

THE UNIVERSITY OF BRITISH COLUMBIA

Topics in AI (CPSC 532S): **Multimodal Learning with Vision, Language and Sound**

Lecture 8: Convolutional Neural Networks (Part 5)

Assignment 2 ...

- Was due last night
- Do not worry if you didn't finish everything -> look forward
- For the next assignment **start early**

Assignment 3 ...

- This is objectively THE hardest assignment in the course

— We will cover intro material today, most relevant content Thursday

Assignment 3 ...

- We will cover intro material today, most relevant content Thursday This is objectively THE hardest assignment in the course

Hints:

- Read the full assignment and think about what we are asking you to do Write down pseudo-code and dimensions of variables on paper
- Test with one sentence for debugging (you should be able to over-fit)
- Plot or print training and validation losses (averaged every X batches) Temper your expectations (especially for Part 1)

- **Project** (Survey & Self-defined) ...

 - Project pitches: November 1 & 3
 - Project proposal document: **November 10** (?)

- Group formations by **October 18th** (there will be Google short form)

Paper Readings and Presentation Selection

A	В	С	D
Authors	Title	Venue	Link
J. Lu, V. Goswami, M. Rohrbach, D. Parikh, S. Lee	12-in-1: Multi-Task Vision and Language Representation Learning	CVPR 2020	https://arxiv.org/pdf/1912.02315.pdf
A. Jaegle, F. Gimeno, A. Brock	Perceiver: General Perception with Iterative Attention	ICML 2021	https://arxiv.org/pdf/2103.03206.pdf
A. Jaegle, S. Borgeaud, JB. Alayrac, C. Doersch, C. Ionescu, D. Ding, S. Koppula, D. Zoran, A	PerceiverIO: A General Architccture for Structured Inputs and Outputs	ICLR 2022	https://arxiv.org/pdf/2107.14795.pdf
C. Lin, Y. Jiang, J. Cai, L. Qu, G. Haffari, Z. Yuan	Multimodal Transformer with Variable-length Memory for Vision-and-Language Navigation		https://arxiv.org/pdf/2111.05759.pdf
S. Chen, PL. Guhur, C. Schmid, I. Laptev	History Aware Multimodal Transformer for Vision-and-Language Navigation	NeurIPS 2021	https://arxiv.org/pdf/2110.13309.pdf
R. Bachmann, D. Mizrahi, A. Atanov, A. Zamir	MultiMAE: Multi-modal Multi-task Masked Autoencoders	ECCV 2022	https://arxiv.org/pdf/2204.01678.pdf
A. Yang, A. Miech, J. Sivic, I. Laptev, C. Schmid	TubeDETR: Spatio-Temporal Video Grounding with Transformers	CVPR 2022	https://arxiv.org/pdf/2203.16434.pdf
M. Li, R. Xu, S. Wang, L. Zhou, X. Lin, C. Zhu, M. Zeng, H. Ji, SF. Chang	CLIP-Event: Connecting Text and Images with Event Structures	CVPR 2022	https://arxiv.org/pdf/2201.05078.pdf
T. Thrush, R. Jiang, M. Bartolo, A. Singh, A. Williams, D. Kiela, C.Ross	Winoground: Probing Vision and Language Models for Visio Linguistic Compositionality	CVPR 2022	https://arxiv.org/pdf/2204.03162.pdf
J. Andreas, M. Rohrbach, T. Darrell, D. Klein	Neural module networks	CVPR 2016	https://arxiv.org/pdf/1511.02799.pdf
