
Lecture 9: Language Models and RNNs (Part 1)

Topics in AI (CPSC 532S): 
Multimodal Learning with Vision, Language and Sound



Course Logistics 

— Assignment 3



Representing a Word: One Hot Encoding
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Representing a Word: One Hot Encoding

dog   
cat 
person 
holding 
tree 
computer 
using

1 
2 
3 
4 
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6 
7

one-hot encodings

[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ] 
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Representing Phrases: Bag-of-Words
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person holding dog {3, 4, 1} [ 1, 0, 1, 1, 0, 0, 0, 0, 0, 0 ]
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Representing Phrases: Bag-of-Words
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person holding dog {3, 4, 1} [ 1, 0, 1, 1, 0, 0, 0, 0, 0, 0 ]

person holding cat {3, 4, 2} [ 1, 1, 0, 1, 0, 0, 0, 0, 0, 0 ]
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Representing Phrases: Bag-of-Words
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person holding dog {3, 4, 1} [ 1, 0, 1, 1, 0, 0, 0, 0, 0, 0 ]

person holding cat {3, 4, 2} [ 1, 1, 0, 1, 0, 0, 0, 0, 0, 0 ]

person using computer {3, 7, 6} [ 0, 0, 0, 1, 0, 1, 1, 0, 0, 0 ]
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person holding dog {3, 4, 1} [ 1, 0, 1, 1, 0, 0, 0, 0, 0, 0 ]

person holding cat {3, 4, 2} [ 1, 1, 0, 1, 0, 0, 0, 0, 0, 0 ]

person using computer {3, 7, 6} [ 0, 0, 0, 1, 0, 1, 1, 0, 0, 0 ]

person using computer 
person holding cat {3, 3, 7, 6, 2} [ 0, 1, 2, 1, 0, 1, 1, 0, 0, 0 ]
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Representing Phrases: Bag-of-Words
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person holding dog {3, 4, 1} [ 1, 0, 1, 1, 0, 0, 0, 0, 0, 0 ]

person holding cat {3, 4, 2} [ 1, 1, 0, 1, 0, 0, 0, 0, 0, 0 ]

person using computer {3, 7, 6} [ 0, 0, 0, 1, 0, 1, 1, 0, 0, 0 ]

person using computer 
person holding cat {3, 3, 7, 6, 2} [ 0, 1, 2, 1, 0, 1, 1, 0, 0, 0 ]

What if we have large vocabulary? 

*slide from V. Ordonex 



indices = [3, 7, 6, 2]     values = [2, 1, 1, 1]

indices = [3, 7, 6]     values = [1, 1, 1]

indices = [2, 3, 4]     values = [1, 1, 1]

indices = [1, 3, 4]     values = [1, 1, 1]

Representing Phrases: Sparse Representation
dog   
cat 
person 
holding 
tree 
computer 
using
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Vocabulary

bag-of-words representation
person holding dog

person holding cat

person using computer

person using computer 
person holding cat
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Bag-of-Words Representations

— Really easy to use 
— Can encode phrases, sentences, paragraph, documents 
— Good for classification, clustering or to compute distance between text 
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Bag-of-Words Representations

— Really easy to use 
— Can encode phrases, sentences, paragraph, documents 
— Good for classification, clustering or to compute distance between text 

These would be the same using bag-of-words

Problem: hard to distinguish sentences that have same words 

*slide from V. Ordonex 

my friend makes a nice meal

my nice friend makes a meal



— Really easy to use 
— Can encode phrases, sentences, paragraph, documents 
— Good for classification, clustering or to compute distance between text 

Bag-of-Bigrams

my friend makes a nice meal

my nice friend makes a meal

Problem: hard to distinguish sentences that have same words 

{my friend, friend makes, makes a, a nice, nice meal}

{my nice, nice friend, friend makes, makes a, a meal}



— Really easy to use 
— Can encode phrases, sentences, paragraph, documents 
— Good for classification, clustering or to compute distance between text 

Bag-of-Bigrams

my friend makes a nice meal

my nice friend makes a meal

Problem: hard to distinguish sentences that have same words 

{my friend, friend makes, makes a, a nice, nice meal}

{my nice, nice friend, friend makes, makes a, a meal}

indices = [10132, 21342, 43233, 53123, 64233]      
values = [1, 1, 1, 1, 1]

indices = [10232, 43133, 21342, 43233, 54233]      
values = [1, 1, 1, 1, 1]



