

THE UNIVERSITY OF BRITISH COLUMBIA

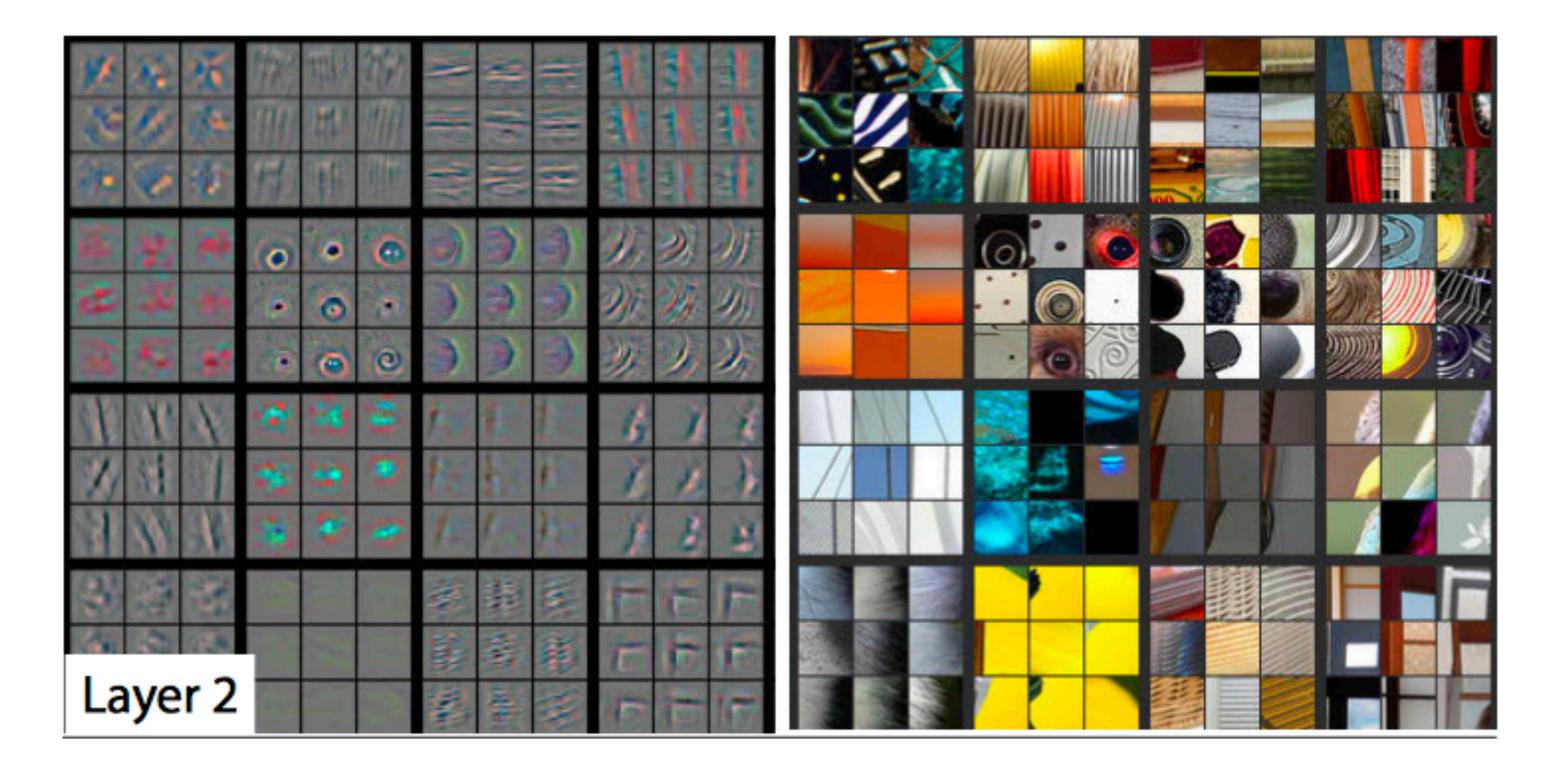
Topics in AI (CPSC 532S): **Multimodal Learning with Vision, Language and Sound**

Lecture 8: Visualizing CNNs

Recall ...



Layer 1

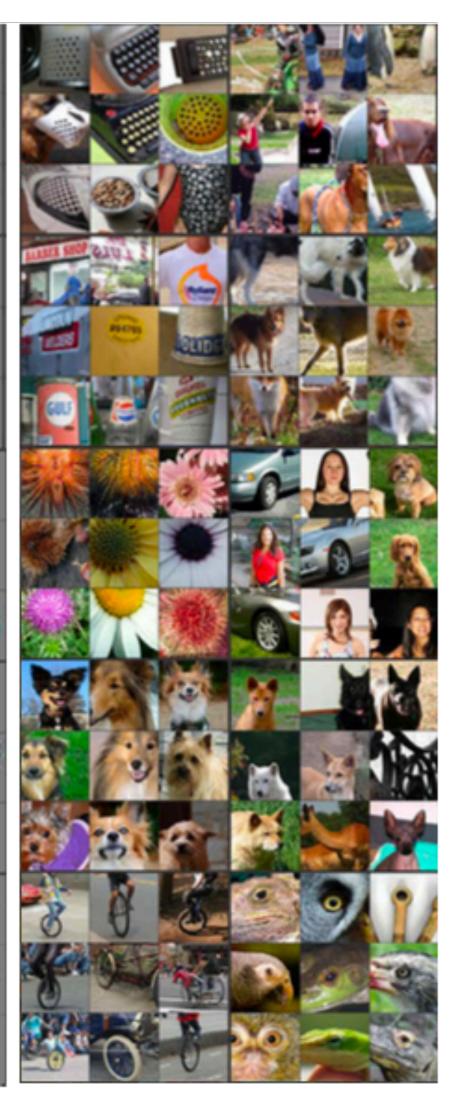


[Zeiler and Fergus, 2013]

01

Recall ...

