THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 9: Language Models and RNNs (Part 1)



Course Logistics

— Assignment 3



Representing a Word: One Hot Encoding

Vocabulary

dog

cat
person
holding
tree
computer

using
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Representing a Word: One Hot Encoding

Vocabulary

dog

cat
person
holding
tree
computer

using

~N O O B~ W N

one-hot encodings

11,0,0,0,0,0,0,0,0,0]
10,1,0,0,0,0,0,0,0,0]
10,0,1,0,0,0,0,0,0,0]
10,0,0,1,0,0,0,0,0,0]
10,0,0,0,1,0,0,0,0,0]
10,0,0,0,0,1,0,0,0,0]
10,0,0,0,0,0,1,0,0,0]
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Representing Phrases: Bag-of-\Words Vocabutary

dog

. cat
bag-of-words representation person
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Representing Phrases: Bag-of-VWords Vocabulary
bag-of-words representation pt 2
person holding dog (3,4,1} [1,0,1,1,0,0,0,0,0,0] o
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Representing Phrases: Bag-of-\Words Vocabutary
bag-of-words representation pt 2
person holding dog (3,4,1 [1,0,1,1,0,0,0,0,0,0] o
person holding cat 3,4,2) [1,1,0,1,0,0,0,0,0,0] sing !
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Representing Phrases: Bag-of-\Words Vocabutary
bag-of-words representation pt 2
person holding dog (3,4,1 [1,0,1,1,0,0,0,0,0,0] o
person holding cat 3,4,2) [1,1,0,1,0,0,0,0,0,0] sing !
person using computer {3, 7,6} [0,0,0,1,0,1,1,0,0,0]
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Representing Phrases: Bag-of-\Words

bag-of-words representation
person holding dog {3,4,1 [1,0,1,1,0,0,0,0,0,0]

person holding cat 3,4,2} [1,1,0,1,0,0,0,0,0,0]
person using computer {3, 7,6} [0,0,0,1,0,1,1,0,0,0]
zs B

person using computer
person holding cat

Vocabulary
dog

cat
person
holding
tree

computer

~N O O A W N =

using

3,3,7,6,2y [0,1,2,1,0,1,1,0,0,0]
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Representing Phrases: Bag-of-VWords Vocabulary

dog

cat

bag-of-words representation person

holding

person holding dog {3, 4, 1} (1,0,1,1,0,0,0,0,0,0] o

computer

person holding cat (3,4,2) [1,1,0,1,0,0,0,0,0,0] using

~N O O A W N =

person using computer {3,7,6} [0,0,0,1,0,1,1,0,0,0]

o) =
®
O
UO

person
holding
tree
computer
using

person using computer

person holding cat (3,3,7,6,28 [0,1,2,1,0,1,1,0,0,0]

What if we have large vocabulary?
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Representing Phrases: Sparse Representation Vocabulary

dog

cat

bag-of-words representation persor 2
person holding dog indices = [1, 3, 4] values =1, 1, 1] o
person holding cat indices = 2, 3, 4] wvalues=[1, 1, 1] 159 !

person using computer indices =[3, 7, 6] values =[1, 1, 1]

person using computer

person holding cat ndices = [3,7,6,2] values=[2, 1, 1, 1]
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Bag-of-Words Representations

— Really easy to use
— (Can encode phrases, sentences, paragraph, documents

— Good for classification, clustering or to compute distance between text
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— (Can encode phrases, sentences, paragraph, documents

— Good for classification, clustering or to compute distance between text

Problem: hard to distinguish sentences that have same words
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Bag-of-Words Representations

— Really easy to use
— (Can encode phrases, sentences, paragraph, documents

— Good for classification, clustering or to compute distance between text

Problem: hard to distinguish sentences that have same words

my friend makes a nice meal

My nice friend makes a meal
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Bag-of-Words Representations

— Really easy to use
— (Can encode phrases, sentences, paragraph, documents

— Good for classification, clustering or to compute distance between text

Problem: hard to distinguish sentences that have same words

my friend makes a nice meal

These would be the same using bag-of-words

My nice friend makes a meal
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Bag-of-Bigrams

— Really easy to use
— (Can encode phrases, sentences, paragraph, documents

— Good for classification, clustering or to compute distance between text

Problem: hard to distinguish sentences that have same words

my friend makes a nice meal
{my nice, nice friend, friend makes, makes a, a meal}

My nice friend makes a meal
{my friend, friend makes, makes a, a nice, nice meal}



Bag-of-Bigrams

— Really easy to use
— (Can encode phrases, sentences, paragraph, documents

— Good for classification, clustering or to compute distance between text

Problem: hard to distinguish sentences that have same words

my friend makes a nice meal

{my nice, nice friend, friend makes, makes a, a meal}
indices = [10132, 21342, 43233, 53123, 64233}
values=[1, 1,1, 1, 1]