Word Representations
1. One-hot encodings — only non-zero at the index of the word 

e.g., [ 0, 1, 0, 0, 0, …., 0, 0, 0 ] 
Good: simple 
Bad: not compact, distance between words always same (e.g., synonyms vs. antonyms) 
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Word Representations
1. One-hot encodings — only non-zero at the index of the word 

e.g., [ 0, 1, 0, 0, 0, …., 0, 0, 0 ] 
Good: simple 
Bad: not compact, distance between words always same (e.g., synonyms vs. antonyms) 

2. Word feature representations — manually define “good” features 
e.g., [ 1, 1, 0, 30, 0, …., 0, 0, 0 ] -> 300-dimensional irrespective of dictionary 

e.g., word ends on -ing  

3. Learned word representations — vector should approximate “meaning” 
of the word 

e.g., [ 1, 1, 0, 30, 0, …., 0, 0, 0 ] -> 300-dimensional irrespective of dictionary 
Good:  compact, distance between words is semantic

* Adopted from slides by Louis-Philippe Morency



Distributional Hypothesis

— At least certain aspects of the meaning of lexical expressions depend on 
their distributional properties in the linguistic contexts 
— The degree of semantic similarity between two linguistic expressions is a 
function of the similarity of the two linguistic contexts in which they can appear

* Adopted from slides by Louis-Philippe Morency

[ Lenci, 2008 ]



What is the meaning of “bardiwac”?

— He handed her glass of bardiwac.  
— Beef dishes are made to complement the bardiwacs.  
— Nigel staggered to his feet, face flushed from too much bardiwac.  
— Malbec, one of the lesser-known bardiwac grapes, responds well to 
Australia’s sunshine.  

— I dined off bread and cheese and this excellent bardiwac.  
—The drinks were delicious: blood-red bardiwac as well as light, sweet Rhenish. 

* Adopted from slides by Louis-Philippe Morency



What is the meaning of “bardiwac”?

— He handed her glass of bardiwac.  
— Beef dishes are made to complement the bardiwacs.  
— Nigel staggered to his feet, face flushed from too much bardiwac.  
— Malbec, one of the lesser-known bardiwac grapes, responds well to 
Australia’s sunshine.  

— I dined off bread and cheese and this excellent bardiwac.  
—The drinks were delicious: blood-red bardiwac as well as light, sweet Rhenish. 

* Adopted from slides by Louis-Philippe Morency

bardiwac is an alcoholic beverage made from grapes



Geometric Interpretation: Co-occurrence as feature 

— Row vector describes usage of word 
in a corpus of text 

— Can be seen as coordinates of the 
point in an n-dimensional Euclidian space

Co-occurrence Matrix
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Distance and Similarity

— Illustrated in two dimensions 

— Similarity = spatial proximity 
(Euclidian distance) 

— Location depends on frequency of a 
noun (dog is 27 times as frequent as cat)

* Slides from Louis-Philippe Morency



Angle and Similarity

— direction is more important than location  

— normalize length of vectors (or use angle 
as a distance measure)
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Geometric Interpretation: Co-occurrence as feature 

— Row vector describes usage of word 
in a corpus of text 

— Can be seen as coordinates of the 
point in an n-dimensional Euclidian space

Co-occurrence Matrix

* Slides from Louis-Philippe Morency

Way too high dimensional!



SVD for Dimensionality Reduction

*slide from Vagelis Hristidis



Learned Word Vector Visualization 
We can also use other methods, like LLE here:

[ Roweis and Saul, 2000 ]



Issues with SVD

Computational cost for a             matrix is            , where  

— Makes it not possible for large number of word vocabularies or documents 

It is hard to incorporate out of sample (new) words or documents

d⇥ n O(dn2) d < n

*slide from Vagelis Hristidis



word2vec: Representing the Meaning of Words
Key idea: Predict surrounding words 
of every word 

Benefits: Faster and easier to 
incorporate new document, words, etc. 

*slide from Vagelis Hristidis

[ Mikolov et al., 2013 ]



word2vec: Representing the Meaning of Words
Key idea: Predict surrounding words 
of every word 

Benefits: Faster and easier to 
incorporate new document, words, etc. 

