
Lecture 9: Language Models and RNNs (Part 1)

Topics in AI (CPSC 532S):
Multimodal Learning with Vision, Language and Sound

Course Logistics

— Assignment 3

Representing a Word: One Hot Encoding

dog
cat
person
holding
tree
computer
using

Vocabulary

*slide from V. Ordonex

Representing a Word: One Hot Encoding

dog
cat
person
holding
tree
computer
using

1
2
3
4
5
6
7

Vocabulary

*slide from V. Ordonex

Representing a Word: One Hot Encoding

dog
cat
person
holding
tree
computer
using

1
2
3
4
5
6
7

one-hot encodings

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

Vocabulary

*slide from V. Ordonex

Representing Phrases: Bag-of-Words
dog
cat
person
holding
tree
computer
using

1
2
3
4
5
6
7

Vocabulary

bag-of-words representation

do
g

ca

t
pe

rs
on

ho

ld
in

g
tre

e
co

m
pu

te
r

us
in

g

*slide from V. Ordonex

Representing Phrases: Bag-of-Words
dog
cat
person
holding
tree
computer
using

1
2
3
4
5
6
7

Vocabulary

bag-of-words representation

do
g

ca

t
pe

rs
on

ho

ld
in

g
tre

e
co

m
pu

te
r

us
in

g

person holding dog {3, 4, 1} [1, 0, 1, 1, 0, 0, 0, 0, 0, 0]

*slide from V. Ordonex

Representing Phrases: Bag-of-Words
dog
cat
person
holding
tree
computer
using

1
2
3
4
5
6
7

Vocabulary

bag-of-words representation

do
g

ca

t
pe

rs
on

ho

ld
in

g
tre

e
co

m
pu

te
r

us
in

g

person holding dog {3, 4, 1} [1, 0, 1, 1, 0, 0, 0, 0, 0, 0]

person holding cat {3, 4, 2} [1, 1, 0, 1, 0, 0, 0, 0, 0, 0]

*slide from V. Ordonex

Representing Phrases: Bag-of-Words
dog
cat
person
holding
tree
computer
using

1
2
3
4
5
6
7

Vocabulary

bag-of-words representation

do
g

ca

t
pe

rs
on

ho

ld
in

g
tre

e
co

m
pu

te
r

us
in

g

person holding dog {3, 4, 1} [1, 0, 1, 1, 0, 0, 0, 0, 0, 0]

person holding cat {3, 4, 2} [1, 1, 0, 1, 0, 0, 0, 0, 0, 0]

person using computer {3, 7, 6} [0, 0, 0, 1, 0, 1, 1, 0, 0, 0]

*slide from V. Ordonex

Representing Phrases: Bag-of-Words
dog
cat
person
holding
tree
computer
using

1
2
3
4
5
6
7

Vocabulary

bag-of-words representation

do
g

ca

t
pe

rs
on

ho

ld
in

g
tre

e
co

m
pu

te
r

us
in

g

person holding dog {3, 4, 1} [1, 0, 1, 1, 0, 0, 0, 0, 0, 0]

person holding cat {3, 4, 2} [1, 1, 0, 1, 0, 0, 0, 0, 0, 0]

person using computer {3, 7, 6} [0, 0, 0, 1, 0, 1, 1, 0, 0, 0]

person using computer
person holding cat {3, 3, 7, 6, 2} [0, 1, 2, 1, 0, 1, 1, 0, 0, 0]

*slide from V. Ordonex

Representing Phrases: Bag-of-Words
dog
cat
person
holding
tree
computer
using

1
2
3
4
5
6
7

Vocabulary

bag-of-words representation

do
g

ca

t
pe

rs
on

ho

ld
in

g
tre

e
co

m
pu

te
r

us
in

g

person holding dog {3, 4, 1} [1, 0, 1, 1, 0, 0, 0, 0, 0, 0]

person holding cat {3, 4, 2} [1, 1, 0, 1, 0, 0, 0, 0, 0, 0]

person using computer {3, 7, 6} [0, 0, 0, 1, 0, 1, 1, 0, 0, 0]

person using computer
person holding cat {3, 3, 7, 6, 2} [0, 1, 2, 1, 0, 1, 1, 0, 0, 0]

What if we have large vocabulary?