B. Zhao, B. Chang, Z. Jie, L. Sigal	Modular Generative Adversarial Networks	ECCV 2018	https://arxiv.org/pdf/1804.03343.pdf
R. Hu, J. Andreas, M. Rohrbach, T. Darrell, K. Saenko	Learning to reason: End-to-end module networks for visual question answering	ICCV 2017	https://openaccess.thecvf.com/content_ICCV_20
J.Johnson, B. Hariharan, L. van der Maaten, J. Hoffman, L. Fei-Fei, C. L. Zitnick, R. Girshick	Inferring and Executing Programs for Visual Reasoning	ICCV 2017	https://arxiv.org/pdf/1705.03633.pdf
A. Das, S. Kottur, J. Moura, S. Lee, D. Batra	Learning Cooperative Visual Dialog Agents with Deep Reinforcement Learning	ICCV, 2017	https://arxiv.org/pdf/1703.06585.pdf
A. Maharana, D. Hannan, M. Bansal	StoryDALL-E: Adapting Pretrained Text-to-Image Transformers for Story Continuation	ECCV 2022	https://arxiv.org/pdf/2209.06192.pdf
YL. Sung, J. Cho, M.Bansal	VL-ADAPTER: Parameter-Efficient Transfer Learning for Vision-and-Language Tasks	CVPR 2022	https://arxiv.org/pdf/2112.06825.pdf
R. Zellers, J. Lu, X. Lu, Y. Yu, Y. Zhao, M. Salehi, A. Kusupati, J. Hessel, A. Farhadi, Y. Choi	MERLOT Reserve: Multimodal Neural Script Knowledge through Vision and Language and S	CVPR 2022	https://arxiv.org/pdf/2201.02639.pdf
J. Hessel, J. Hwang, J. S. Park, R. Zellers, C. Bhagavatula, A. Rohrbach, K. Saenko, Y. Choi	The Abduction of Sherlock Holmes: A Dataset for Visual Abductive Reasoning	ECCV 2022	https://arxiv.org/pdf/2202.04800.pdf
Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, S. Fidler	Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and	ICCV 2015	https://arxiv.org/pdf/1506.06724.pdf
E. Perez, F. Strub, H. Vries, V. Dumoulin, A. Courville	FiLM: Visual Reasoning with a General Conditioning Layer	AAAI 2018	https://arxiv.org/pdf/1709.07871.pdf
	CLIP		
A. Douillard, A. Rame, G. Couairon, M. Cord	DyTox: Transformers for Continual Learning with DYnamic TOken eXpansion	CVPR 2022	https://openaccess.thecvf.com/content/CVPR202
N. Shvetsova, B. Chen, A. Rouditchenko, S. Thomas, B. Kingsbury, R. Feris, D. Harwath, J. Gla	a Everything at Once – Multi-modal Fusion Transformer for Video Retrieval	CVPR 2022	https://openaccess.thecvf.com/content/CVPR202
J. Lu, C. Clark, R. Zellers, R. Mottaghi, A. Kembhavi	Unified-IO: A Unified Model for Vision, Language and Multi-modal Tasks		https://arxiv.org/pdf/2206.08916.pdf
	Video Diffusion Models		
TBD	PHENAKI: VARIABLE LENGTH VIDEO GENERATION FROM OPEN DOMAIN TEXTUAL D	ICLR 2023	https://openreview.net/pdf?id=vOEXS39nOF
P. Seo, A. Lehrmann, B. Han, L. Sigal	Visual Reference Resolution using Attention Memory for Visual Dialog	NeurIPS 2017	
C. Xiong, S. Merity, R. Socher	Dynamic memory networks for visual and textual question answering	ICML 2016	
M. lyyer, V. Manjunatha, A. Guha, Y. Vyas, J. Boyd-Graber, H. Daume, L. Davis	The Amazing Mysteries of the Gutter: Drawing Inferences between Panels in Comic Book Na	CVPR 2017	
E. Cubuk, B. Zoph, D. Mané, V. Vasudevan, Q. Le	AutoAugment: Learning Augmentation Policies from Data		