Continuous Bag of Words (CBOW): use context words in a window to predict 
middle word

Skip-gram: use the middle word to predict surrounding ones in a window
*slide from Vagelis Hristidis

[ Mikolov et al., 2013 ]



CBOW: Continuous Bag of Words

Example: “The cat sat on floor” (window size 2)

the

cat

on

floor

sat

*slide from Vagelis Hristidis

[ Mikolov et al., 2013 ]



cat

on

Input layer

Hidden layer

sat

Output layer

(one-hot vector)

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

(one-hot vector)

CBOW: Continuous Bag of Words
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cat

on

Input layer

Hidden layer

sat

Output layer

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

CBOW: Continuous Bag of Words

x 2 R|V |

W|V |⇥|N |

W|V |⇥|N |

W0
|N |⇥|V |

ŷ 2 R|V |
v̂ 2 R|N |
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CBOW: Continuous Bag of Words

x 2 R|V |

W|V |⇥|N |

W|V |⇥|N |

W0
|N |⇥|V |

ŷ 2 R|V |
v̂ 2 R|N |

Parameters to be learned

Size of the word vector (e.g., 300)
*slide from Vagelis Hristidis

[ Mikolov et al., 2013 ]



Input layer
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CBOW: Continuous Bag of Words

x 2 R|V |

ŷ 2 R|V |
v̂ 2 R|N |

W
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W |N
|⇥|V |⇥

xon
=
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W
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CBOW: Continuous Bag of Words

x 2 R|V |

W0
|N |⇥|V |

ŷ 2 R|V |
v̂ 2 R|N |

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2
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2.6

…

…

1.8

	

0
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0
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0

0

0

WT
|V |⇥|N | xcat vcat=⇥

*slide from Vagelis Hristidis

[ Mikolov et al., 2013 ]



W
|N |⇥|V | ⇥ x

cat = v
cat

W |N
|⇥|V |⇥

xon
=
von

xon

xcat

Input layer

Hidden layer

sat

Output layer

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

CBOW: Continuous Bag of Words

x 2 R|V |

W0
|N |⇥|V |
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CBOW: Continuous Bag of Words

x 2 R|V |

ŷ 2 R|V |
v̂ 2 R|N |

v̂ =
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2
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CBOW: Continuous Bag of Words

x 2 R|V |

ŷ 2 R|V |
v̂ 2 R|N |

W0
|V |⇥|N | ⇥ v̂ = z

ŷ = softmax(z)

W0
|V |⇥|N | ⇥ v̂ = z

ŷ = softmax(z)

ŷsat
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W
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CBOW: Continuous Bag of Words

x 2 R|V |

ŷ 2 R|V |
v̂ 2 R|N |

W0
|V |⇥|N | ⇥ v̂ = z

ŷ = softmax(z)

W0
|V |⇥|N | ⇥ v̂ = z

ŷ = softmax(z)

ŷsat

0.01
0.02
0.00
0.02
0.01
0.02
0.01
0.7
…

0.00

Optimize to get close to 1-hot encoding 
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CBOW: Continuous Bag of Words

x 2 R|V |

ŷ 2 R|V |
v̂ 2 R|N |

W0
|V |⇥|N | ⇥ v̂ = z

ŷ = softmax(z)

W0
|V |⇥|N | ⇥ v̂ = z

ŷ = softmax(z)

ŷsat

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2
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|V |⇥|N |

Word vectors
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CBOW: Interesting Observation

x 2 R|V |

ŷ 2 R|V |
v̂ 2 R|N |

W0
|V |⇥|N | ⇥ v̂ = z

ŷ = softmax(z)
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|V |⇥|N | ⇥ v̂ = z

ŷ = softmax(z)

ŷsat
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[ Mikolov et al., 2013 ]

There are two representations for same word!



p(w|c) =
exp

h
(
P

c Wxc)
T (Wxw)

i

P|V |
i exp

h
(Wxi)

T (Wxw)
i

CBOW: Interesting Observation [ Mikolov et al., 2013 ]

Another way to look at it: Maximize similarity between context word 
representation and the word representation itself



J(W) = � 1

T

TX

t=1

X

�mjm;j 6=0

log p(wt+j |wt)

p(wt+j |wt) =
exp(wT

t+jwt)
P|V |

i=1 exp(w
T
i wt)