*slide from V. Ordonex

indices = [3, 7, 6, 2] values = [2, 1, 1, 1]

indices = [3, 7, 6] values = [1, 1, 1]

indices = [2, 3, 4] values = [1, 1, 1]

indices = [1, 3, 4] values = [1, 1, 1]

Representing Phrases: Sparse Representation
dog
cat
person
holding
tree
computer
using

1
2
3
4
5
6
7

Vocabulary

bag-of-words representation
person holding dog

person holding cat

person using computer

person using computer
person holding cat

*slide from V. Ordonex

Bag-of-Words Representations

— Really easy to use
— Can encode phrases, sentences, paragraph, documents
— Good for classification, clustering or to compute distance between text

*slide from V. Ordonex

Bag-of-Words Representations

— Really easy to use
— Can encode phrases, sentences, paragraph, documents
— Good for classification, clustering or to compute distance between text

Problem: hard to distinguish sentences that have same words

*slide from V. Ordonex

Bag-of-Words Representations

— Really easy to use
— Can encode phrases, sentences, paragraph, documents
— Good for classification, clustering or to compute distance between text

Problem: hard to distinguish sentences that have same words

*slide from V. Ordonex

my friend makes a nice meal

my nice friend makes a meal

Bag-of-Words Representations

— Really easy to use
— Can encode phrases, sentences, paragraph, documents
— Good for classification, clustering or to compute distance between text

These would be the same using bag-of-words

Problem: hard to distinguish sentences that have same words

*slide from V. Ordonex

my friend makes a nice meal

my nice friend makes a meal

— Really easy to use
— Can encode phrases, sentences, paragraph, documents
— Good for classification, clustering or to compute distance between text

Bag-of-Bigrams

my friend makes a nice meal

my nice friend makes a meal

Problem: hard to distinguish sentences that have same words

{my friend, friend makes, makes a, a nice, nice meal}

{my nice, nice friend, friend makes, makes a, a meal}

— Really easy to use
— Can encode phrases, sentences, paragraph, documents
— Good for classification, clustering or to compute distance between text

Bag-of-Bigrams

my friend makes a nice meal

my nice friend makes a meal

Problem: hard to distinguish sentences that have same words

{my friend, friend makes, makes a, a nice, nice meal}

{my nice, nice friend, friend makes, makes a, a meal}

indices = [10132, 21342, 43233, 53123, 64233]
values = [1, 1, 1, 1, 1]

indices = [10232, 43133, 21342, 43233, 54233]
values = [1, 1, 1, 1, 1]

Word Representations
1. One-hot encodings — only non-zero at the index of the word

e.g., [0, 1, 0, 0, 0, …., 0, 0, 0]
Good: simple
Bad: not compact, distance between words always same (e.g., synonyms vs. antonyms)

* Adopted from slides by Louis-Philippe Morency

Word Representations
1. One-hot encodings — only non-zero at the index of the word

e.g., [0, 1, 0, 0, 0, …., 0, 0, 0]
Good: simple
Bad: not compact, distance between words always same (e.g., synonyms vs. antonyms)

2. Word feature representations — manually define “good” features
e.g., [1, 1, 0, 30, 0, …., 0, 0, 0] -> 300-dimensional irrespective of dictionary

e.g., word ends on -ing

* Adopted from slides by Louis-Philippe Morency

Word Representations
1. One-hot encodings — only non-zero at the index of the word

e.g., [0, 1, 0, 0, 0, …., 0, 0, 0]
Good: simple
Bad: not compact, distance between words always same (e.g., synonyms vs. antonyms)

2. Word feature representations — manually define “good” features
e.g., [1, 1, 0, 30, 0, …., 0, 0, 0] -> 300-dimensional irrespective of dictionary

e.g., word ends on -ing

3. Learned word representations — vector should approximate “meaning”
of the word

e.g., [1, 1, 0, 30, 0, …., 0, 0, 0] -> 300-dimensional irrespective of dictionary
Good: compact, distance between words is semantic

* Adopted from slides by Louis-Philippe Morency

Distributional Hypothesis

— At least certain aspects of the meaning of lexical expressions depend on
their distributional properties in the linguistic contexts
— The degree of semantic similarity between two linguistic expressions is a
function of the similarity of the two linguistic contexts in which they can appear

* Adopted from slides by Louis-Philippe Morency

[Lenci, 2008]

What is the meaning of “bardiwac”?

— He handed her glass of bardiwac.
— Beef dishes are made to complement the bardiwacs.
— Nigel staggered to his feet, face flushed from too much bardiwac.
— Malbec, one of the lesser-known bardiwac grapes, responds well to
Australia’s sunshine.

