Topics in AI (CPSC 532S):
Multimodal Learning with Vision, Language and Sound

Lecture 8: Introduction to NLP
Warning!

I am not an NLP researcher ...
Goal of NLP

Fundamental goal: *deep understanding of broad language* (going beyond string processing or keyword matching!)

slide adopted from Dan Klein
Goal of **NLP**

Fundamental goal: *deep understanding of broad language*

(going beyond string processing or keyword matching!)

End systems we want to build:

Ambitious / Complex:
- speech recognition
- machine translation
- information extraction
- dialog interfaces / understanding
- question answering

Modest / Less complex:
- spelling correction
- parts of speech tagging
- text categorization

slide adopted from Dan Klein
Why **NLP** is hard?

1. Human language is **ambiguous**

slide adopted from Dan Klein
Why **NLP** is hard?

1. Human language is **ambiguous**

Task: pronoun resolution

Jack drank the wine on the table. **It** was red and round.

Example adapted from Wilks (1975)
Why **NLP** is hard?

1. Human language is **ambiguous**

Task: pronoun resolution

Jack drank the wine on the table. **It** was red and round.

Example adapted from Wilks (1975)
Why **NLP** is hard?

1. Human language is **ambiguous**

Task: pronoun resolution

Jack drank the wine on the table. *It* was red and round.

Jack saw Sam at the party. *He* went back to the bar to get another drink.

Example adapted from Wilks (1975)
Why **NLP** is hard?

1. Human language is **ambiguous**

Task: pronoun resolution

Jack drank the wine on the table. *It* was red and round.

Jack saw Sam at the party. *He* went back to the bar to get another drink.

Jack saw Sam at the party. *He* clearly had drunk too much.

Example adapted from Wilks (1975)
Why NLP is hard?

1. Human language is ambiguous

Task: preposition attachment

I ate the bread with pecans.

I ate the bread with fingers.
Why **NLP** is hard?

1. Human language is **ambiguous**

Task: preposition attachment

I ate the **bread** with pecans.

I **ate** the bread with fingers.

Despite the structure of the two sentences being identical, the two prepositional phrases relate to different POS (noun vs. verb)

slide from Yejin Choi
Why NLP is hard?

1. Human language is **ambiguous**

2. Requires **reasoning** beyond what is explicitly mentioned (a, b) and some of reasoning requires **world knowledge** (c)

slide from Yejin Choi
Why **NLP** is hard?

1. Human language is **ambiguous**

2. Requires **reasoning** beyond what is explicitly mentioned (a, b) and some of reasoning requires **world knowledge** (c)

Example: I couldn’t submit the homework because my horse ate it.

slide from Yejin Choi
Why NLP is hard?

1. Human language is **ambiguous**

2. Requires **reasoning** beyond what is explicitly mentioned (a, b) and some of reasoning requires **world knowledge** (c)

Example: I couldn’t submit the homework because my horse ate it.

(a) I have a horse.

(b) I did my homework.

(c) My homework was done on soft material (like paper) as opposed to on hard/heavy object (like a computer).

Reasoning: It is more likely horse ate paper than a computer.

slide from Yejin Choi
Why **NLP** is hard?

1. Human language is **ambiguous**

2. Requires **reasoning** beyond what is explicitly mentioned (a, b) and some of reasoning requires **world knowledge** (c)

3. Language is difficult even for humans

Learning **native language** you may think is easy (but compare 5 / 10 / 20 year old)

Learning **foreign language(s)** — even harder

slide from Yejin Choi
Is **NLP** really this hard?

In the back of your mind, if you’re thinking …

“My native language is so easy. How hard could it be to type all the grammar rules, and idioms, etc. into software program? Sure it might take a while, but with enough people and money, it should be doable!”