My nice friend makes a meal

{my friend, friend makes, makes a, a nice, nice meal}

indices = [10232, 43133, 21342, 43233, 54233]
values=[1, 1,1, 1, 1]




Word Representations

1. One-hot encodings — only non-zero at the index of the word
eg9.,[0,1,0,0,0,....,0,0,0]
Good: simple
Bad: not compact, distance between words always same (e.g., synonyms vs. antonyms)

* Adopted from slides by Louis-Philippe Morency
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1. One-hot encodings — only non-zero at the index of the word
eg9.,[0,1,0,0,0,....,0,0,0]
Good: simple
Bad: not compact, distance between words always same (e.g., synonyms vs. antonyms)

2. Word feature representations — manually define “good” features
eg.,[1,1,0, 30,0, ....,0,0, 0] -> 300-dimensional irrespective of dictionary

e.g., word ends on -ing
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Word Representations

1. One-hot encodings — only non-zero at the index of the word
e.g.,[0,1,00,0,....,0,0 0]

Good: simple

Bad: not compact, distance between words always same (e.g., synonyms vs. antonyms)

2. Word feature representations — manually define “good” features
eg.,[1,1,0,300,....,0,0, 0] ->300-dimensional irrespective of dictionary

e.g., word ends on -ing

3. Learned word representations — vector should approximate “meaning”

of the word

e.g.,
Good: compac

| distance between words Is semantic

1,1,0,30,0, ...., 0,0, O] -> 300-dimensional irrespective of dictionary

* Adopted from slides by Louis-Philippe Morency



DiStribUtional HypOtheS|S | Lenci, 2008 |

— At least certain aspects of the meaning of lexical expressions depend on
their distributional properties in the linguistic contexts

— [he degree of semantic similarity between two linguistic expressions Is a
function of the similarity of the two linguistic contexts in which they can appear

* Adopted from slides by Louis-Philippe Morency



What is the meaning of “bardiwac””

— He handed her glass of bardiwac.
— Beef dishes are made to complement the bardiwacs.
— Nigel staggered to his feet, face flushed from too much bardiwac.

— Malbec, one of the lesser-known bardiwac grapes, responds well to
Australia’s sunshine.

— | dined off bread and cheese and this excellent bardiwac.

— I'he drinks were delicious: blood-red bardiwac as well as light, sweet Rhenish.

* Adopted from slides by Louis-Philippe Morency



What is the meaning of “bardiwac””

— He handed her glass of bardiwac.
— Beet dishes are made to complement the bardiwacs.
— Nigel staggered to his feet, face flushed from too much bardiwac.

— Malbec, one of the lesser-known bardiwac grapes, responds well to
Australia’s sunshine.

— | dined off bread and cheese and this excellent bardiwac.

— I'he drinks were delicious: blood-red bardiwac as well as light, sweet Rhenish.

bardiwac is an alcoholic beverage made from grapes

* Adopted from slides by Louis-Philippe Morency



Geometric Interpretation: Co-occurrence as feature

— Row vector describes usage of word

N a corpus of text
get | see | use | hear | eat | Kkill

e | 51 {20 [ ] 0 [ 3]0
— Can be seen as coordinates of the cat] 921561 41 4 [ 612

oint In an n-dimensional Euclidian space cog
P P ot [ 50 [ 9 [ B 4 [0 ]0
cp | 98 | 141 6] 2 ] 1]0
pig [ 12 |17/ 3 | 2 ]9 27
banana | 11 ] 2] 2] 0 [18] 0

Co-occurrence Matrix
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Geometric Interpretation: Co-occurrence as feature

— Row vector describes usage of word
IN a corpus of text

— (Can be seen as coordinates of the
point In an N-dimensional Euclidian space

Voo

get | see | use | hear | eat | Kkill

e [ 51 [ 20 [ &[0 [ 3 [0
2 7 I S
Tog
e N I I O

Cu

p| 98 | 14] 6] 2 110

pig | 12 | 17 ] 3 ) 2 |9 |27

paana | 1 7 [ 2 | 0 [0

Co-occurrence Matrix
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Distance and Similarity

Two dimensions of English V=0bj DSM

o
— lllustrated in two dimensions -
S _
Knife
— Similarity = spatial proximity g - e
(Euclidian distance)
3
> 8 -
. o
— Location depends on frequency of a N
NOUN (dog is 27 times as frequent as cat) - b%at d=5> 5
o .
do
cat d=63.3 o
o <
< | | | | | |

0 20 40 60 80 100 120

get
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Angle and Similarity

Two dimensions of English V=0Obj DSM

o
— direction Is more important than location S -
Knife
o _ O
— normalize length of vectors (or use angle g o _
as a distance measure)
? - ...,
OL"‘; boat
S - dog
cat O
o

0 20 40 60 80 100 120
get
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Angle and Similarity

Two dimensions of English V=0Obj DSM

o
— direction Is more important than location .
g _
Knife
. o O
— normalize length of vectors ®
3 g -
— Or use angle as a distance measure 2 - ...
OL"‘; boat
S - dog
cat O
-