— I dined off bread and cheese and this excellent bardiwac.
—The drinks were delicious: blood-red bardiwac as well as light, sweet Rhenish.

* Adopted from slides by Louis-Philippe Morency

What is the meaning of “bardiwac”?

— He handed her glass of bardiwac.
— Beef dishes are made to complement the bardiwacs.
— Nigel staggered to his feet, face flushed from too much bardiwac.
— Malbec, one of the lesser-known bardiwac grapes, responds well to
Australia’s sunshine.

— I dined off bread and cheese and this excellent bardiwac.
—The drinks were delicious: blood-red bardiwac as well as light, sweet Rhenish.

* Adopted from slides by Louis-Philippe Morency

bardiwac is an alcoholic beverage made from grapes

Geometric Interpretation: Co-occurrence as feature

— Row vector describes usage of word
in a corpus of text

— Can be seen as coordinates of the
point in an n-dimensional Euclidian space

Co-occurrence Matrix

* Slides from Louis-Philippe Morency

Geometric Interpretation: Co-occurrence as feature

— Row vector describes usage of word
in a corpus of text

— Can be seen as coordinates of the
point in an n-dimensional Euclidian space

Co-occurrence Matrix

* Slides from Louis-Philippe Morency

Distance and Similarity

— Illustrated in two dimensions

— Similarity = spatial proximity
(Euclidian distance)

— Location depends on frequency of a
noun (dog is 27 times as frequent as cat)

* Slides from Louis-Philippe Morency

Angle and Similarity

— direction is more important than location

— normalize length of vectors (or use angle
as a distance measure)

* Slides from Louis-Philippe Morency

Angle and Similarity

— direction is more important than location

— normalize length of vectors

— or use angle as a distance measure

* Slides from Louis-Philippe Morency

Geometric Interpretation: Co-occurrence as feature

— Row vector describes usage of word
in a corpus of text

— Can be seen as coordinates of the
point in an n-dimensional Euclidian space

Co-occurrence Matrix

* Slides from Louis-Philippe Morency

Geometric Interpretation: Co-occurrence as feature

— Row vector describes usage of word
in a corpus of text

— Can be seen as coordinates of the
point in an n-dimensional Euclidian space

Co-occurrence Matrix

* Slides from Louis-Philippe Morency

Way too high dimensional!

SVD for Dimensionality Reduction

*slide from Vagelis Hristidis

Learned Word Vector Visualization
We can also use other methods, like LLE here:

[Roweis and Saul, 2000]

Issues with SVD

Computational cost for a matrix is , where

— Makes it not possible for large number of word vocabularies or documents

It is hard to incorporate out of sample (new) words or documents

d⇥ n O(dn2) d < n

*slide from Vagelis Hristidis

word2vec: Representing the Meaning of Words
Key idea: Predict surrounding words
of every word

Benefits: Faster and easier to
incorporate new document, words, etc.

*slide from Vagelis Hristidis

[Mikolov et al., 2013]

word2vec: Representing the Meaning of Words
Key idea: Predict surrounding words
of every word

Benefits: Faster and easier to
incorporate new document, words, etc.

Continuous Bag of Words (CBOW): use context words in a window to predict
middle word

Skip-gram: use the middle word to predict surrounding ones in a window
*slide from Vagelis Hristidis

[Mikolov et al., 2013]

CBOW: Continuous Bag of Words

Example: “The cat sat on floor” (window size 2)

the

cat

on

floor

sat

*slide from Vagelis Hristidis

[Mikolov et al., 2013]

cat

on

Input layer

Hidden layer

sat

Output layer

(one-hot vector)

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

(one-hot vector)

CBOW: Continuous Bag of Words

*slide from Vagelis Hristidis

[Mikolov et al., 2013]

cat

on

Input layer

Hidden layer

sat

Output layer

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

CBOW: Continuous Bag of Words

x 2 R|V |

W|V |⇥|N |

W|V |⇥|N |

W0
|N |⇥|V |

ŷ 2 R|V |
v̂ 2 R|N |

*slide from Vagelis Hristidis

[Mikolov et al., 2013]

cat

on

Input layer

Hidden layer

sat

Output layer

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

CBOW: Continuous Bag of Words

x 2 R|V |

W|V |⇥|N |

W|V |⇥|N |

W0
|N |⇥|V |

ŷ 2 R|V |
v̂ 2 R|N |

Parameters to be learned

*slide from Vagelis Hristidis

[Mikolov et al., 2013]

cat

on

Input layer

Hidden layer

sat

Output layer

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

CBOW: Continuous Bag of Words

x 2 R|V |

W|V |⇥|N |

W|V |⇥|N |

W0
|N |⇥|V |

ŷ 2 R|V |
v̂ 2 R|N |

Parameters to be learned

Size of the word vector (e.g., 300)
*slide from Vagelis Hristidis

[Mikolov et al., 2013]