… you are not alone!

slide from Yejin Choi
Short History of NLP

Birth of NLP and Linguistics

- Initially people thought NLP was easy
- Predicted “machine translation” can be solved in 3 years
- Hand-coded rules / linguistic oriented approaches
- The 3 year project continued for 10 years with no good results (despite significant expenditures)

slide adopted from Yejin Choi
Short History of NLP

Dark Era

- After initial hype, people believed NLP was impossible
- NLP research is mostly abandoned

slide adopted from Yejin Choi
Short History of NLP

Slow Revival of NLP

- Some research activities resumed
- Still emphasis on linguistically oriented approaches
- Working on small toy problems with weak empirical evaluation

slide adopted from Yejin Choi
Short History of NLP

Statistical Era / Revolution

– Computational power has increased substantially
– Data-driven, statistical approaches with simple representations win over complex hand-coded linguistic rules

*slide adopted from Yejin Choi
Short History of NLP

Statistical Era / Revolution

- Computational power has increased substantially
- Data-driven, statistical approaches with simple representations win over complex hand-coded linguistic rules
- “Whenever I fire a linguist our machine translation performance improves”

Jelinek 1988
Short History of NLP

Statistics Powered by Linguistic Insights

- More sophisticated statistical models
- Focus on new richer linguistic representations

slide adopted from Yejin Choi
Ambiguity is **Explosive**

Ambiguities compound to generate enormous number of interpretations

In English, sentence ending in N propositional phrases has over 2^N syntactic interpretations

slide from Ray Mooney
Ambiguity is **Explosive**

Ambiguities compound to generate enormous number of interpretations

In English, sentence ending in N propositional phrases has over 2^N syntactic interpretations

Example:

— I saw a man with the telescope.

slide from Ray Mooney
Ambiguity is **Explosive**

Ambiguities compound to generate enormous number of interpretations

In English, sentence ending in N propositional phrases has over \(2^N\) syntactic interpretations

Example:

- I saw a man with the telescope. -> 2 parses

slide from Ray Mooney
Ambiguity is **Explosive**

Ambiguities compound to generate enormous number of interpretations

In English, sentence ending in N propositional phrases has over \(2^N\) syntactic interpretations

Example:

— I saw a man with the telescope.
Ambiguity is **Explosive**

Ambiguities compound to generate enormous number of interpretations

In English, sentence ending in N propositional phrases has over 2^N syntactic interpretations

Example:

- I saw a man with the telescope. -> 2 parses
- I saw a man on the hill with the telescope. -> 5 parses
- I saw a man on the hill in Texas with the telescope. -> 14 parses
- I saw a man on the hill in Texas with the telescope at noon. -> 42 parses
- I saw a man on the hill in Texas with the telescope at noon on Monday. -> 132 parses

slide from Ray Mooney
Many **jokes rely on ambiguity** of language:

— Groucho Marx: “One morning I shot an elephant in my pajamas. How he got into my pajamas, I’ll never know”.

— Noah took all of the animals on the ark in pairs. Except the worms, they came in apples.

— Policeman to little boy: “We are looking for a thief with a bicycle.” Little boy: “Wouldn’t you be better using your eyes.”

— Why is the teacher wearing sun-glasses. Because the class is so bright.
Why is Language Ambiguous?

— Having a **unique linguistic expression** for every possible conceptualization that could be conveyed would make language **overly complex** and linguistic expressions unnecessarily long.

— Allowing **resolvable ambiguity** permits shorter linguistic expression, i.e., data compression.

— Language relies on people’s ability to use their **knowledge and inference abilities to properly resolve ambiguities**.

— Infrequently, disambiguation fails, i.e., the **compression is lossy**.
Natural vs. Computer Languages

— Ambiguity is the primary difference between natural and computer languages

— Formal programming languages are designed to be unambiguous, i.e., they can be defined by a grammar and produce a unique parse for each sentence (line of code) in the language.

— Programming languages are also designed for efficient (deterministic) parsing

slide from Ray Mooney
1. Word **segmentation**

 - Breaking a string of characters into a sequence of words.
 - In some written languages (e.g., Chinese) words are not separated by spaces.

*slide adopted from Ray Mooney
Syntactic NLP Tasks

1. Word **segmentation**

2. **Morphological** analysis
 - **Morphology** - field of linguistics that studies the internal structure or words
 - A **morpheme** is the smallest linguistic unit that has semantic meaning
 - Morphological analysis is the task of segmenting a word into morphemes

<table>
<thead>
<tr>
<th>carried</th>
<th>carry + ed (past tense)</th>
</tr>
</thead>
<tbody>
<tr>
<td>independently</td>
<td>in + (depend + ent) + ly</td>
</tr>
</tbody>
</table>
Syntactic NLP Tasks

1. Word **segmentation**

2. **Morphological** analysis

3. Parts of Speech (**POS**) tagging
 - Annotate each word in a sentence with a pat-of-speech

 - Useful for other language (e.g., syntactic parsing) and vision + language tasks
Syntactic NLP Tasks