0 20 40 60 80 100 120
get
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Geometric Interpretation: Co-occurrence as feature

— Row vector describes usage of word
IN a corpus of text

— (Can be seen as coordinates of the
point In an N-dimensional Euclidian space

Voo

get | see | use | hear | eat | Kkill

e [ 51 [ 20 [ &[0 [ 3 [0
2 7 I S
Tog
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Geometric Interpretation: Co-occurrence as feature

— Row vector describes usage of word
IN a corpus of text

— (Can be seen as coordinates of the
point In an N-dimensional Euclidian space

Voo

get | see | use | hear | eat | Kkill

e [ oL [0 [ [ 0 [3]0
= 50 I I

Jog
ot [ 0 [ W[ B[ & [0 [0
[ B[ 6 [ 2 [T ][0

8 I I
amana | 1] 2 [ 2] 0 [ 6] 0

Co-occurrence Matrix
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SVD for Dimensionality Reduction

m r r
I Vs, O
n — n|UULU, r S,
| 0 S,
X U S
S, \Y/
| s, 0 v,
I — n U1U2U3 o k S3. k \é
| 0 s |
N\ N\ FaN N\ T
X U S %
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Learned \Vord Vector Visualization

We can also use other methods, like LLE here:

e nuclear
® commander

LANDSCAPE_  oPAINTING
subjects® SFIGURES
archltechural ® FIGURE
e o law section
houses Co'é[ﬁﬁr’em .. o oCOngress
justicc ®  constitution ¢ president
: representatives
architecture o federal sP office .
ITALIAN ® oschi e " fought
taf ties ‘Gat OWers flghgtmg
- f' ITAL\:ﬁpdr v election +* captured
® weapons ajorltya‘r: Opower killed
o navy 3P A 4 l:prlemdentlal e ot
olitica eace
. Joe, SR S
o= m111tary0 ® e fran&él A Z;%%?;gn
® force ® russmnb ' invasion
government @ @ 2 IOTCES
front ¢ french
e battle troops
°
world alliedO. ® japan
e army britis ,
o ZCrmany japanese g

ware german@®

Nonlinear dimensionality reduction by locally linear embedding. Sam Roweis & Lawrence Saul. Science, v.290,2000

| Roweis and Saul, 2000 |



Issues with SVD

Computational cost for a d X n matrix is O(dn?), where d < n

— Makes it not possible for large number of word vocabularies or documents

't Is hard to incorporate out of sample (new) words or documents
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word2vec: Representing the Meaning of VWWords  [Mioiovetal., 2013]

Key idea: Predict surrounding words
of every word

Benefits: Faster and easier to
iINncorporate new document, words, etc.

*slide from Vagelis Hristidis



word2vec: Representing the Meaning of VWWords  [Mioiovetal., 2013]

Key id ea : P red iCt S u rrO u n d i n g WO rd S INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT
of every word wa| '

w(t-2)

w(t-1) w(t-1)

SUM

Benefits: Faster and easier to 1
iIncorporate new document, words, etc. + { A

w(t+1)

w(t) w(t)

w(t+1)

w(t+2)

w(t+2)
CBOW Skip-gram

Continuous Bag of Words (CBOW): use context words in a window to predict
Middle word

Skip-gram: use the middle word to predict surrounding ones in a window

*slide from Vagelis Hristidis



CBOW: Continuous Bag of Words

Example: “The cat sat on floor” (window size 2)

the

cat

olf

floor

INPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

\\/

PROJECTION

SUM

OUTPUT

» wit Sat

A
| Mikolov et al., 2013 ]

*slide from Vagelis Hristidis



CBOW: Continuous Bag of Words [ Mikolov et al., 2013

Input layer
0
1
0
O [ ]
cat ¢ Hidden layer Output layer
8 0
. 0
0
° 0
onenotvecton 0 sat (one-hot vector)
X 0
X 1
O "
1 0
on
0
0
"
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CBOW: Continuous Bag of Words

Input layer

cat

O Oooooo—

On

O Oooo—oo

S

M

=i
=

W ivix|n|

Hidden layer

| Mikolov et al., 2013 ]

Output layer

/
WiNix v

sat

ol oleo]olo]oleole

<

m

=
=~
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CBOW: Continuous Bag of Words

Input layer

cat

O oo~

On

O Cooooo—,o0oO

S

M

=l
=

W vix|n|

Hidden layer

| Mikolov et al., 2013 ]

Parameters to be learned

Output layer

/
WiNix v

sat

ol oleo]olo]oleole

<

m

=
=~
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CBOW: Continuous Bag of Words

Input layer

cat

O oo~

On

O Cooooo—,o0oO

S

M

=l
=

W vix|n|

| Mikolov et al., 2013 ]