6 0 • 22 3 ß 1 20 24 3 **T** 9 Ň TIC 17 1 1 0 Layer 5 Layer 4



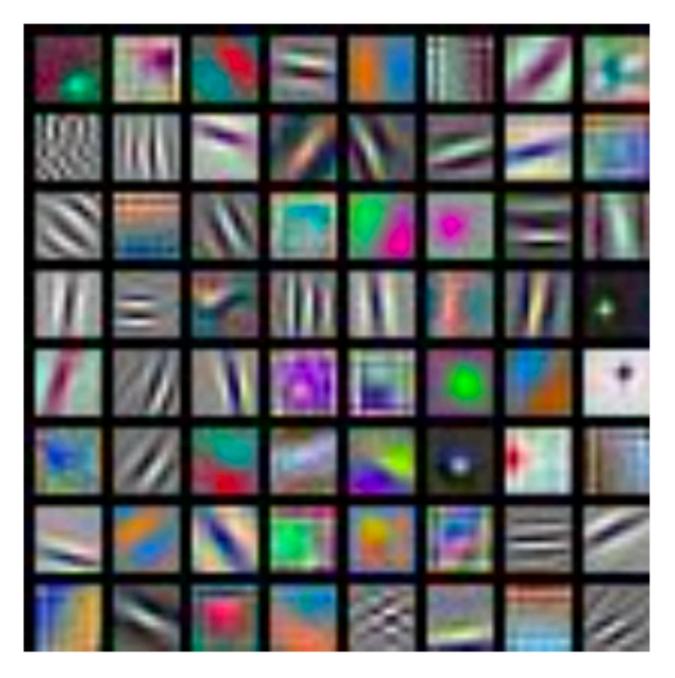
[Zeiler and Fergus, 2013]

Motivation ...

CNNs are big black boxes, lets get some intuition for how and why they work

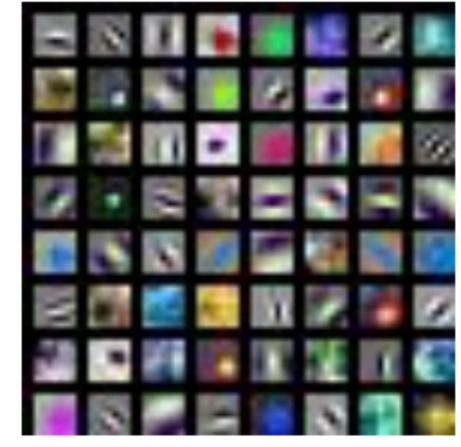
First Layer Filters ...

Directly visualize filters (only works for the first layer)