Input layer

Hidden layer

sat

Output layer

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

CBOW: Continuous Bag of Words

x 2 R|V |

ŷ 2 R|V |
v̂ 2 R|N |

W
|N |⇥|V | ⇥ x

cat = v
cat

W |N
|⇥|V |⇥

xon
=
von

xon

xcat

*slide from Vagelis Hristidis

[Mikolov et al., 2013]

W
|N |⇥|V | ⇥ x

cat = v
cat

W |N
|⇥|V |⇥

xon
=
von

xon

xcat

Input layer

Hidden layer

sat

Output layer

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

CBOW: Continuous Bag of Words

x 2 R|V |

W0
|N |⇥|V |

ŷ 2 R|V |
v̂ 2 R|N |

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

	

2.4

2.6

…

…

1.8

	

0

1

0

0

0

0

0

0

0

0

WT
|V |⇥|N | xcat vcat=⇥

*slide from Vagelis Hristidis

[Mikolov et al., 2013]

W
|N |⇥|V | ⇥ x

cat = v
cat

W |N
|⇥|V |⇥

xon
=
von

xon

xcat

Input layer

Hidden layer

sat

Output layer

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

CBOW: Continuous Bag of Words

x 2 R|V |

W0
|N |⇥|V |

ŷ 2 R|V |
v̂ 2 R|N |

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

	

1.8

2.9

…

…

1.9

	

0

0

0

1

0

0

0

0

0

0

WT
|V |⇥|N | =⇥ vonxon

*slide from Vagelis Hristidis

[Mikolov et al., 2013]

W
|N |⇥|V | ⇥ x

cat = v
cat

W |N
|⇥|V |⇥

xon
=
von

xon

xcat

Input layer

Hidden layer

sat

Output layer

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

CBOW: Continuous Bag of Words

x 2 R|V |

ŷ 2 R|V |
v̂ 2 R|N |

v̂ =
vcat + von

2

*slide from Vagelis Hristidis

[Mikolov et al., 2013]

W
|N |⇥|V | ⇥ x

cat = v
cat

W |N
|⇥|V |⇥

xon
=
von

xon

xcat

Input layer

Hidden layer Output layer

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

CBOW: Continuous Bag of Words

x 2 R|V |

ŷ 2 R|V |
v̂ 2 R|N |

W0
|V |⇥|N | ⇥ v̂ = z

ŷ = softmax(z)

W0
|V |⇥|N | ⇥ v̂ = z

ŷ = softmax(z)

ŷsat

*slide from Vagelis Hristidis

[Mikolov et al., 2013]

W
|N |⇥|V | ⇥ x

cat = v
cat

W |N
|⇥|V |⇥

xon
=
von

xon

xcat

Input layer

Hidden layer Output layer

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

CBOW: Continuous Bag of Words

x 2 R|V |

ŷ 2 R|V |
v̂ 2 R|N |

W0
|V |⇥|N | ⇥ v̂ = z

ŷ = softmax(z)

W0
|V |⇥|N | ⇥ v̂ = z

ŷ = softmax(z)

ŷsat

0.01
0.02
0.00
0.02
0.01
0.02
0.01
0.7
…

0.00

Optimize to get close to 1-hot encoding
*slide from Vagelis Hristidis

[Mikolov et al., 2013]

W
|N |⇥|V | ⇥ x

cat = v
cat

W |N
|⇥|V |⇥

xon
=
von

xon

xcat

Input layer

Hidden layer Output layer

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

CBOW: Continuous Bag of Words

x 2 R|V |

ŷ 2 R|V |
v̂ 2 R|N |

W0
|V |⇥|N | ⇥ v̂ = z

ŷ = softmax(z)

W0
|V |⇥|N | ⇥ v̂ = z

ŷ = softmax(z)

