(w_{1:n})$

Using **Chain Rule** of probabilities:

$$p(w_{1:n}) = p(w_1)p(w_2|w_1)p(w_3|w_1, w_2) \cdots p(w_n|w_{1:n-1})$$

Bi-gram Approximation:

$$p(w_{1:n}) = \prod_{k=1}^{n} p(w_k | w_{k-1})$$

N-gram Approximation:

$$p(w_{1:n}) = \prod_{k=1}^{n} p(w_k | w_{k-N+1:k-1})$$

Estimating **Probabilities**

N-gram conditional probabilities can counts in the observed sequences

Bi-gram:

 $p(w_n|w_{n-1}) =$

N-gram:

 $p(w_n | w_{n-N-1:n-1}) =$

N-gram conditional probabilities can be estimated based on raw concurrence

$$\frac{C(w_{n-1}w_n)}{C(w_{n-1})}$$

$$\frac{C(w_{n-N-1:n-1}w_n)}{C(w_{n-N-1:n-1})}$$

Neural-based Unigram Language Mode

Neural-based Unigram Language Mode

Problem: Does not model sequential information (too local)

Neural-based Unigram Language Mode

We need sequence modeling!

Problem: Does not model sequential information (too local)

Sequence Modeling

Why Model Sequences?

Image Credit: Alex Graves and Kevin Gimpel

* slide from Dhruv Batra

Multi-modal tasks

[Vinyals *et al.*, 2015]

Sequences where you don't expect them ...

Classify images by taking a series of "glimpses"

[Gregor et al., ICML 2015] [Mnih et al., ICLR 2015]

2	3	8	2	9	1	ł	1	ļ	8
3	3	3	8	6	9	6	5	1	3
8	8	1	8	2	6	9	¥	3	4
F	0	2	1	6	\mathcal{O}	9	ŀ	4	5
7	/	4	4	4	4	4	ų	7	9
3	1	8	9	3	4	2	4	7	3
6	6	1	6	З	- Ser	3	3	9	0
b	1	۵	Б	3	5	1	8	3	4
9	9	ł	1	3	0	5	9	5	4
1	1	8	4	ą	80	200	2		R

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Sequences where you don't expect them ...

Classify images by taking a series of "glimpses"

[Gregor et al., ICML 2015] [Mnih et al., ICLR 2015]

2	3	8	2	9	1	ł	1	ļ	8
3	3	3	8	6	9	6	5	1	3
8	8	1	8	2	6	9	¥	3	4
F	0	2	1	6	\mathcal{O}	9	ŀ	4	5
7	/	4	4	4	4	4	ų	7	9
3	1	8	9	3	4	2	4	7	3
6	6	1	6	З	- An	3	3	9	0
b	1	۵	Б	3	5	1	8	3	4
9	9	ł	1	3	0	5	9	5	4
1	1	8	4	ą	S.	200	2		R

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Sequences where you don't expect them ...

Vision transformers

one to one

Input: No sequence Output: No seq. **Example:** "standard" classification / regression problems

one to many

Input: No sequence Output: No seq. **Example:** "standard" classification / regression problems

Input: No sequence **Output:** Sequence **Example:** Im2Caption

Input: No sequence Output: No seq. **Example:** "standard" classification / regression problems

Input: No sequence **Output:** Sequence **Example:** Im2Caption

Input: Sequence Output: No seq. **Example:** sentence classification, multiple-choice question answering

Input: No sequence Output: No seq. **Example:** "standard" classification / regression problems

Input: No sequence **Output:** Sequence **Example:** Im₂Caption

Input: Sequence Output: No seq. **Example:** sentence classification, multiple-choice question answering

- **Input:** Sequence **Output:** Sequence
- **Example:** machine translation, video captioning, open-ended question answering, video question answering
- * slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Key Conceptual Ideas

Parameter Sharing

- in computational graphs = adding gradients

"Unrolling"

in computational graphs with parameter sharing

Parameter Sharing + "Unrolling"

- Allows modeling arbitrary length sequences!
- Keeps number of parameters in check

* slide from Dhruv Batra

У RNN

X

usually want to predict a vector at some time steps

We can process a sequence of vectors **x** by applying a recurrence formula at every time step:

We can process a sequence of vectors **x** by applying a recurrence formula at every time step:

$h_{t} = f_{W}(h_{t-1}, x_{t})$

Note: the same function and the same set of parameters are used at every time step