ResNet-18: 64 x 3 x 7 x 7

AlexNet: 64 x 3 x 11 x 11

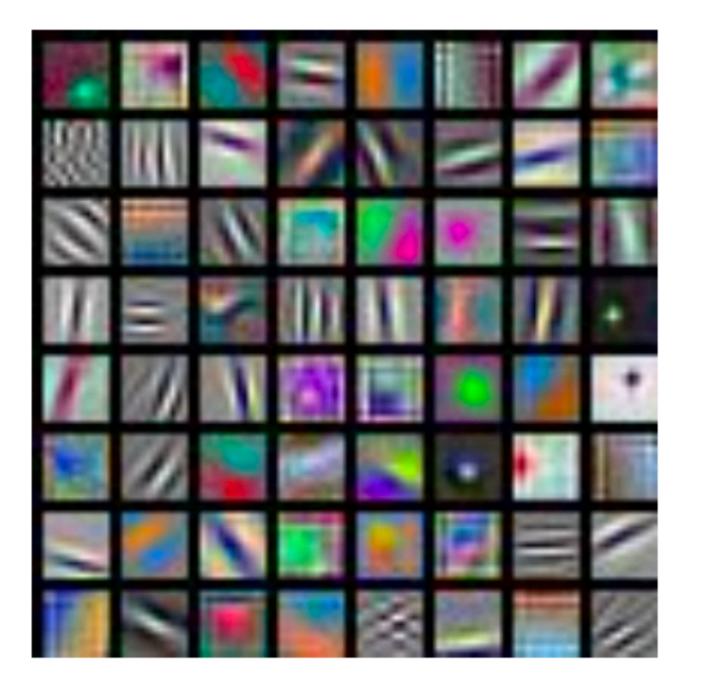


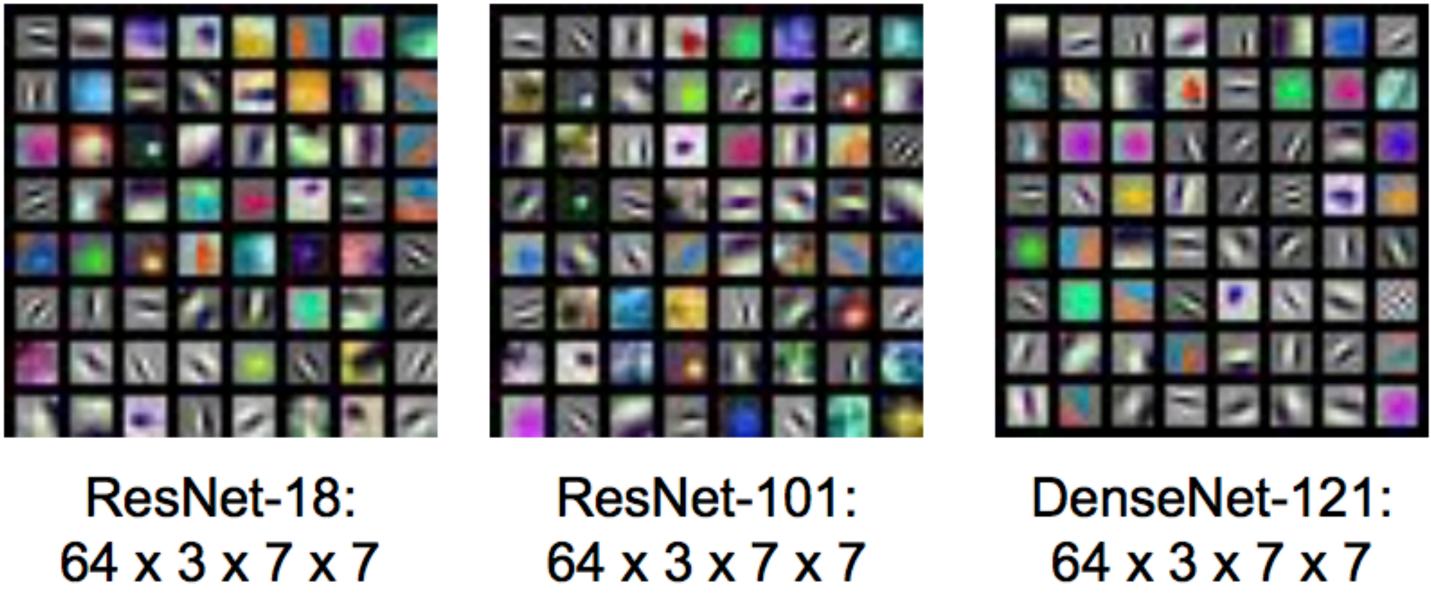
ResNet-101: 64 x 3 x 7 x 7

DenseNet-121: 64 x 3 x 7 x 7

First Layer Filters ...

Directly visualize filters (only works for the first layer)



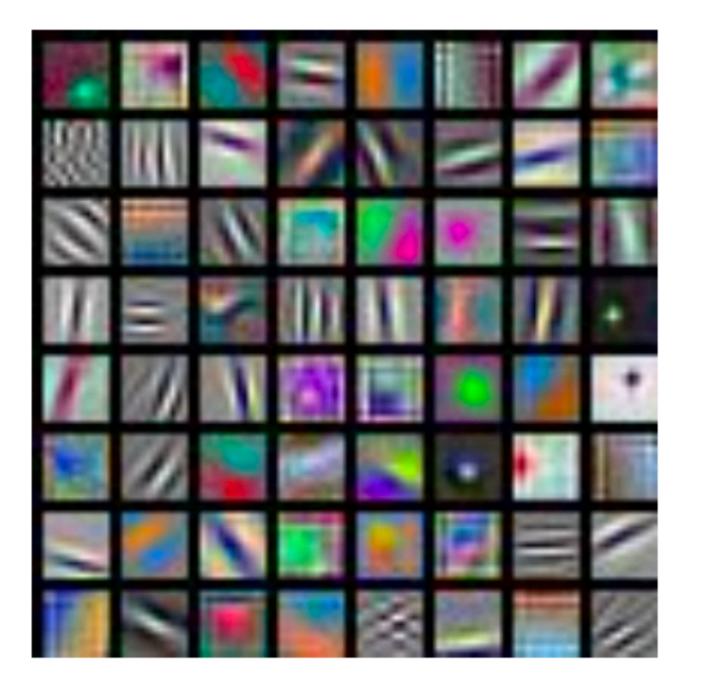


AlexNet: 64 x 3 x 11 x 11

... surprisingly similar across variety of networks

First Layer Filters ...

Directly visualize filters (only works for the first layer)



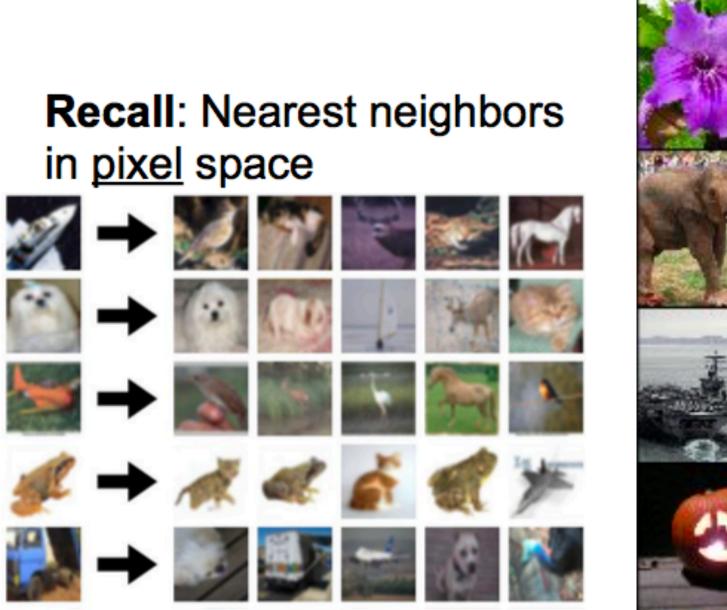
AlexNet: 64 x 3 x 11 x 11

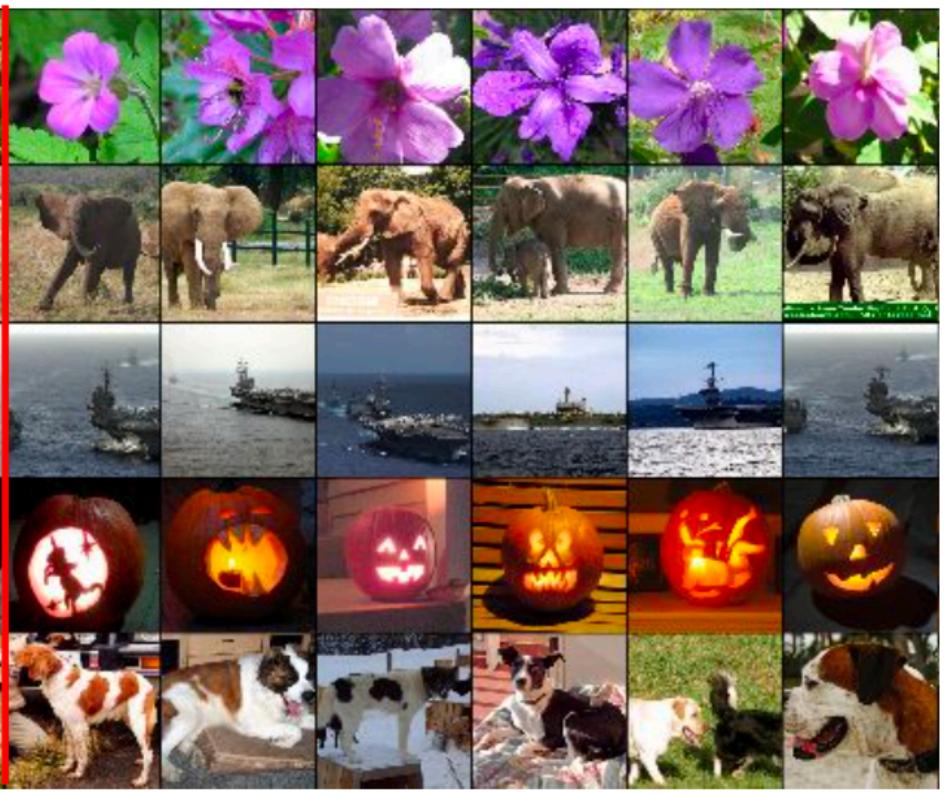
... surprisingly similar across variety of networks