Parameters to be learned

Hidden layer Output layer

0

0

0

/ 0

Wi Nix v 0 sat

0

1

¢ c RN o

y € RV

Size of the word vector (e.g., 300)

*slide from Vagelis Hristidis



CBOW: Continuous Bag of Words [ Mikolov et al., 2013

Input layer
0
i
. //V/)f/p
O [
Xcat O ' x_ Hidden layer Output layer

0 S :
0 & X
0
° 0

0

0 sat
" 0
8 ¢«1 o™ 1
1 %o v e RN 5

o 8 \\T\+ S,— - R|V|
0 qﬂ\ﬁvL
0
"
x € RV
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CBOW: Continuous Bag of Words [ Mikolov et al., 2013]

Input layer . )
W|V|><|N| X Xeat — Veat
I
B ) B 3 5 B P B
CQZ‘

os[za[efzsrsfos] | | [or
L ]
C [elulelsfeee L]

S
Q
~
O oo~

|
=
0o

0
0
0
1 +
Xon O \I\+
0 WA
N\
0 N\
0
x € RIVI
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CBOW: Continuous Bag of Words [ Mikolov et al., 2013]

Input layer W ’ )
'V |x|N| Xon  — on
Iy~
Py, [or[ea]re] e os[os] ] o2
>

os[ze[efzsrsfos | | |7
L]
C [elulelsfeel L]

S
Q
~
O oo~

0
0
0
1 +
Xon O \I\+
0 WA
N\
0 N\
0
x € RIVI

*slide from Vagelis Hristidis



CBOW: Continuous Bag of Words [ Mikolov et al., 2013

Input layer
0
i
X //V/)f/p
O ]
Xeat 0 '*x_ Hidden layer Output layer
Qx ~

8 S o
0 2z .
0
° A Veat +V0n O

= 0

’ 2 ) sat
. 0
0 J o" 1
O & .
1 +o" v e RV ;
Xon 8 \\T\+ S, - R|V|
0 qﬂ\ﬁvL
0
"
x ¢ RV
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CBOW: Continuous Bag of Words [ Mikolov et al., 2013

Input layer
0
i
. //V/)f/p
O |
Xcat '*x,_ Hidden layer Output layer
£ N
8 S o
. o 0 R
o Y = softmax(z)
O W » 8
V =2 .
M 0 Y sat
. 0
8 ¢«I v 1
1 %o v e RN 5
X 0 +

on 0 +\\I\ S, - R|V|
0 qﬂ\ﬁ\
0
.

x € RV
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CBOW: Continuous Bag of Words [ Mikolov et al., 2013

Input layer
0
i
. //V/)f/p
0 -
%o |0 '*x  Hidden layer Output layer o
0 N '
0 Voo, 0 0.02
0 8 y = softmax(z) | 0.00
0 , ) 0 0.02
Wivixn xv=2z 0 5 0.01
0 0 0.02
X N0 1 0.01
; G eRrW
4.0 veR 0 0.7
X O \+
on 0 \+\\[ }A’ c R'Vl
0\ 0.00
0
’ Optimize to get close to 1-hot encoding
x € RIVI
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CBOW: Continuous Bag of Words

Input [a)

J

S
Q
~
O oo~

T
Wivix v

ox[afre]efos[os[ [ ] Jez
os[ze[afzsro[os] || Jen

oa[efar]ofealeo] | ||z

Word vectors

0
O <J o‘(b
0 2
1 40" v e RV
X 0 L
n J\
0 WA
N\
0 N\
0
x ¢ RV

| Mikolov et al., 2013 ]

)utput layer

— |0
0
0
0
— Z 0 A
0 YMt
0
1
y € RV

y = softmax(z)
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CBOW: Interesting Observation [ Mikolov et al., 2013

Input layer There are two representations for same word!

-

[y

Xcat

x  Hidden layer Output layer

GQZ‘

| 2

CQZ‘

A

y = softmax(z)

OfFf Ooocooo—=

/ A
W 'V |x|N| XV =1%Z

YSat

e ecleoleoleoleolele

-

+

2.

/
<>

m @)
2=l

=~

OfFf Ooooco—=ool

S

M

=l
=
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CBOW: Interesting Observation

| Mikolov et al., 2013 ]

Another way to look at it: Maximize similarity between context word
representation and the word representation itself

p(wc) =

(2. Wx.)" (Wx,)

(Wx;)" (Wxy,)




CBOW: Interesting Observation [ Mikolov et al., 2013

Another way to look at it: Maximize similarity between context word
representation and the word representation itself

IW)=—23 S logplwiylw)

t=1 —m<j<m;j#0

exp (W, i Wy)

Zl,g eXP(W;‘;F W)

p(wtﬂ wy) =



Skip-Gram Model [ Mikolov et al., 2013 ]

O

o Output layer
o
Of y 1
w'NxV (_)]
Input layer
——_Hidden layer -
O r 0
X 0 Wiy By E} Wiysp lo| Y2
O N-dim C
V-dim
, o
W'l
o
Ol y oF,
o