CBOW: Interesting Observation

Another way to look at it: Maximize similarity between context word 
representation and the word representation itself

[ Mikolov et al., 2013 ]



Skip-Gram Model [ Mikolov et al., 2013 ]



Comparison

— CBOW is not great for rare words and typically needs less data to train 

— Skip-gram better for rate words and needs more data to train the model 

[ Mikolov et al., 2013 ]



Interesting Results: Word Analogies



Interesting Results: Word Analogies [ Mikolov et al., 2013 ]



Language Models 

Model the probability of a sentence; ideally be able to sample plausible 
sentences

* Slides from Louis-Philippe Morency
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Simple Language Models: N-Grams
w1:n = [w1, w2, ..., wn]

p(w1:n) = p(w1)p(w2|w1)p(w3|w1, w2) · · · p(wn|w1:n�1)

Given a word sequence:

We want to estimate

* Slides from Louis-Philippe Morency
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Simple Language Models: N-Grams
w1:n = [w1, w2, ..., wn]

p(w1:n) = p(w1)p(w2|w1)p(w3|w1, w2) · · · p(wn|w1:n�1)

Given a word sequence:

We want to estimate

p(w1:n) = p(w1)p(w2|w1)p(w3|w1, w2) · · · p(wn|w1:n�1)

Using Chain Rule of probabilities:

p(w1:n) =
nY

k=1

p(wk|wk�1) p(w1:n) =
nY

k=1

p(wk|wk�N+1:k�1)

Bi-gram Approximation: N-gram Approximation:

* Slides from Louis-Philippe Morency



Estimating Probabilities

p(wn|wn�1) =
C(wn�1wn)

C(wn�1)

p(wn|wn�N�1:n�1) =
C(wn�N�1:n�1wn)

C(wn�N�1:n�1)

N-gram conditional probabilities can be estimated based on raw concurrence 
counts in the observed sequences

Bi-gram:

N-gram:

* Slides from Louis-Philippe Morency



Neural-based Unigram Language Mode
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Neural-based Unigram Language Mode

* Slides from Louis-Philippe Morency

Problem: Does not model sequential information (too local)



Neural-based Unigram Language Mode

* Slides from Louis-Philippe Morency

Problem: Does not model sequential information (too local)

We need sequence modeling!



Sequence Modeling



Why Model Sequences? 

* slide from Dhruv BatraImage Credit: Alex Graves and Kevin Gimpel



Multi-modal tasks

Cap$on	Genera$on:	Vinyals	et	al.	2015	

[ Vinyals et al.,  2015 ]



Sequences where you don’t expect them … 

Classify images by taking a 
series of “glimpses”

[ Gregor et al., ICML 2015 ]

[ Mnih et al., ICLR 2015 ]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Sequences where you don’t expect them … 

Classify images by taking a 
series of “glimpses”

[ Gregor et al., ICML 2015 ]

[ Mnih et al., ICLR 2015 ]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Sequences where you don’t expect them … 

Vision transformers



Sequences in Inputs or Outputs? 

Input: No sequence 
Output: No seq. 

Example: 
“standard” 

classification /  
regression problems

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Sequences in Inputs or Outputs? 

Input: No sequence 
Output: No seq. 

Example: 
“standard” 

classification /  
regression problems

Input: No 
sequence 
Output: 

Sequence 
Example: 

Im2Caption

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Sequences in Inputs or Outputs? 

Input: No sequence 
Output: No seq. 

Example: 
“standard” 

classification /  
regression problems

Input: No 
sequence 
Output: 

Sequence 
Example: 

Im2Caption

Input: Sequence 
Output: No seq. 

Example: sentence 
classification, 

multiple-choice 
question answering
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Sequences in Inputs or Outputs? 

Input: No sequence 
Output: No seq. 

Example: 
“standard” 

classification /  
regression problems

Input: No 
sequence 
Output: 

Sequence 
Example: 

Im2Caption

Input: Sequence 
Output: No seq. 

Example: sentence 
classification, 

multiple-choice 
question answering

Input: Sequence 
Output: Sequence 

Example: machine translation, video captioning, 
open-ended question answering, video question 

answering

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Key Conceptual Ideas

Parameter Sharing 

— in computational graphs = adding gradients 

“Unrolling” 

— in computational graphs with parameter sharing 

Parameter Sharing + “Unrolling” 

— Allows modeling arbitrary length sequences!  