... and nearly any dataset

Last Layer

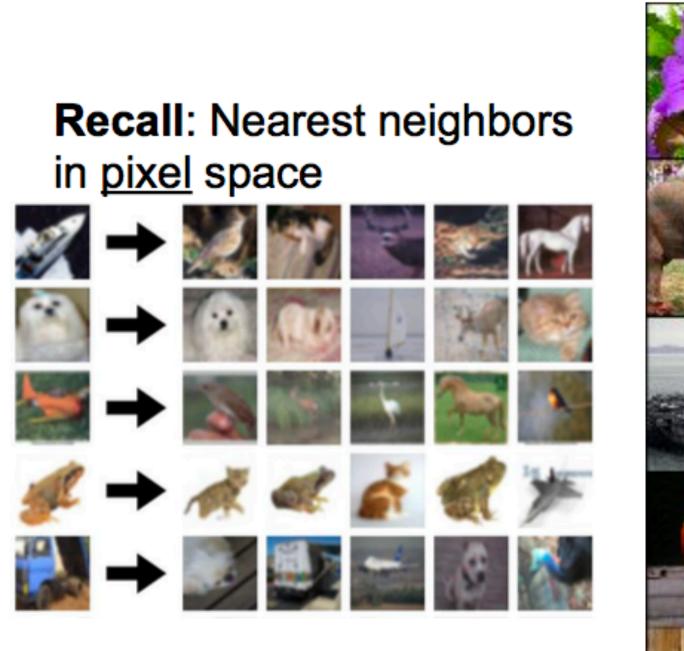
L2 Nearest neighbors in feature space Test image

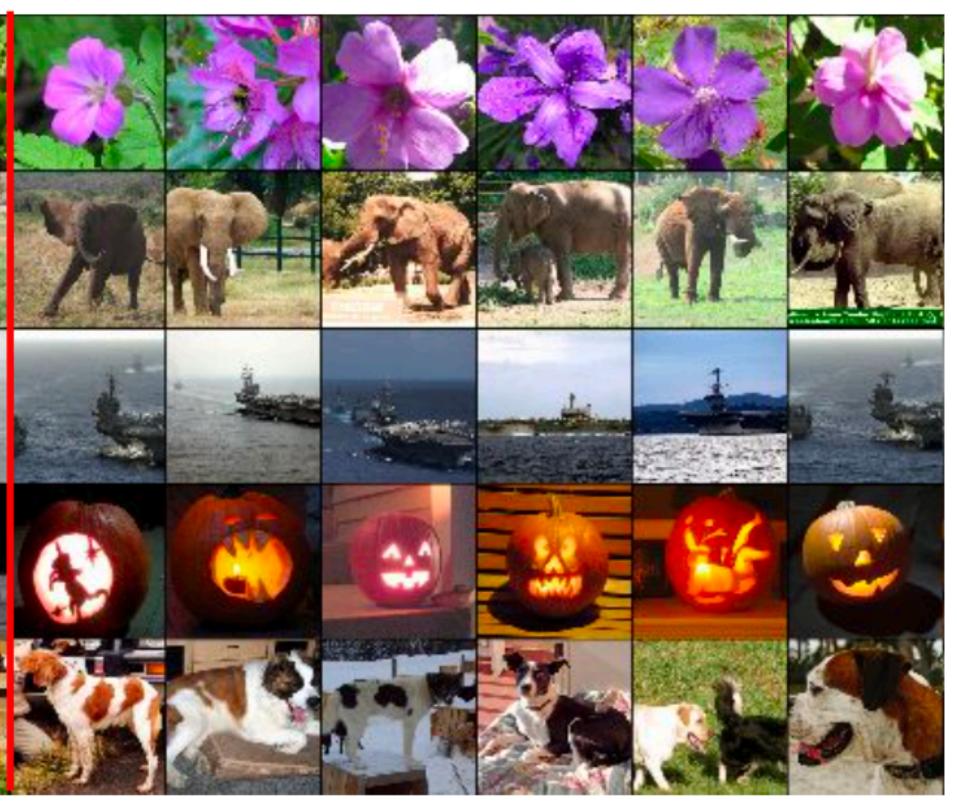




Last Layer

L2 Nearest neighbors in feature space Test image

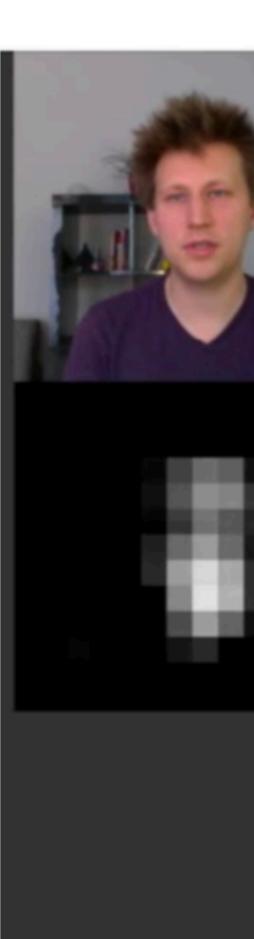




... you are doing this for **Assignment 2**

Visualizing Activations

conv5 feature map of AlexNet is 128x13x13; visualize as 128 13x13 grayscale images