Comparison

| Mikolov et al., 2013 ]

— CBOW is not great for rare words and typically needs less data to train

— SKkip-gram better for rate words and needs more data to train the model

Model Vector Training Accuracy [%]
Dimensionality | words

Semantic | Syntactic | Total
Collobert-Weston NNLM 50 660M 9.3 12.3 11.0
Turian NNLM 50 3’M 1.4 2.6 2.1
Turian NNLM 200 37M 1.4 2.2 1.8
Mnih NNLM 50 3’M 1.8 9.1 5.8
Mnih NNLM 100 3’M 3.3 13.2 8.8
Mikolov RNNLM 80 320M 4.9 18.4 12.7
Mikolov RNNLM 640 320M 8.6 36.5 24.6
Huang NNLM 50 990M 13.3 11.6 12.3
Our NNLM 20 6B 12.9 26.4 20.3
Our NNLM 50 6B 27.9 55.8 43.2
Our NNLM 100 6B 34.2 64.5 50.8
CBOW 300 783M 15.5 53.1 36.1
Skip-gram 300 783M 50.0 55.9 53.3




Interesting Results: Word Analogies

-+

+

Test for linear relationships, examined by Mikolov et al. (2014)

|a:b i C:? |

man:woman :: king:?

king
man

woman

queen

[0.300.70 ]

10.200.20 ]
[0.600.30 ]

[0.70 0.80 ]

—

0.75

0.5

0.25

d = arg max
£Zr

(wp — wq + we) ! wy

Hwb — Wgq +wcH

queen
, king
woman
man
0.25 0.5 0.75 1




Interesting Results: Word Analogies

1.5

0.5

-0.5

-1.5

| | 1 | | | |
China«
Beijing
B Russiac<
Japarnx
_ Moscow
Turkey Ankara Tokyo
Poland«
- Germany«
France Warsaw
v »Berlin
- Italy« Paris
»Athens
Greece« "
1 - Spain¢ Fome
X% Madrid
- Portugal Lisbon
| | 1 1 | | |
2 -1.5 -1 -0.5 0 0.5 1 1.5

| Mikolov et al., 2013 ]



Language Models

Model the probability of a sentence; ideally be able to sample plausible
Sentences
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Language Models

Model the probability of a sentence; ideally be able to sample plausible
Sentences

Why is this useful”?
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Language Models

Model the probability of a sentence; ideally be able to sample plausible
Sentences

Why is this useful”?

arg max P(wordsequence | acoustics) =

wordsequence

P(acoustics | wordsequence) x P(wordsequence)

alr'g 1max )
wordsequence P (CZC oustics )

arg max P(acoustics | wordsequence) x P(wordsequence)

wordsequence
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Language Models

Model the probability of a sentence; ideally be able to sample plausible
Sentences

Why is this useful”?

arg max P(wordsequence | acoustics) =

wordsequence

P(acoustics | wordsequence) x _
arg max

wordsequence P (a coustics )

arg max P(acoustics | wordsequence) X _

wordsequence

* Slides from Louis-Philippe Morency



Simple Language Models: N-Grams

Given a word sequence: Wi.p, = [wh wa, ..., wn]

We want to estimate p(wlzn)

* Slides from Louis-Philippe Morency



Simple Language Models: N-Grams

Given a word sequence: Wi.p, = [wh wa, ..., wn]

We want to estimate p(wlzn)

Using Chain Rule of probabilities:

p(w1;n) — p(wl)]?(w2|w1)]?(w3|w1, wz) ' 'P(wn\w1:n—1)

* Slides from Louis-Philippe Morency



Simple Language Models: N-Grams

Given a word sequence: Wi.p, = [wh wa, ..., wn]

We want to estimate p(wlzn)

Using Chain Rule of probabilities:
p(wi.n) = p(w1)p(w2|w1)p(ws|wi, w2) - - - p(Wn |W1:n—1)

Bi-gram Approximation' N-gram Approximation:

wl n Hp wk|wk 1 p(wlzn) — Hp(wk‘wkz—]\f—l—lzk—l)
k=1

* Slides from Louis-Philippe Morency



Estimating Probabilities

N-gram conditional probabilities can be estimated based on raw concurrence
counts In the observed sequences

Bi-gram:
C(wn— 1 wn)

C’(wn_l)

p(wn|wn—1) —

N-gram:

C(wn—N—lzn—lwn)
C(wn—N—1:n—1)

p(wn|wn—N—1:n—1) —

* Slides from Louis-Philippe Morency



P(next word is
“dog”)

tttttt

Neural

Network

f

_

1-0f-N encoding

of “"START”

P(next word is
“On”)

tttttt

Neural

Network

f

_

1-0f-N encoding

Of “dog”

P(next word is
“the”)

tttttt

Neural

Network

f

_

1-0f-N encoding

Of “On”