ŷsat

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

WT
|V |⇥|N |

Word vectors

*slide from Vagelis Hristidis

[Mikolov et al., 2013]

W
|N |⇥|V | ⇥ x

cat = v
cat

W |N
|⇥|V |⇥

xon
=
von

xon

xcat

Input layer

Hidden layer Output layer

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

CBOW: Interesting Observation

x 2 R|V |

ŷ 2 R|V |
v̂ 2 R|N |

W0
|V |⇥|N | ⇥ v̂ = z

ŷ = softmax(z)

W0
|V |⇥|N | ⇥ v̂ = z

ŷ = softmax(z)

ŷsat

*slide from Vagelis Hristidis

[Mikolov et al., 2013]

There are two representations for same word!

p(w|c) =
exp

h
(
P

c Wxc)
T (Wxw)

i

P|V |
i exp

h
(Wxi)

T (Wxw)
i

CBOW: Interesting Observation [Mikolov et al., 2013]

Another way to look at it: Maximize similarity between context word
representation and the word representation itself

J(W) = � 1

T

TX

t=1

X

�mjm;j 6=0

log p(wt+j |wt)

p(wt+j |wt) =
exp(wT

t+jwt)
P|V |

i=1 exp(w
T
i wt)

CBOW: Interesting Observation

Another way to look at it: Maximize similarity between context word
representation and the word representation itself

[Mikolov et al., 2013]

Skip-Gram Model [Mikolov et al., 2013]

Comparison

— CBOW is not great for rare words and typically needs less data to train

— Skip-gram better for rate words and needs more data to train the model

[Mikolov et al., 2013]

Interesting Results: Word Analogies

Interesting Results: Word Analogies [Mikolov et al., 2013]

Language Models

Model the probability of a sentence; ideally be able to sample plausible
sentences

* Slides from Louis-Philippe Morency

Language Models

Model the probability of a sentence; ideally be able to sample plausible
sentences

Why is this useful?

* Slides from Louis-Philippe Morency

Language Models

Model the probability of a sentence; ideally be able to sample plausible
sentences

Why is this useful?

* Slides from Louis-Philippe Morency

Language Models

Model the probability of a sentence; ideally be able to sample plausible
sentences

Why is this useful?

* Slides from Louis-Philippe Morency

Simple Language Models: N-Grams
w1:n = [w1, w2, ..., wn]

p(w1:n) = p(w1)p(w2|w1)p(w3|w1, w2) · · · p(wn|w1:n�1)

Given a word sequence:

We want to estimate

* Slides from Louis-Philippe Morency

Simple Language Models: N-Grams
w1:n = [w1, w2, ..., wn]

p(w1:n) = p(w1)p(w2|w1)p(w3|w1, w2) · · · p(wn|w1:n�1)

Given a word sequence:

We want to estimate

p(w1:n) = p(w1)p(w2|w1)p(w3|w1, w2) · · · p(wn|w1:n�1)

Using Chain Rule of probabilities:

* Slides from Louis-Philippe Morency

Simple Language Models: N-Grams
w1:n = [w1, w2, ..., wn]

p(w1:n) = p(w1)p(w2|w1)p(w3|w1, w2) · · · p(wn|w1:n�1)

Given a word sequence:

We want to estimate

p(w1:n) = p(w1)p(w2|w1)p(w3|w1, w2) · · · p(wn|w1:n�1)

Using Chain Rule of probabilities:

p(w1:n) =
nY

k=1

p(wk|wk�1) p(w1:n) =
nY

k=1

p(wk|wk�N+1:k�1)

Bi-gram Approximation: N-gram Approximation:

* Slides from Louis-Philippe Morency

Estimating Probabilities

p(wn|wn�1) =
C(wn�1wn)

C(wn�1)

p(wn|wn�N�1:n�1) =
C(wn�N�1:n�1wn)

C(wn�N�1:n�1)

N-gram conditional probabilities can be estimated based on raw concurrence
counts in the observed sequences

Bi-gram:

N-gram:

* Slides from Louis-Philippe Morency

Neural-based Unigram Language Mode

* Slides from Louis-Philippe Morency

Neural-based Unigram Language Mode

* Slides from Louis-Philippe Morency

Problem: Does not model sequential information (too local)

Neural-based Unigram Language Mode

* Slides from Louis-Philippe Morency

Problem: Does not model sequential information (too local)

We need sequence modeling!