fwd conv5 151

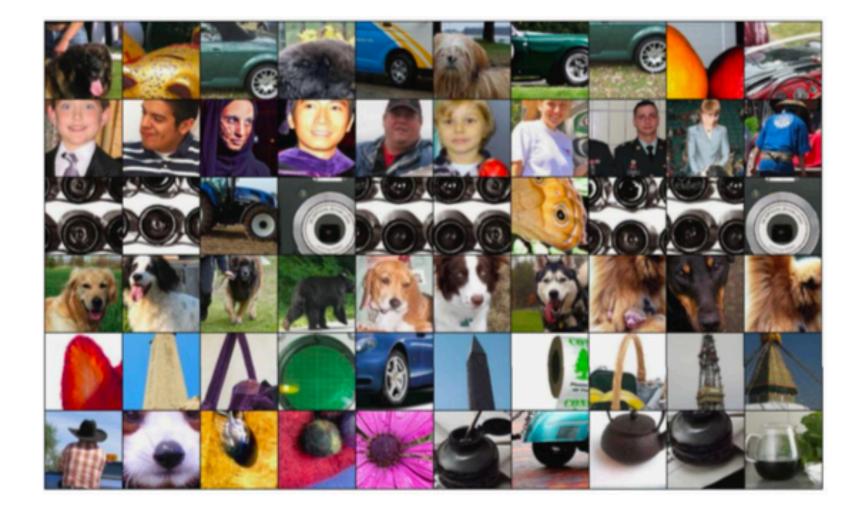
[Yosinski et al., 2014]

	conv	v1 p	01 n	1 ec	onv2	p2	n2	con	v3 (conv4	- 00	onv5	p5	fc6	fe7	fe8	prob
												•					
					-												
												-					
Bael	c: of	ſ∣₽	loos	t: 0	/1								1997 - 1	_			

Maximally Activating Patches

- Pick a layer and a channel; e.g., cons5 of AlexNet is 128x13x13 Run many images through the network
- Visualize image patches that correspond to maximal activation of the neuron

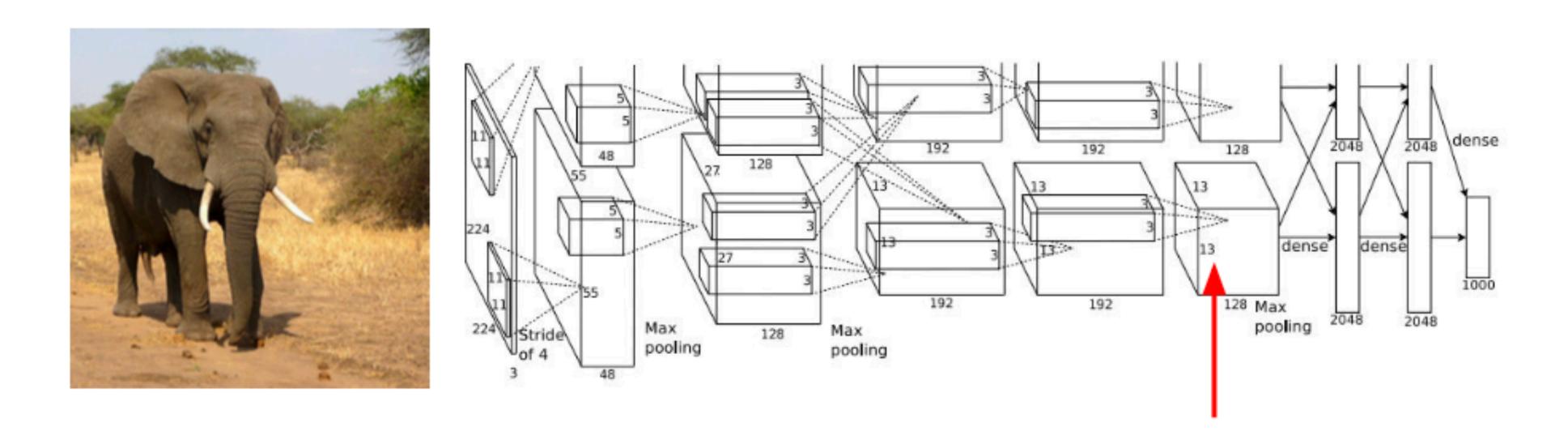
Springenberg et al., 2015



Intermediate Features through (Guided) BackProp

- Pick a single intermediate neuron somewhere in the network, e.g., neuron in 128x13x13 conv5 feature map

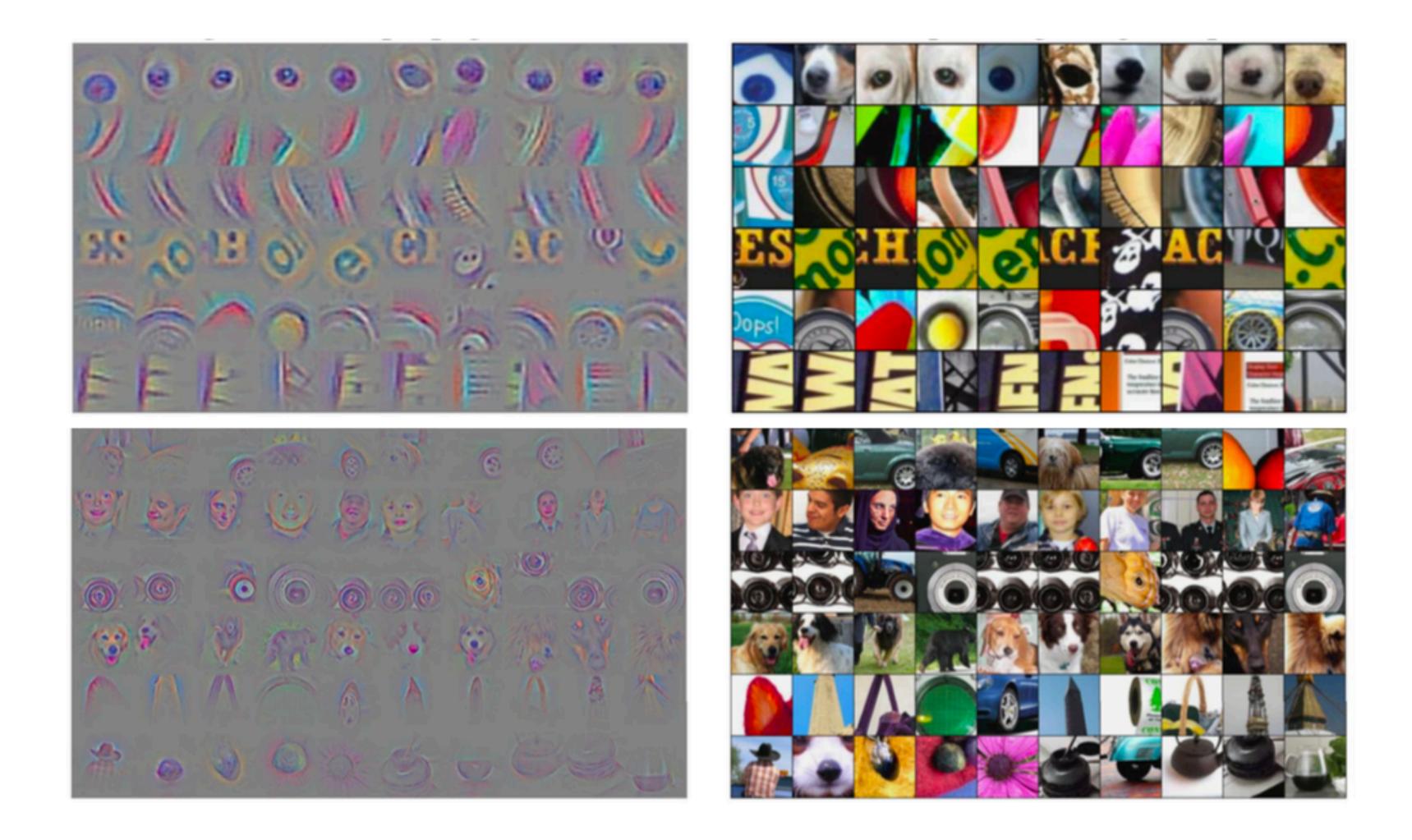
Compute gradient of neuron value with respect to image pixels