Neural-based Unigram Language Mode

P(next word is
“beach”)

tttttt

Neural
Network

f

_

1-0f-N encoding
of “the”

* Slides from Louis-Philippe Morency



Neural-based Unigram Language Mode

P(next word is P(next word is P(next word is P(next word is

“dog”) “on”) “the™) “beach”)
tttttt  tttttt  tetttt  tttttt
Neural Neural Neural Neural
Network Network Network Network

f

f

f

f

1-0f-N encoding 1-of-N encoding  1-of-N encoding 1-0f-N encoding
of “"START” of “dog” of “on” of “the”

Problem: Does not model sequential information (too local)

* Slides from Louis-Philippe Morency



Neural-based Unigram Language Mode

P(next word is P(next word is P(next word is P(next word is
“dog”) “on”) “the™) “beach™)
tttttt  tetttt  ttettt titttt
Neural Neural Neural Neural
Network Network Network Network

f f f f

1-0f-N encoding 1-of-N encoding  1-of-N encoding 1-0f-N encoding
of “START” of “dog” of “on” of “the”

Problem: Does not model sequential information (too local)

We need sequence modeling!

* Slides from Louis-Philippe Morency



Sequence Modeling

Image Maps
Input
K x | \Nutput
v '\ * %
Convolutions Fully Connected

Subsampling



Why Model Sequences”

;W M/Q/ )  FOREIGN MINISTER.

—)  THE SOUND OF

bringen sie bitte das auto zuriick

A X/

= please return the car

£

* glide from Dhruv Batra



Multi-modal tasks

Vision

Deep CNN  Generating

o

—>

Language

RNN

o

A group of people
shopping at an
outdoor market.

There are many
vegetables at the
fruit stand.

| Vinyals et al., 2015 ]



Sequences where you don’t expect them ...

Classify images by taking a
series of “glimpses”

| Gregor et al., ICML 2015 ]
| Mnih et al., ICLR 2015 ]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Sequences where you don’t expect them ...

Classify images by taking a
series of “glimpses”

| Gregor et al., ICML 2015 ]
| Mnih et al., ICLR 2015 ]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Sequences where you don’t expect them ...

Vision transformers




one to one

Input: No sequence
Output: No seaq.

Example:
“standard”
classification /
regression problems

Sequences in Inputs or Outputs?

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



one to one

Input: No sequence
Output: No seq.

Example:
“standard”
classification /
regression problems

one to many

Input: NO
seguence

Output:
Seqguence

Example:
Im2Caption

Sequences in Inputs or Outputs?

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



one to one

Input: No sequence
Output: No seq.

Example:
“standard”
classification /
regression problems

one to many

Input: NO
seguence

Output:
Seqguence

Example:
Im2Caption

Sequences in Inputs or Outputs?

many to one

Input: Sequence
Output: No seq.

Example: sentence
classification,
multiple-choice
guestion answering

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Sequences in Inputs or Outputs?

one to one one to many many to one many to many many to many

Input: No sequence Input: No Input: Sequence Input: Sequence
Output: No seq. Sequence Output: No seq. Output: Seqguence
Example: Output: Example: sentence Example: machine translation, video captioning,
“standard” Sequence classification, open-ended question answering, video question
classification / Example: multiple-choice answering
regression problems  Im2Caption question answering

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Key Conceptual [deas

Parameter Sharing

— In computational graphs = adding gradients

“Unrolling”

— In computational graphs with parameter sharing

Parameter Sharing + “Unrolling”
— Allows modeling arbitrary length sequences!

— Keeps number of parameters in check

* glide from Dhruv Batra



Recurrent Neural Network

AN

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Recurrent Neural Network

usually want to predict a
vector at some time steps

N

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Recurrent Neural Network

We can process a seguence of vectors x by applying a
recurrence formula at every time step:

new state old state

hy = fW(ht—la mt)

Input vector at

_ some time step
some function X

with parameters W

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Recurrent Neural Network

We can process a seguence of vectors x by applying a
recurrence formula at every time step:

hy = fW(ht—h mt)

Note: the same function and the same set of

parameters are used at every time step

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



(Vanilla) Recurrent Neural Network

hy = fW(ht—la xt)

y
|
1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



(Vanilla) Recurrent Neural Network

hy = fW(ht—h $t)
1

ht — taﬂh(Whhht_l T rhLt T bh)

y
|
1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



(Vanilla) Recurrent Neural Network

Yt — Whyht aE by

hy = fW(ht—la xt)
l

ht — taﬂh(Whhht_l T rhLt T bh)

y
|
1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



(Vanilla) Recurrent Neural Network

Intuition: RNN incorporates one element of sequence at a time
(e.q. letter, word, video frame, etc.)
building up a representation of the sequence “so far”

ht — taﬂh(Whhht_l T rhLt T bh) X




(Vanilla) Recurrent Neural Network

Intuition: RNN incorporates one element of sequence at a time
(e.q. letter, word, video frame, etc.)
building up a representation of the sequence “so far”