1. Word segmentation

2. Morphological analysis

3. Parts of Speech (POS) tagging
 - Annotate each word in a sentence with a pat-of-speech

 I ate the spaghetti with meatballs.
 Pro V Det N Prep N

 John saw the saw and decided to take it to the table.
 PN V Det N Con V Part V Pro Prep Det N

 - Useful for other language (e.g., syntactic parsing) and vision + language tasks

slide adopted from Ray Mooney
Syntactic NLP Tasks

1. Word **segmentation**

2. **Morphological** analysis

3. Parts of Speech (**POS**) tagging

4. **Phrase** Chunking
 - Find all noun phrases (NPs) and verb phrases (VPs) in a sentence

 - [NP I] [VP ate] [NP the spaghetti] [PP with] [NP meatballs].

 - [NP He] [VP reckons] [NP the current account deficit] [VP will narrow] [PP to] [NP 1.8 billion].

slide adopted from Ray Mooney
Syntactic NLP Tasks

1. Word **segmentation**

2. **Morphological** analysis

3. Parts of Speech (**POS**) tagging

4. **Phrase** Chunking

5. **Syntactic** parsing

slide adopted from Ray Mooney
Semantic NLP Tasks

1. Word **Sense Disambiguation** (WSD)

- Words in language can have multiple meanings

 - Ellen has strong **interest** in computational linguistics.

 - Ellen pays a large amount of **interest** on her credit card.

- For many tasks (question answering, translation), the proper sense of each ambiguous word in a sentence must be determined

slide adopted from Ray Mooney
Semantic NLP Tasks

1. Word **Sense Disambiguation** (WSD)

2. **Semantic Role** Labeling (SRL)

 — For each clause, determine the semantic role played by each noun phrase that is an argument to the verb

 — John drove Mary from Austin to Dallas in his Toyota Prius.

 — The hammer broke the window.

slide adopted from Ray Mooney
Semantic NLP Tasks

1. Word **Sense Disambiguation** (WSD)

2. **Semantic Role** Labeling (SRL)

 — For each clause, determine the semantic role played by each noun phrase that is an argument to the verb

 — John drove Mary from Austin to Dallas in his Toyota Prius.

 — The hammer broke the window.
Semantic NLP Tasks

1. Word **Sense Disambiguation** (WSD)

2. **Semantic Role** Labeling (SRL)

3. Textural **Entailment**

 — Determine whether one natural language sentence entails (implies) another under an ordinary interpretation.
Semantic NLP Tasks

1. Word **Sense Disambiguation** (WSD)

2. **Semantic Role** Labeling (SRL)

3. Textural **Entailment**
 - Determine whether one natural language sentence entails (implies) another under an ordinary interpretation.
 - Note, you can think of images entailing captions … [Vendrov et al, 2015]

Sign with a spray paint over it.

slide adopted from Ray Mooney
<table>
<thead>
<tr>
<th>Text</th>
<th>Hypothesis</th>
<th>Entailment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eyeing the huge market potential, currently led by Google, Yahoo took over search company Overture Services Inc last year.</td>
<td>Yahoo bought Overture.</td>
<td>TRUE</td>
</tr>
<tr>
<td>Microsoft’s rival Sun Microsystems Inc. bought Star Office last month and plans to boost its development as a Web-based device running over the Net on personal computers and Internet appliances.</td>
<td>Microsoft bought Star Office.</td>
<td>FALSE</td>
</tr>
<tr>
<td>The National Institute for Psychobiology in Israel was established in May 1971 as the Israel Center for Psychobiology by Prof. Joel.</td>
<td>Israel was established in May 1971.</td>
<td>FALSE</td>
</tr>
<tr>
<td>Since its formation in 1948, Israel fought many wars with neighboring Arab countries.</td>
<td>Israel was established in 1948.</td>
<td>TRUE</td>
</tr>
</tbody>
</table>

slide adopted from Ray Mooney
Textual Entailment

<table>
<thead>
<tr>
<th>TEXT</th>
<th>HYPOTHESIS</th>
<th>ENTAILMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eyeing the huge market potential, currently led by Google, Yahoo took over search company Overture Services Inc last year.</td>
<td>Yahoo bought Overture.</td>
<td>TRUE</td>
</tr>
<tr>
<td>Microsoft’s rival Sun Microsystems Inc. bought Star Office last month and plans to boost its development as a Web-based device running over the Net on personal computers and Internet appliances.</td>
<td>Microsoft bought Star Office.</td>
<td></td>
</tr>
<tr>
<td>The National Institute for Psychobiology in Israel was established in May 1971 as the Israel Center for Psychobiology by Prof. Joel.</td>
<td>Israel was established in May 1971.</td>
<td></td>
</tr>
<tr>
<td>Since its formation in 1948, Israel fought many wars with neighboring Arab countries.</td>
<td>Israel was established in 1948.</td>
<td></td>
</tr>
</tbody>
</table>