$h_t = f_W(h_{t-1}, x_t)$

$h_t = f_W(h_{t-1}, x_t)$ $h_{t} = \tanh(W_{hh}h_{t-1} + W_{xh}x_{t} + b_{h})$

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

V

RNN

X

$y_t = W_{hy}h_t + b_y$

$h_{t} = f_{W}(h_{t-1}, x_{t})$ $h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t + b_h)$

Intuition: RNN incorporates one element of sequence at a time (e.g. letter, word, video frame, etc.) building up a representation of the sequence "so far"

 $h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t + b_h)$

Intuition: RNN incorporates one element of sequence at a time (e.g. letter, word, video frame, etc.) building up a representation of the sequence "so far"

Alternative: RNN computes a representation of sequence element (e.g. letter, word, video frame, etc.) with context provided by all previous processed elements

$$h_t = \tanh(W_{hh}h_{t-1})$$

$$+W_{xh}x_t+b_h$$

Vocabulary

one-hot encodings

dog	1	[1,0,0,0,0,0,0,0,0,0]
cat	2	[0, 1 , 0, 0, 0, 0, 0, 0, 0, 0]
person	3	[0,0, 1 ,0,0,0,0,0,0,0]
holding	4	[0,0,0, 1 ,0,0,0,0,0,0]
tree	5	[0,0,0,0, 1 ,0,0,0,0,0]
computer	6	[0,0,0,0,0,1,0,0,0]
using	7	[0,0,0,0,0,0,1,0,0,0]

$h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t + b_h)$

person holding dog

Vocabulary

one-hot encodings

dog	1	[1,0,0,0,0,0,0,0,0,0]
cat	2	[0, 1 , 0, 0, 0, 0, 0, 0, 0, 0]
person	3	[0,0, 1 ,0,0,0,0,0,0,0]
holding	4	[0,0,0, 1 ,0,0,0,0,0,0]
tree	5	[0,0,0,0, 1 ,0,0,0,0,0]
computer	6	[0,0,0,0,0,1,0,0,0]
using	7	[0,0,0,0,0,0,1,0,0]

Identity $h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t +)$

person holding dog

Identity zero bh

Vocabulary

one-hot encodings

dog	1	[1,0,0,0,0,0,0,0,0,0]
cat	2	[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
person	3	[0,0, 1 ,0,0,0,0,0,0,0]
holding	4	[0,0,0, 1 ,0,0,0,0,0,0]
tree	5	[0,0,0,0, 1 ,0,0,0,0]
computer	6	[0,0,0,0,0,1,0,0,0]
using	7	[0,0,0,0,0,0,1,0,0,0]

Identity $h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t +)$

[0,0,0,0,0,0,0,0,0,0]

person holding dog

Identity zero

Vocabulary

0	one-l	hot	encodi	ngs
---	-------	-----	--------	-----

dog	1	[1,0,0,0,0,0,0,0,0,0]
cat	2	[0, 1 , 0, 0, 0, 0, 0, 0, 0, 0]
person	3	[0,0,1,0,0,0,0,0,0,0]
holding	4	[0,0,0, 1 ,0,0,0,0,0,0]
tree	5	[0,0,0,0, 1 ,0,0,0,0,0]
computer	6	[0,0,0,0,0, 1 ,0,0,0]
using	7	[0,0,0,0,0,0,1,0,0,0]

Identity $h_t = \tanh(W_{k,h}h_{t-1} + W_{k,h}x_t)$

[0,0,0,0,0,0,0,0,0,0]

person holding dog

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

Vocabulary

one-	hot	encodings
		0

dog	1	[1 , 0, 0, 0, 0, 0, 0, 0, 0, 0]
cat	2	[0, 1 , 0, 0, 0, 0, 0, 0, 0, 0]
person	3	[0,0, 1 ,0,0,0,0,0,0,0]
holding	4	[0,0,0, 1 ,0,0,0,0,0,0]
tree	5	[0,0,0,0, <mark>1</mark> ,0,0,0,0,0]
computer	6	[0,0,0,0,0, 1 ,0,0,0]
using	7	[0,0,0,0,0,0,1,0,0]

[0, 0, 0.76, 0, 0, 0, 0, 0, 0, 0]

Identity

person holding dog

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

[0,0,0,0,0,0,0,0,0,0]