Sequence Modeling

Why Model Sequences?

* slide from Dhruv BatraImage Credit: Alex Graves and Kevin Gimpel

Multi-modal tasks

Cap$on	Genera$on:	Vinyals	et	al.	2015	

[Vinyals et al., 2015]

Sequences where you don’t expect them …

Classify images by taking a
series of “glimpses”

[Gregor et al., ICML 2015]

[Mnih et al., ICLR 2015]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Sequences where you don’t expect them …

Classify images by taking a
series of “glimpses”

[Gregor et al., ICML 2015]

[Mnih et al., ICLR 2015]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Sequences where you don’t expect them …

Vision transformers

Sequences in Inputs or Outputs?

Input: No sequence
Output: No seq.

Example:
“standard”

classification /
regression problems

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Sequences in Inputs or Outputs?

Input: No sequence
Output: No seq.

Example:
“standard”

classification /
regression problems

Input: No
sequence
Output:

Sequence
Example:

Im2Caption

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Sequences in Inputs or Outputs?

Input: No sequence
Output: No seq.

Example:
“standard”

classification /
regression problems

Input: No
sequence
Output:

Sequence
Example:

Im2Caption

Input: Sequence
Output: No seq.

Example: sentence
classification,

multiple-choice
question answering

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Sequences in Inputs or Outputs?

Input: No sequence
Output: No seq.

Example:
“standard”

classification /
regression problems

Input: No
sequence
Output:

Sequence
Example:

Im2Caption

Input: Sequence
Output: No seq.

Example: sentence
classification,

multiple-choice
question answering

Input: Sequence
Output: Sequence

Example: machine translation, video captioning,
open-ended question answering, video question

answering

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Key Conceptual Ideas

Parameter Sharing

— in computational graphs = adding gradients

“Unrolling”

— in computational graphs with parameter sharing

Parameter Sharing + “Unrolling”

— Allows modeling arbitrary length sequences!

— Keeps number of parameters in check
* slide from Dhruv Batra

x

RNN

Recurrent Neural Network

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

x

RNN

y
usually want to predict a
vector at some time steps

Recurrent Neural Network

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Recurrent Neural Network

We can process a sequence of vectors x by applying a
recurrence formula at every time step:

some function
with parameters W

x

RNN

y

input vector at
some time step

old statenew state

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Recurrent Neural Network

We can process a sequence of vectors x by applying a
recurrence formula at every time step:

x

RNN

y

Note: the same function and the same set of
parameters are used at every time step

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

(Vanilla) Recurrent Neural Network

x

RNN

y

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

(Vanilla) Recurrent Neural Network

x

RNN

y

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

(Vanilla) Recurrent Neural Network

x

RNN

y

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

(Vanilla) Recurrent Neural Network

x

RNN

y

Intuition: RNN incorporates one element of sequence at a time
(e.g. letter, word, video frame, etc.)

building up a representation of the sequence “so far”

(Vanilla) Recurrent Neural Network

x

RNN

y

Intuition: RNN incorporates one element of sequence at a time
(e.g. letter, word, video frame, etc.)

building up a representation of the sequence “so far”

Alternative: RNN computes a representation of sequence element
(e.g. letter, word, video frame, etc.)

with context provided by all previous processed elements

(Vanilla) Recurrent Neural Network

x

RNN

y

dog

cat

person

holding

tree

computer

using

1

2

3

4

5

6

7

one-hot encodings

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

Vocabulary

person holding dog

(Vanilla) Recurrent Neural Network

x

RNN

y

dog

cat

person

holding

tree

computer

using

1

2

3

4

5

6

7

one-hot encodings

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

Vocabulary

Identity Identity zero

person holding dog

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

(Vanilla) Recurrent Neural Network

x

RNN

y

dog

cat

person

holding

tree

computer

using

1

2

3

4

5

6

7

one-hot encodings

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

Vocabulary

Identity Identity zero

person holding dog

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

(Vanilla) Recurrent Neural Network

x

RNN

y

dog

cat

person

holding

tree

computer

using

1

2

3

4

5

6

7

one-hot encodings

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

Vocabulary

person holding dog

Identity Identity zero

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0.76, 0, 0, 0, 0, 0, 0, 0]

(Vanilla) Recurrent Neural Network

x

RNN

y

dog

cat

person

holding

tree

computer

using

1

2

3

4

5

6

7

one-hot encodings

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

Vocabulary

person holding dog

Identity Identity zero

[0, 0, 0.76, 0, 0, 0, 0, 0, 0, 0]