Springenberg et al., 2015

[Zeiler and Fergus, 2014]

Intermediate Features through (Guided) BackProp



[Springenberg et al., 2015]

[Zeiler and Fergus, 2014]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

]

(Guided) **BackProp**: find the part of an image that a neuron responds to **Gradient ascent:** generate a synthetic image that maximally activates a neuron

(Guided) **BackProp**: find the part of an image that a neuron responds to **Gradient ascent:** generate a synthetic image that maximally activates a neuron

$\mathbf{I}^* = \arg \max_{\mathbf{I}} f(\mathbf{I}) + R(\mathbf{I})$

(Guided) **BackProp**: find the part of an image that a neuron responds to **Gradient ascent:** generate a synthetic image that maximally activates a neuron

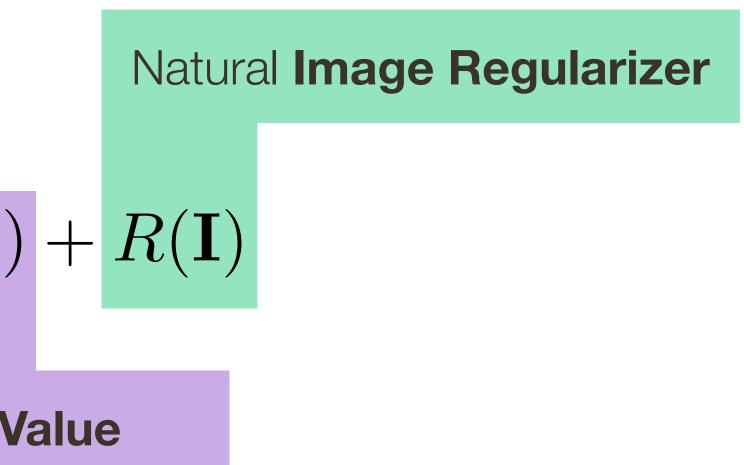
$$\mathbf{I}^* = \arg \max_{\mathbf{I}} f(\mathbf{I}) + I$$

Neuron Value

$+ R(\mathbf{I})$

(Guided) **BackProp**: find the part of an image that a neuron responds to Gradient ascent: generate a synthetic image that maximally activates a neuron

$$\mathbf{I}^* = \arg \max_{\mathbf{I}} f(\mathbf{I})$$



- 1. Initialize image with all zeros (can also start with an existing image)
- -2. Forward image to compute the current scores
 - 3. BackProp to get gradient of the neuron with respect to image pixels
- -4. Make a small update to an image

$$\mathbf{I}^* = \arg \max_{\mathbf{I}} f(\mathbf{I})$$

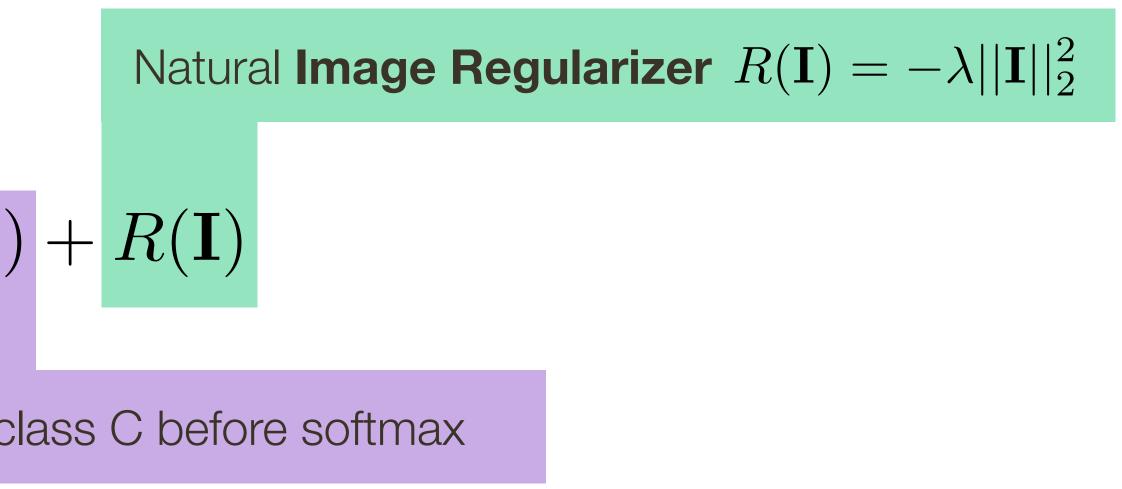


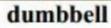
1. Initialize image with all zeros (can also start with an existing image)