slide adopted from Ray Mooney
<table>
<thead>
<tr>
<th>TEXT</th>
<th>HYPOTHESIS</th>
<th>ENTAILMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eyeing the huge market potential, currently led by Google, Yahoo took over search company Overture Services Inc last year.</td>
<td>Yahoo bought Overture.</td>
<td>TRUE</td>
</tr>
<tr>
<td>Microsoft’s rival Sun Microsystems Inc. bought Star Office last month and plans to boost its development as a Web-based device running over the Net on personal computers and Internet appliances.</td>
<td>Microsoft bought Star Office.</td>
<td>FALSE</td>
</tr>
<tr>
<td>The National Institute for Psychobiology in Israel was established in May 1971 as the Israel Center for Psychobiology by Prof. Joel.</td>
<td>Israel was established in May 1971.</td>
<td>TRUE</td>
</tr>
<tr>
<td>Since its formation in 1948, Israel fought many wars with neighboring Arab countries.</td>
<td>Israel was established in 1948.</td>
<td></td>
</tr>
</tbody>
</table>

slide adopted from Ray Mooney
Textual Entailment

<table>
<thead>
<tr>
<th>TEXT</th>
<th>HYPOTHESIS</th>
<th>ENTAILMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eyeing the huge market potential, currently led by Google, Yahoo took over search company Overture Services Inc last year.</td>
<td>Yahoo bought Overture.</td>
<td>TRUE</td>
</tr>
<tr>
<td>Microsoft’s rival Sun Microsystems Inc. bought Star Office last month and plans to boost its development as a Web-based device running over the Net on personal computers and Internet appliances.</td>
<td>Microsoft bought Star Office.</td>
<td>FALSE</td>
</tr>
<tr>
<td>The National Institute for Psychobiology in Israel was established in May 1971 as the Israel Center for Psychobiology by Prof. Joel.</td>
<td>Israel was established in May 1971.</td>
<td>FALSE</td>
</tr>
<tr>
<td>Since its formation in 1948, Israel fought many wars with neighboring Arab countries.</td>
<td>Israel was established in 1948.</td>
<td></td>
</tr>
<tr>
<td>TEXT</td>
<td>HYPOTHESIS</td>
<td>ENTAILMENT</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Eyeing the huge market potential, currently led by Google, Yahoo took over search company Overture Services Inc last year.</td>
<td>Yahoo bought Overture.</td>
<td>TRUE</td>
</tr>
<tr>
<td>Microsoft’s rival Sun Microsystems Inc. bought Star Office last month and plans to boost its development as a Web-based device running over the Net on personal computers and Internet appliances.</td>
<td>Microsoft bought Star Office.</td>
<td>FALSE</td>
</tr>
<tr>
<td>The National Institute for Psychobiology in Israel was established in May 1971 as the Israel Center for Psychobiology by Prof. Joel.</td>
<td>Israel was established in May 1971.</td>
<td>FALSE</td>
</tr>
<tr>
<td>Since its formation in 1948, Israel fought many wars with neighboring Arab countries.</td>
<td>Israel was established in 1948.</td>
<td>TRUE</td>
</tr>
</tbody>
</table>

slide adopted from Ray Mooney
Pragmatics and Discourse Tasks

Determine which phrases in a document refer to the same underlying entity

– John put the carrot on the plate and ate it.

– Bush started the war in Iraq. But the president needed the consent of Congress.

*slide adopted from Ray Mooney
Pragmatics and **Discourse** Tasks

Determine which phrases in a document refer to the same underlying entity

– John put the **carrot** on the **plate** and ate **it**.

– Bush started the war in Iraq. But the **president** needed the consent of Congress.

Some cases require difficult reasoning

– Today was Jack's birthday. Penny and Janet went to the store. They were going to get presents. Janet decided to get a kite. "Don't do that," said Penny. "Jack has a kite. He will make you take it back."