(Vanilla) Recurrent Neural Network

x

RNN

y

dog

cat

person

holding

tree

computer

using

1

2

3

4

5

6

7

one-hot encodings

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

Vocabulary

Identity Identity zero

person holding dog

[0, 0, 0.76, 0, 0, 0, 0, 0, 0, 0]

person holding dog

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

(Vanilla) Recurrent Neural Network

x

RNN

y

dog

cat

person

holding

tree

computer

using

1

2

3

4

5

6

7

one-hot encodings

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

Vocabulary

Identity Identity zero

person holding dog

[0, 0, 0.76, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

(Vanilla) Recurrent Neural Network

x

RNN

y

dog

cat

person

holding

tree

computer

using

1

2

3

4

5

6

7

one-hot encodings

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

Vocabulary

Identity Identity zero

[0, 0, 0.64, 0.76, 0, 0, 0, 0, 0, 0]

Like bag of words with some
notion of recency

[0, 0, 0.76, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

(Vanilla) Recurrent Neural Network

x

RNN

y

dog

cat

person

holding

tree

computer

using

1

2

3

4

5

6

7

one-hot encodings

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

Vocabulary

Identity Identity zero

[0, 0, 0.64, 0.76, 0, 0, 0, 0, 0, 0]

RNN Computational Graph

h0 fW h1

x1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph

h0 fW h1 fW h2

x2x1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph

h0 fW h1 fW h2 fW h3

x3

…

x2x1

hT

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph

h0 fW h1 fW h2 fW h3

x3

…

x2x1W

hT

Re-use the same weight matrix at every time-step

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph: Many to Many

h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1W

hT

y3y2y1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph: Many to Many

h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1W

hT

y3y2y1 L1 L2 L3 LT

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph: Many to Many

h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1W

hT

y3y2y1 L1 L2 L3 LT

L

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph: Many to One

h0 fW h1 fW h2 fW h3

x3

y

…

x2x1W

hT

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph: One to Many

h0 fW h1 fW h2 fW h3

yT

…

x
W

hT

y3y2y1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Sequence to Sequence: Many to One + One to Many

h0 fW h1 fW h2 fW h3

x3

…

x2x1W1

hT

Many to one: Encode input
sequence in a single vector

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Sequence to Sequence: Many to One + One to Many

h0 fW h1 fW h2 fW h3

x3

…

x2x1W1

hT

Many to one: Encode input
sequence in a single vector

y1 y2

fW h1 fW h2 fW

W2

One to many: Produce output
sequence from single input vector

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Example: Character-level Language Model

Vocabulary:
[‘h’, ‘e’, ‘l’, ‘o’]

Example training sequence:
“hello”

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Example: Character-level Language Model

Vocabulary:
[‘h’, ‘e’, ‘l’, ‘o’]

Example training sequence:
“hello”

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Example: Character-level Language Model

Vocabulary:
[‘h’, ‘e’, ‘l’, ‘o’]

Example training sequence:
“hello”

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Example: Character-level Language Model (Sampling)

Vocabulary:
[‘h’, ‘e’, ‘l’, ‘o’]

At test time sample one
character at a time and feed
back to the model

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02.08

.79
Softmax

“e” “l” “l” “o”
Sample

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Example: Character-level Language Model (Sampling)

Vocabulary:
[‘h’, ‘e’, ‘l’, ‘o’]

At test time sample one
character at a time and feed
back to the model

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02.08

.79
Softmax

“e” “l” “l” “o”
Sample

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Example: Character-level Language Model (Sampling)

Vocabulary:
[‘h’, ‘e’, ‘l’, ‘o’]

At test time sample one
character at a time and feed
back to the model

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02.08

.79
Softmax

“e” “l” “l” “o”
Sample

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Example: Character-level Language Model (Sampling)

Vocabulary:
[‘h’, ‘e’, ‘l’, ‘o’]

At test time sample one
character at a time and feed
back to the model

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02.08

.79
Softmax

“e” “l” “l” “o”
Sample

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Sampling vs. ArgMax vs. Beam Search

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02.08

.79
Softmax

“e” “l” “l” “o”
Sample

Sampling: allows to generate
diverse outputs

ArgMax: could be more stable in
practice

Beam Search: typically gets the
best results