- \rightarrow 2. Forward image to compute the current scores
 - 3. BackProp to get gradient of the neuron with respect to image pixels
- -4. Make a small update to an image

$$\mathbf{I}^* = \arg \max_{\mathbf{I}} f(\mathbf{I})$$

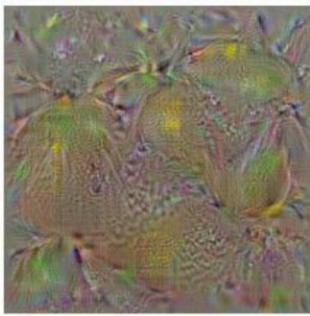
Simonyan et al., 2014]





dalmatian

bell pepper

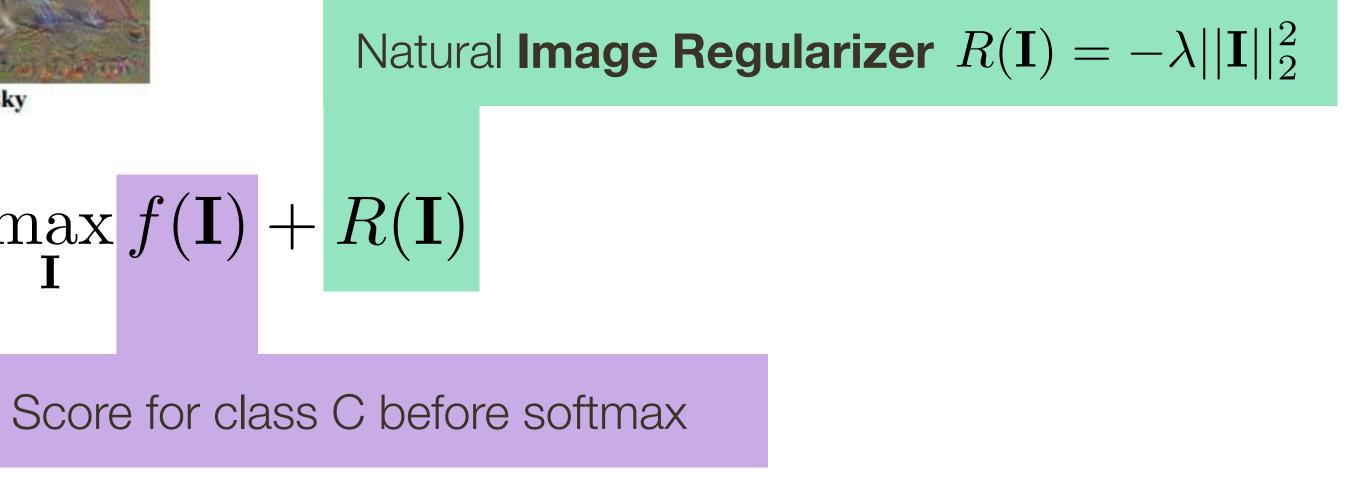


lemon

husky

 $\mathbf{I}^* = \arg \max_{\mathbf{I}} f(\mathbf{I}) + R(\mathbf{I})$

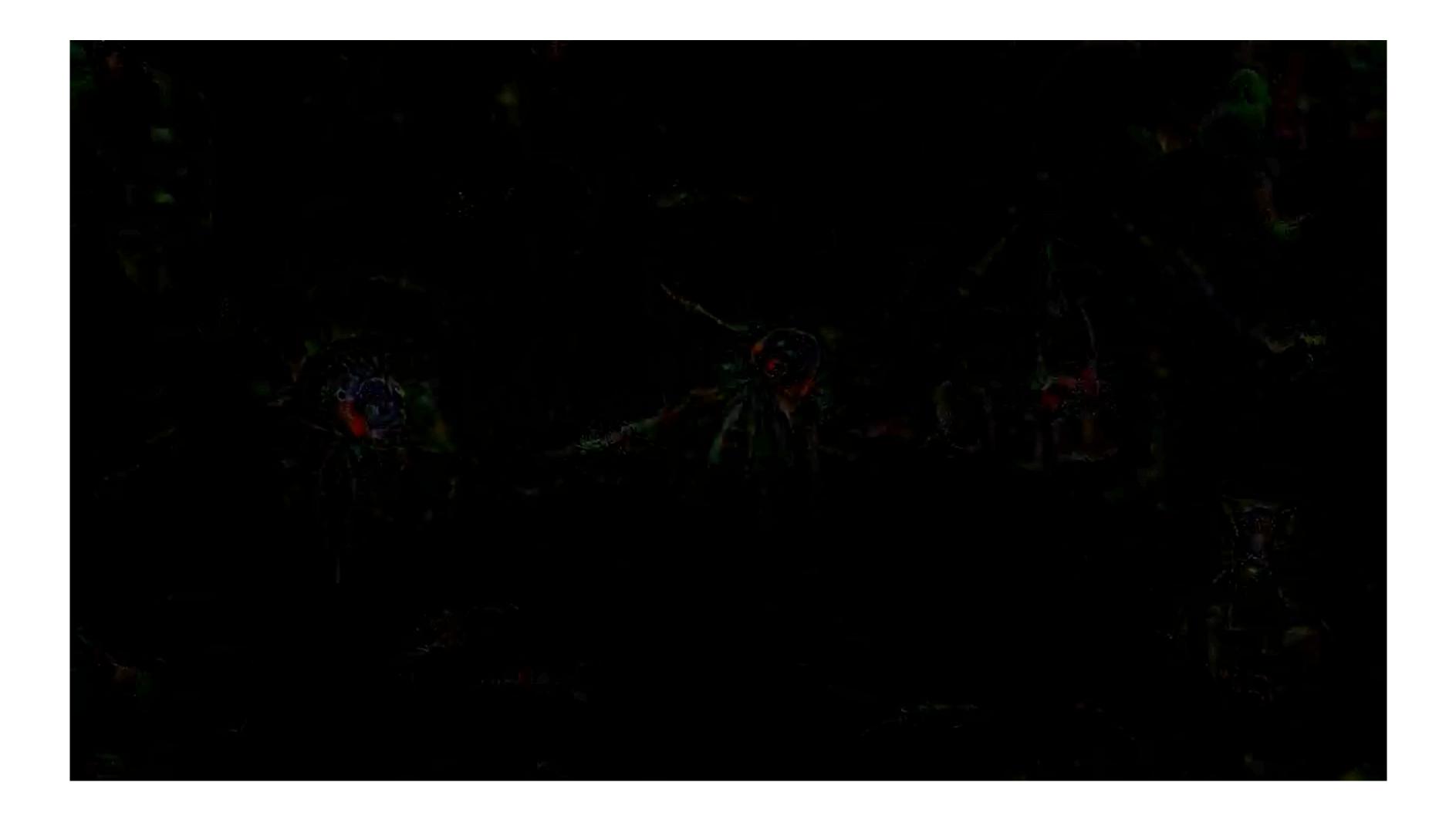
[Simonyan et al., 2014]