Categorization

Detection

Multi-class: Horse Church Toothbrush Person **IM** GENET

Multi-label: Horse

Church Toothbrush Person

Horse (x, y, w, h) Horse (x, y, w, h) Person (x, y, w, h) Person (x, y, w, h)

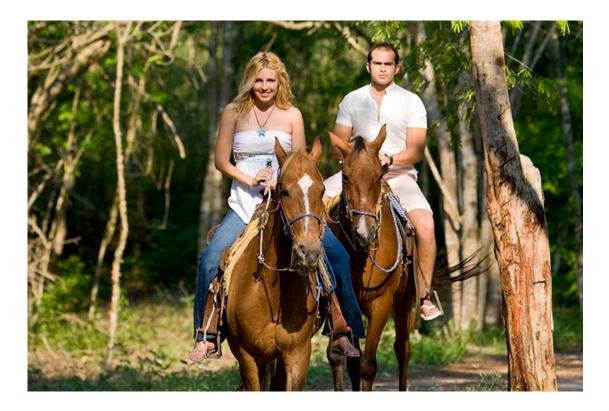
Segmentation

Horse Person

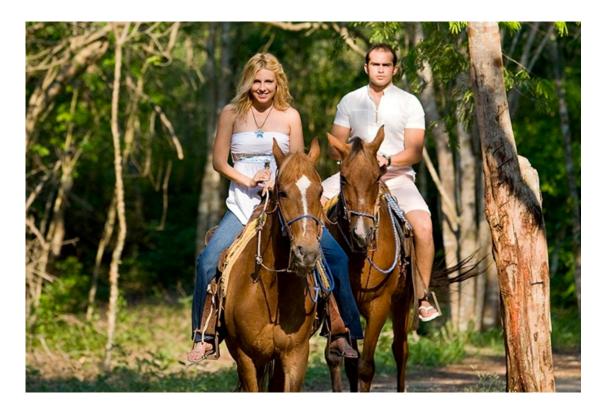
Instance Segmentation

Horse1 Horse₂ Person1 Person2

Categorization

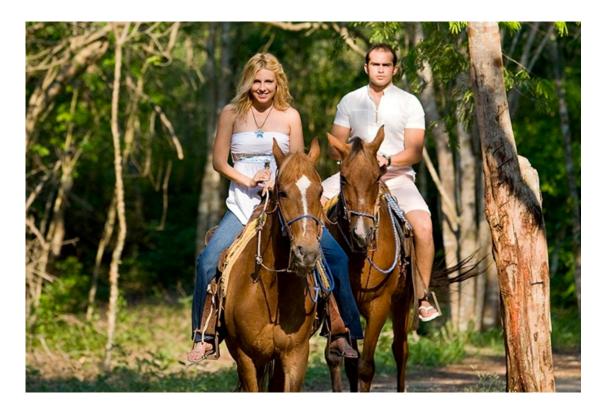


Categorization



Horse Multi-**class:** Church Toothbrush Person IM GENET

Categorization