— Keeps number of parameters in check
* slide from Dhruv Batra



x

RNN

Recurrent Neural Network
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x

RNN

y
usually want to predict a 
vector at some time steps

Recurrent Neural Network

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Recurrent Neural Network

We can process a sequence of vectors x by applying a 
recurrence formula at every time step:

some function 
with parameters W

x

RNN

y

input vector at 
some time step

old statenew state

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Recurrent Neural Network

We can process a sequence of vectors x by applying a 
recurrence formula at every time step:

x

RNN

y

Note: the same function and the same set of 
parameters are used at every time step

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



(Vanilla) Recurrent Neural Network

x

RNN

y

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



(Vanilla) Recurrent Neural Network

x

RNN

y
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(Vanilla) Recurrent Neural Network

x

RNN

y
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(Vanilla) Recurrent Neural Network

x

RNN

y

Intuition: RNN incorporates one element of sequence at a time 
(e.g. letter, word, video frame, etc.)  

building up a representation of the sequence “so far”



(Vanilla) Recurrent Neural Network

x

RNN

y

Intuition: RNN incorporates one element of sequence at a time 
(e.g. letter, word, video frame, etc.)  

building up a representation of the sequence “so far”

Alternative: RNN computes a representation of sequence element 
(e.g. letter, word, video frame, etc.)  

with context provided by all previous processed elements



(Vanilla) Recurrent Neural Network

x

RNN

y

dog   

cat 

person 

holding 

tree 

computer 

using

1 

2 

3 

4 

5 

6 

7

one-hot encodings

[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] 

[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ] 

[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ] 

[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ] 

[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] 

[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ] 

[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ] 

Vocabulary

person holding dog



(Vanilla) Recurrent Neural Network

x

RNN

y

dog   

cat 

person 

holding 

tree 

computer 

using

1 

2 

3 

4 

5 

6 

7

one-hot encodings

[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] 

[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ] 

[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ] 

[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ] 

[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] 

[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ] 

[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ] 

Vocabulary

Identity Identity zero

person holding dog



[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

(Vanilla) Recurrent Neural Network

x

RNN

y

dog   

cat 

person 

holding 

tree 

computer 

using

1 

2 

3 

4 

5 

6 

7

one-hot encodings

[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] 

[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ] 

[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ] 

[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ] 

[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] 

[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ] 

[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ] 

Vocabulary

Identity Identity zero

person holding dog



[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ]

(Vanilla) Recurrent Neural Network

x

RNN

y

dog   

cat 

person 

holding 

tree 

computer 

using

1 

2 

3 

4 

5 

6 

7

one-hot encodings

[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] 

[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ] 

[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ] 

[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ] 

[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] 

[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ] 

[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ] 

Vocabulary

person holding dog

Identity Identity zero



[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ]

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

[ 0, 0, 0.76, 0, 0, 0, 0, 0, 0, 0 ]

(Vanilla) Recurrent Neural Network

x

RNN

y

dog   

cat 

person 

holding 

tree 

computer 

using

1 

2 

3 

4 

5 

6 

7

one-hot encodings

[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] 

[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ] 

[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ] 

[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ] 

[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] 

[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ] 

[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ] 

Vocabulary

person holding dog

Identity Identity zero



[ 0, 0, 0.76, 0, 0, 0, 0, 0, 0, 0 ]

(Vanilla) Recurrent Neural Network

x

RNN

y

dog   

cat 

person 

holding 

tree 

computer 

using

1 

2 

3 

4 

5 

6 

7

one-hot encodings

[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] 

[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ] 

[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ] 

[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ] 

[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] 

[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ] 

[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ] 

Vocabulary

Identity Identity zero

person holding dog



[ 0, 0, 0.76, 0, 0, 0, 0, 0, 0, 0 ]

person holding dog

[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ]

(Vanilla) Recurrent Neural Network

x

RNN

y

dog   

cat 

person 

holding 

tree 

computer 

using

1 

2 

3 

4 

5 

6 

7

one-hot encodings

[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] 

[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ] 

[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ] 

[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ] 

[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] 

[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ] 

[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ] 

Vocabulary

Identity Identity zero



person holding dog

[ 0, 0, 0.76, 0, 0, 0, 0, 0, 0, 0 ]