... with a few additional tweaks

[Nguyen et al., 2015]

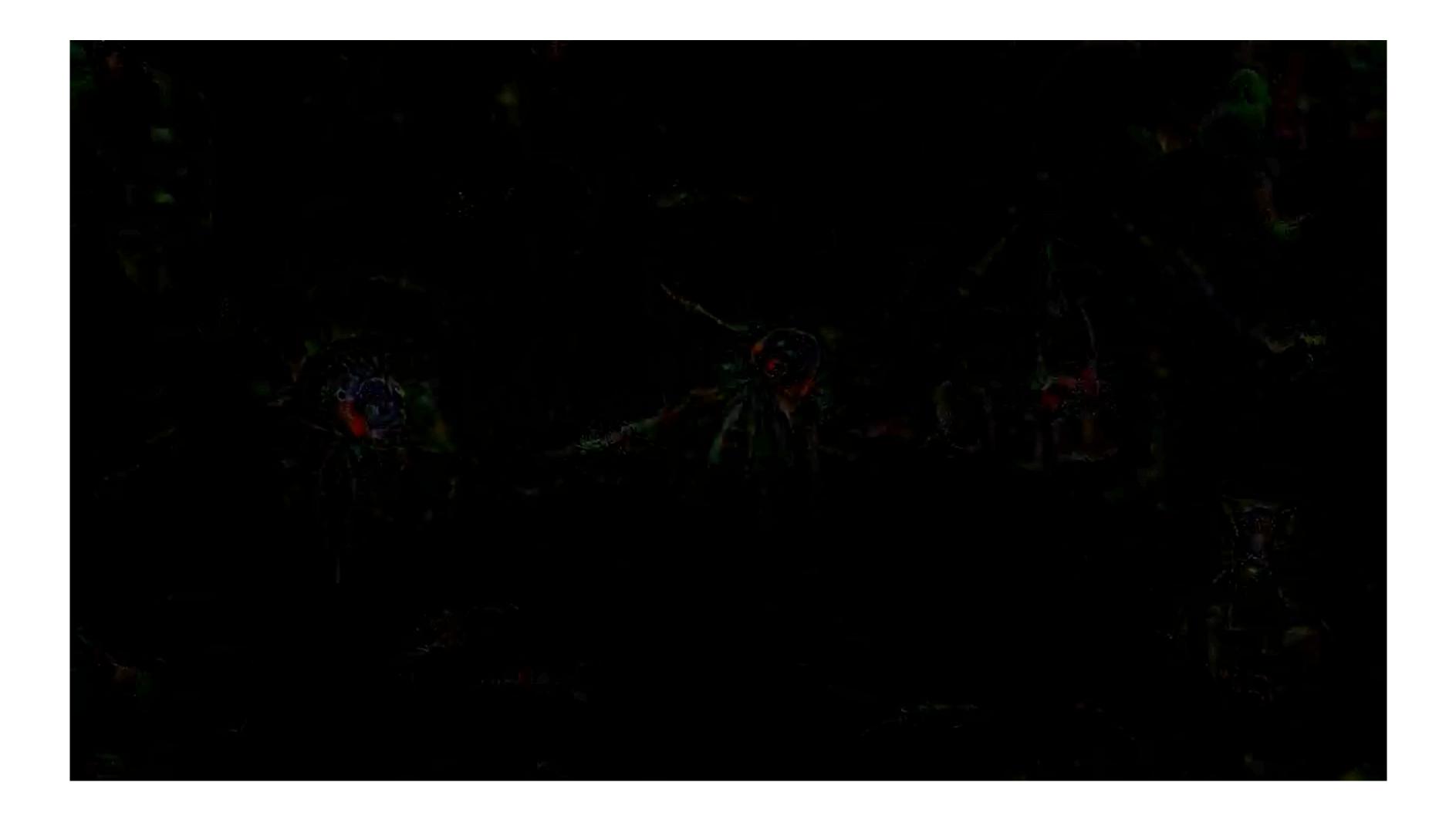
Deep **Dream**



[Mordvinsev, Olah, Tyka]

https://www.youtube.com/watch?v=DgPaCWJL7XI&t=11s

Deep **Dream**



[Mordvinsev, Olah, Tyka]

https://www.youtube.com/watch?v=DgPaCWJL7XI&t=11s

Fooling Images / Adversarial Examples

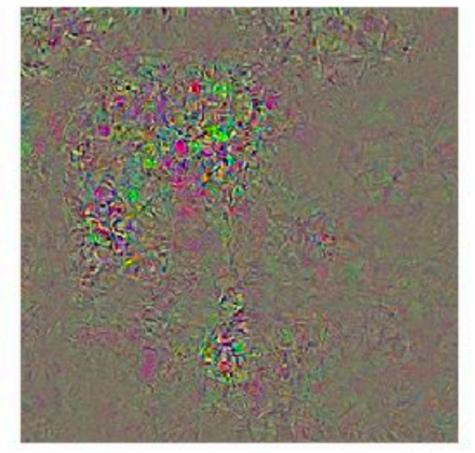
African elephant

schooner

koala

iPod

Difference



Difference

10x Difference