Vocabulary

one-hot encodings

dog	1	[1 , 0, 0, 0, 0, 0, 0, 0, 0, 0]
cat	2	[0, 1 , 0, 0, 0, 0, 0, 0, 0, 0]
person	3	[0,0, 1 ,0,0,0,0,0,0,0]
holding	4	[0,0,0, 1 ,0,0,0,0,0,0]
tree	5	[0,0,0,0, <mark>1</mark> ,0,0,0,0,0]
computer	6	[0,0,0,0,0,1,0,0,0]
using	7	[0,0,0,0,0,0,1,0,0,0]

Identity $h_t = \tanh(W_{kh}h_{t-1} + W_{xh}x_t +$

person holding dog

Identity zero

Vocabulary

0	one-l	hot	encodi	ngs
---	-------	-----	--------	-----

dog	1	[1,0,0,0,0,0,0,0,0,0]
cat	2	[0, 1 , 0, 0, 0, 0, 0, 0, 0, 0]
person	3	[0,0,1,0,0,0,0,0,0,0]
holding	4	[0,0,0, 1 ,0,0,0,0,0,0]
tree	5	[0,0,0,0, 1 ,0,0,0,0,0]
computer	6	[0,0,0,0,0, 1 ,0,0,0]
using	7	[0,0,0,0,0,0,1,0,0,0]

Identity $h_t = \tanh(W_{k,h}h_{t-1} + W_{k,h}x_t)$

[0,0,0.76,0,0,0,0,0,0,0]

person holding dog

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

Vocabulary

	one-	hot	encodings
--	------	-----	-----------

Identity

0	
cat 2	[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
person <mark>3</mark>	[0,0, 1 ,0,0,0,0,0,0,0]
holding 4	[0,0,0, 1 ,0,0,0,0,0,0]
tree 5	[0,0,0,0, 1 ,0,0,0,0,0]
computer <mark>6</mark>	[0,0,0,0,0, 1 ,0,0,0,0]
using 7	[0,0,0,0,0,0,1,0,0,0]

[0, 0, 0.64, 0.76, 0, 0, 0, 0, 0, 0]

[0,0,0.76,0,0,0,0,0,0,0]

person holding dog

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

Vocabulary

one-	hot	encod	ings
			\mathbf{O}

Identity

dog	1	[1,0,0,0,0,0,0,0,0,0,0
cat	2	[0, 1, 0, 0, 0, 0, 0, 0, 0, 0
person	3	[0,0, 1 ,0,0,0,0,0,0,0
holding	4	[0,0,0, 1 ,0,0,0,0,0,0
tree	5	[0,0,0,0, 1 ,0,0,0,0,0
computer	6	[0,0,0,0,0, 1 ,0,0,0,0
using	7	[0,0,0,0,0,0, <mark>1</mark> ,0,0,0

[0, 0, 0.64, 0.76, 0, 0, 0, 0, 0, 0]

[0,0,0.76,0,0,0,0,0,0,0]

Like bag of words with some notion of recency

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

Re-use the same weight matrix at every time-step

RNN Computational Graph: Many to Many

RNN Computational Graph: Many to Many

RNN Computational Graph: Many to Many

RNN Computational Graph: Many to One

RNN Computational Graph: One to Many

Sequence to Sequence: Many to One + One to Many

Many to one: Encode input sequence in a single vector

Sequence to Sequence: Many to One + One to Many

Many to one: Encode input sequence in a single vector

One to many: Produce output sequence from single input vector

Example: Character-level Language Model

Vocabulary: ['h', 'e', 'l', 'o']

Example training sequence: "hello"

Example: Character-level Language Model

Vocabulary: ['h', 'e', 'l', 'o']

Example training sequence: "hello"

$h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t + b_h)$

Example: Character-level Language Model

Vocabulary: ['h', 'e', 'l', 'o']

Example training sequence: "hello"

Vocabulary: ['h', 'e', 'l', 'o']

At test time sample one character at a time and feed back to the model

Vocabulary: ['h', 'e', 'l', 'o']

At test time sample one character at a time and feed back to the model

Vocabulary: ['h', 'e', 'l', 'o']

At test time sample one character at a time and feed back to the model

Vocabulary: ['h', 'e', 'l', 'o']

At test time sample one character at a time and feed back to the model

Sampling vs. ArgMax vs. Beam Search

Sampling: allows to generate diverse outputs

ArgMax: could be more stable in practice

Beam Search: typically gets the best results