[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ]

(Vanilla) Recurrent Neural Network

x

RNN

y

dog   

cat 

person 

holding 

tree 

computer 

using

1 

2 

3 

4 

5 

6 

7

one-hot encodings

[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] 

[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ] 

[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ] 

[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ] 

[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] 

[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ] 

[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ] 

Vocabulary

Identity Identity zero

[ 0, 0, 0.64, 0.76, 0, 0, 0, 0, 0, 0 ]



Like bag of words with some 
notion of recency

[ 0, 0, 0.76, 0, 0, 0, 0, 0, 0, 0 ]

[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ]

(Vanilla) Recurrent Neural Network

x

RNN

y

dog   

cat 

person 

holding 

tree 

computer 

using

1 

2 

3 

4 

5 

6 

7

one-hot encodings

[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] 

[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ] 

[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ] 

[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ] 

[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] 

[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ] 

[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ] 

Vocabulary

Identity Identity zero

[ 0, 0, 0.64, 0.76, 0, 0, 0, 0, 0, 0 ]



RNN Computational Graph

h0 fW h1

x1
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RNN Computational Graph

h0 fW h1 fW h2

x2x1
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RNN Computational Graph

h0 fW h1 fW h2 fW h3

x3

… 

x2x1

hT
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RNN Computational Graph

h0 fW h1 fW h2 fW h3

x3

… 

x2x1W

hT

Re-use the same weight matrix at every time-step

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



RNN Computational Graph: Many to Many

h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1W

hT

y3y2y1
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RNN Computational Graph: Many to Many

h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1W

hT

y3y2y1 L1 L2 L3 LT
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RNN Computational Graph: Many to Many

h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1W

hT

y3y2y1 L1 L2 L3 LT

L

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



RNN Computational Graph: Many to One

h0 fW h1 fW h2 fW h3

x3

y

… 

x2x1W

hT

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



RNN Computational Graph: One to Many

h0 fW h1 fW h2 fW h3

yT

… 

x
W

hT

y3y2y1
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Sequence to Sequence: Many to One + One to Many

h0 fW h1 fW h2 fW h3

x3

… 

x2x1W1

hT

Many to one: Encode input 
sequence in a single vector
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Sequence to Sequence: Many to One + One to Many

h0 fW h1 fW h2 fW h3

x3

… 

x2x1W1

hT

Many to one: Encode input 
sequence in a single vector

y1 y2

fW h1 fW h2 fW

W2

One to many: Produce output 
sequence from single input vector

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Example: Character-level Language Model

Vocabulary: 
[‘h’, ‘e’, ‘l’, ‘o’]

Example training sequence: 
“hello”
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Example: Character-level Language Model

Vocabulary: 
[‘h’, ‘e’, ‘l’, ‘o’]

Example training sequence: 
“hello”
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Example: Character-level Language Model

Vocabulary: 
[‘h’, ‘e’, ‘l’, ‘o’]

Example training sequence: 
“hello”

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Example: Character-level Language Model (Sampling)

Vocabulary: 
[‘h’, ‘e’, ‘l’, ‘o’]

At test time sample one 
character at a time and feed 
back to the model
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Example: Character-level Language Model (Sampling)

Vocabulary: 
[‘h’, ‘e’, ‘l’, ‘o’]

At test time sample one 
character at a time and feed 
back to the model
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Example: Character-level Language Model (Sampling)

Vocabulary: 
[‘h’, ‘e’, ‘l’, ‘o’]

At test time sample one 
character at a time and feed 
back to the model
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.13 

.00 

.84
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Example: Character-level Language Model (Sampling)

Vocabulary: 
[‘h’, ‘e’, ‘l’, ‘o’]

At test time sample one 
character at a time and feed 
back to the model

.03 

.13 

.00 

.84

.25 

.20 

.05 

.50

.11 

.17 

.68 

.03

.11 

.02.08 

.79
Softmax

“e” “l” “l” “o”
Sample

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Sampling vs. ArgMax vs. Beam Search

.03 

.13 

.00 

.84

.25 

.20 

.05 

.50

.11 

.17 

.68 

.03

.11 

.02.08 

.79
Softmax

“e” “l” “l” “o”
Sample

Sampling: allows to generate 
diverse outputs

ArgMax: could be more stable in 
practice 

Beam Search: typically gets the 
best results