Alternative: RNN computes a representation of sequence element
(e.q. letter, word, video frame, etc.)
with context provided by all previous processed elements

1

ht — taﬂh(Whhht_l T rhLt T bh) X




(Vanilla) Recurrent Neural Network

Vocabulary one-hot encodings
dog | 1,0,0,0,0,0,0,0,0,0]
cat 2 (0,1,0,0,0,0,0,0,0,0]
pers 3 0,0,1,0,0,0,0,0,0,0]
holding 4 0,0,0,1,0,0,0,0,0,0]
tre 5 0,0,0,0,1,0,0,0,0,0]
comput 6 (0,0,0,0,0,1,0,0,0,0]

ing v (0,0,0,0,0,0,1,0,0,0]

ht — taﬂh(Whhht_l -

person holding dog

B xhdt ~




(Vanilla) Recurrent Neural Network

Vocabulary one-hot encodings
dog 1 (1,0,0,0,0,0,0,0,0,0]
cat 2 (0,1,0,0,0,0,0,0,0,0]
person 3 0,0,1,0,0,0,0,0,0,0]
holdin 0,0,0,1,0,0,0,0,0,0] :
e 0000100000 person holding dog
computer 6 (0,0,0,0,0,1,0,0,0,0]
using 7 (0,0,0,0,0,0,1,0,0,0] y

Identity Identity zero

hy = tanh(mhhtq T tht __\6%) ’
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Vocabulary one-hot encodings
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(Vanilla) Recurrent Neural Network

Vocabulary one-hot encodings
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(Vanilla) Recurrent Neural Network

Vocabulary one-hot encodings
dog | 1,0,0,0,0,0,0,0,0,0]
cat 2 (0,1,0,0,0,0,0,0,0,0]
person 3 0,0,1,0,0,0,0,0,0,0]
holding 4 (0,0,0,1,0,0,0,0,0,0] .
tree 5 (0,0,0,0,1,0,0,0,0,0] person ho‘dlﬂg dOg
computer 6 0,0,0,0,0,1,0,0,0,0] y
using 7 (0,0,0,0,0,0,1,0,0,0]

10,0,0.76,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0,0,0]

Identity Identity zero

1
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(Vanilla) Recurrent Neural Network

Vocabulary one-hot encodings
dog 1 (1,0,0,0,0,0,0,0,0,0]
cat 2 (0,1,0,0,0,0,0,0,0,0]
person 3 0,0,1,0,0,0,0,0,0,0]
holding 4 0,0,0,1,0,0,0,0,0,0] :
. 0000100000 person holding dog
computer 6 (0,0,0,0,0,1,0,0,0,0] y
using 7 (0,0,0,0,0,0,1,0,0,0]

Identity Identity zero
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(Vanilla) Recurrent Neural Network

Vocabulary one-hot encodings
dog | 1,0,0,0,0,0,0,0,0,0]
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(Vanilla) Recurrent Neural Network

Vocabulary one-hot encodings
dog | 1,0,0,0,0,0,0,0,0,0]
cat 2 (0,1,0,0,0,0,0,0,0,0]
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(Vanilla) Recurrent Neural Network

Vocabulary one-hot encodings
dog 1 (1,0,0,0,0,0,0,0,0,0]
cat 2 (0,1,0,0,0,0,0,0,0,0]
erson 8 01 00.0.8.60.8 Like bag of words with some
holding 4 0,0,0,1,0,0,0,0,0,0] .
tree 5 0,0,0,0,1,0,0,0,0,0] NOtiIoN Of recency
computer 6 0,0,0,0,0,1,0,0,0,0] y
using 7 0,0,0,0,0,0,1,0,0,0]

10,0,0.64,0.76,0,0,0,0,0,0] [0,0,0,1,0,0,0,0,0,0]

1
1
ht — t&ﬂh?%(xj\hht_l —:aX&hZEt ie—r{&h) .

10,0,0.76,0,0,0,0,0,0,0]




RNN Computational Graph

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



RNN Computational Graph

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



RNN Computational Graph

hg—™ fyw —mhy— fw — ho— fy — hy — — N
T T T
X1 X5 X3

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



RNN Computational Graph

Re-use the same weight matrix at every time-step

Nor— fw — hi— fw — ho— tw — 3 = — N
W i X3

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



RNN Computational Graph: Many to Many

V1 Yo Y3 YT

T T T T
Nor— fw — hi— fw — ho— tw — 3 = — N
VV/ 1 X3

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



RNN Computational Graph: Many to Many

Vi — L Yo —> Lo Y —> Ls yr — Lt
T T T T
Nor— fw — hi— fw — ho— tw — 3 = — N
W/ 1 X3

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



RNN Computational Graph: Many to Many

/_//4 -
Vi — L Yo —> Lo Y —> Ls yr — Lt
T T T T
Nor— fw — hi— fw — ho— tw — 3 = — N
VV/ 1 X3

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



RNN Computational Graph: Many to One

y
Nor— fw — hi— fw — ho— tw — 3 = — N
W i X3

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



RNN Computational Graph: One to Many

V1 Yo Y3 YT

T T | |
Nor— fw — hi— fw — ho— tw — 3 = — N
" ,

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Sequence to Sequence: Many to One + One to Many

Many to one: Encode input
seguence In a single vector

No = fw —>1h; fw =1 ho fw —>hg=> —> Ny
W1 X1 Xo X3
\

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Sequence to Sequence: Many to One + One to Many

Many to one: Encode input One to many: Produce output
seguence In a single vector seqguence from single input vector
Y1 Yo
ho_) f\/\/_)h~| f\/\/—)hz f\/\/_)hg_) _)’hT_) f\/\/_) h1 ‘—)f\/\/KhQ —)f\/\/—)
W, X4 X2 X3 /
~— ‘ Wo

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Example: Character-level Language Model

Vocabulary:
[ih,, ie!, £", iO!]

Example training sequence:

“nello”
1 0 0 0
: 0 1 0 0
iInput layer 0 0 1 1
0 0 0 0
Input Chars uhn uen uln I

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Example: Character-level Language Model

Vocabulary:
[ﬂh!’ ie!, £‘!, GO!]

Example training sequence:
“hello”

ht — taﬂh(Whhht_l —+- thﬁlﬁt - bh)

0.1

-0.5
-0.3

W hh| -

03

hidden layer | -0.1

0.9

1

: 0
iInput layer

P y 0

0

input chars: “h”

= |loa~0co0O

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung,

cs231n Stanford



Example: Character-level Language Model

target chars: ‘e’ s I 0
1.0 0.5 0.1 0.2
Vocabulary: output layer 2.2 0.3 0.5 -1.5
o -3.0 1.0 1.9 -0.1
‘n’, ‘e’, I', ‘o'l 4.1 1.2 1.1 2.2
I R
- 0.3 1.0 0.1 W hpl -0.3
Example training sequence: hidden layer | -0.1 > 0.3 ~ 05— 0.9
uheHOu 0.9 0.1 -0.3 0.7
IR R .
1 0 0 0
- 0 1 0 0
iInput layer 0 0 1 1
0 0 0 0
input chars: “h” “e” | I

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Example: Character-level Language Model (Sampling)

“e”
T
Vocabulary: 03

Softmax | -13
4 ) 4 ) (1) 4 ) 00
'h’, ‘e, ', "o’}
f
1.0
2.2

-3.0
4.1

Sample

output layer

At test time sample one
character at a time and feed T

0.3

baCk tO the mOde‘ hidden layer | -0.1

0.9

input layer

1
0
0
0
input chars: “p”

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Example: Character-level Language Model (Sampling)

1Pl
e

Sample
| \\
.03

Softmax | -13
4 ) 4 ) (1) 4 ) 00
'h’, ‘e, ', "o’}
f
1.0
2.2

-3.0
4.1

Vocabulary:

output layer

At test time sample one
character at a time and feed T

0.3

baCk tO the mOde‘ hidden layer | -0.1

0.9

input layer

1
0
0
0
“h”

CD= i A i )|

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

input chars:



Example: Character-level Language Model (Sampling)

Sample “e”\\ “J,’

| |

Vocabulary: somax | 13 | | | 20

'h’, 'e’, T, ‘0] 8 | | 50

! [

10 0.5

output layer %% _9'%

At test time sample one al =

character at a time and feed | |
baCk tO the mOde‘ hidden layer .(())3; > (1)3 =

0.9 01

1 0

input layer 8 :)

0 0

input chars: “h” k er

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Example: Character-level Language Model (Sampling)

Sample “e” “|” “IH “O”
T \ T \ T \ |
Vocabulary: T - 28 g N
‘h’, ‘e’, ", ‘0] 84 s | | | 03
i i T T
1.0 0.5 0.1 0.2
output layer | =0 | || 5 o i
At test time sample one = w2l S ==
character at a time and feed | | | s
baCk tO the mOde‘ hidden layer _(())3; > (1)3 > _%13 W_Wh» -(())g
0.9 01 -0.3 0.7
T T T s
1 0 0 0
input layer 8 2) (1) (1)
0 0 0 0
input chars: “p” k e k 3 kl

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Sampling vs. ArgMax vs. Beam Search

Sampling: allows to generate
diverse outputs

ArgMax: could be more stable In
practice

Beam Search: typically gets the
pbest results

Sample

Softmax | -

output layer

hidden layer

input layer

input chars:

0.3
-0.1

1
0
0
0
“h”

“I” O”

T \ T

11

A7 s

.68

.03

f |

0.1 0.2

05 -1.5

1.9 -0.1

-1.1 2.2

T TW_hy
0.1 W Wh -0.3
-0.5 —= 0.9
-0.3 017

T W xh