Horse Multi-class: Church Toothbrush Person IM GENET

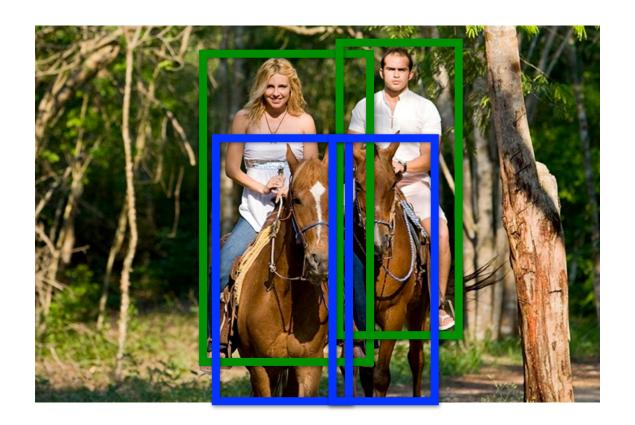
Multi-label: Horse

Church Toothbrush Person

Segmentation

Horse Person

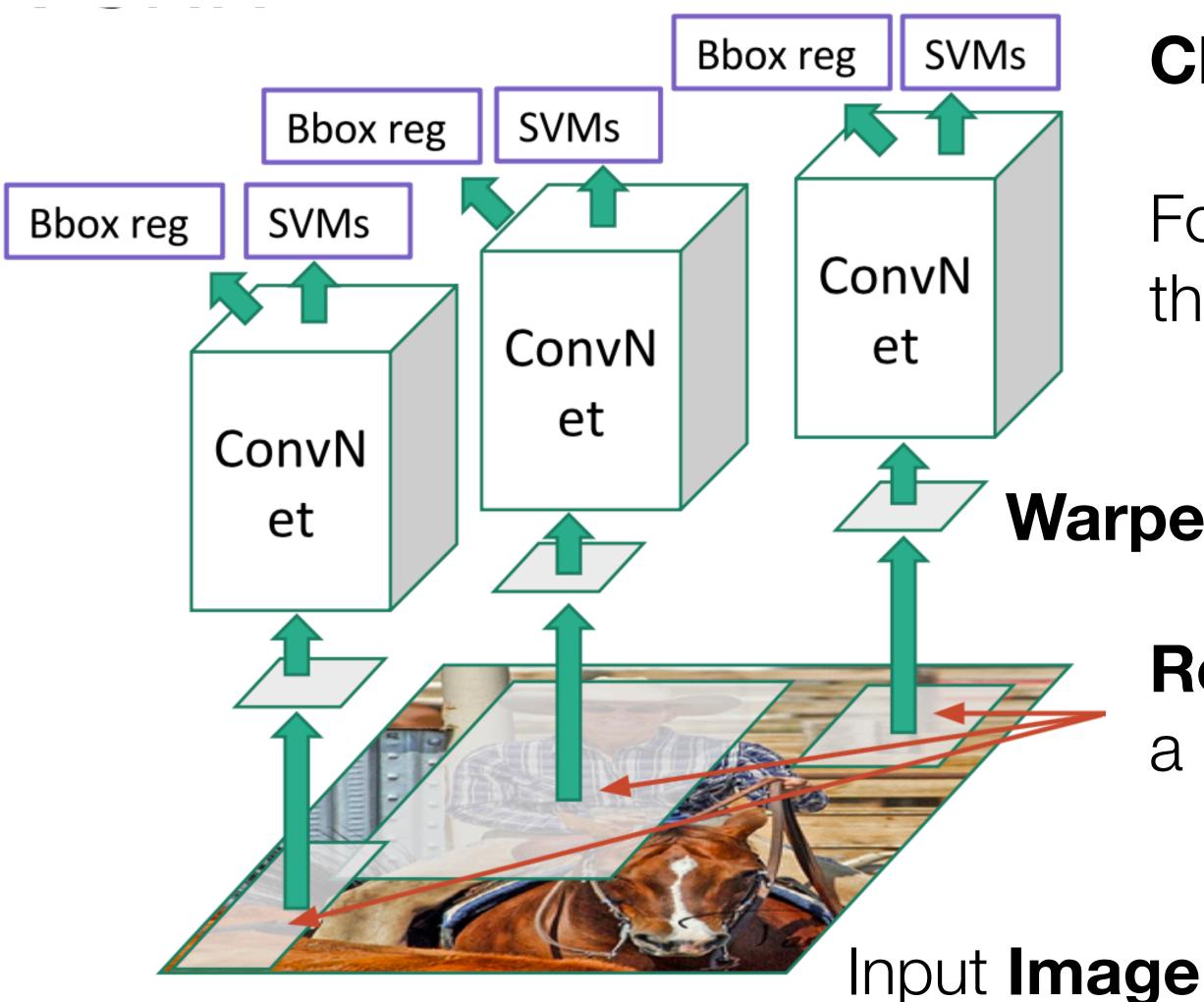
Detection



Horse (x, y, w, h) Horse (x, y, w, h) Person (x, y, w, h) Person (x, y, w, h)

R-CNN

Linear Regression for bounding box offsets



[Girshick et al, CVPR 2014]

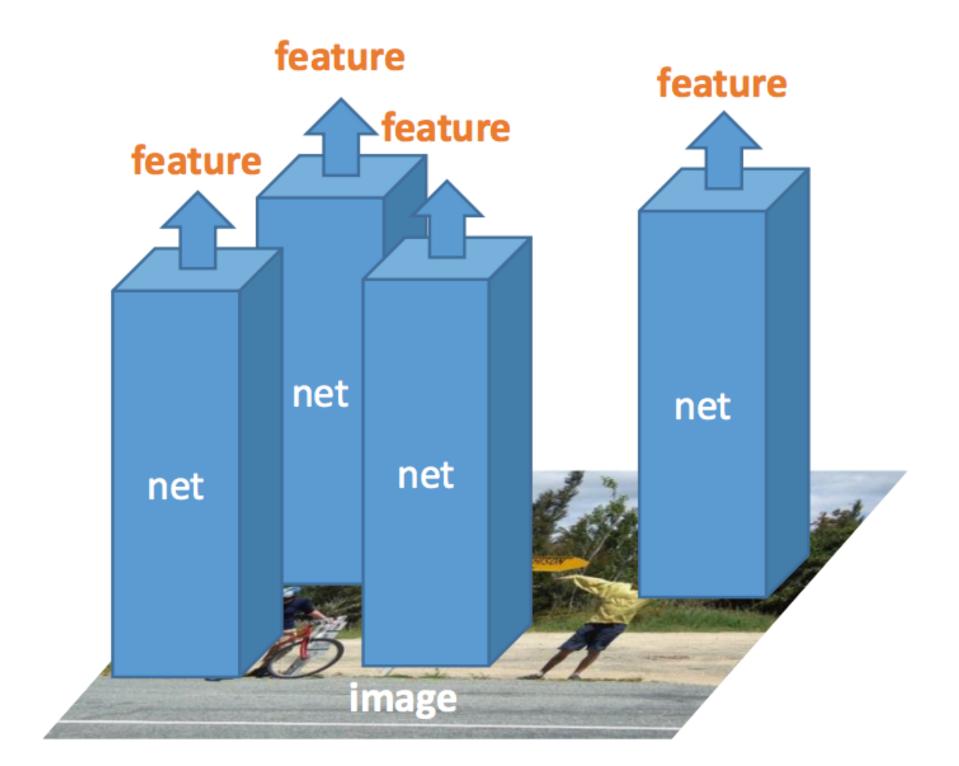
Classify regions with SVM

Forward each region through a **CNN**

Warped image regions

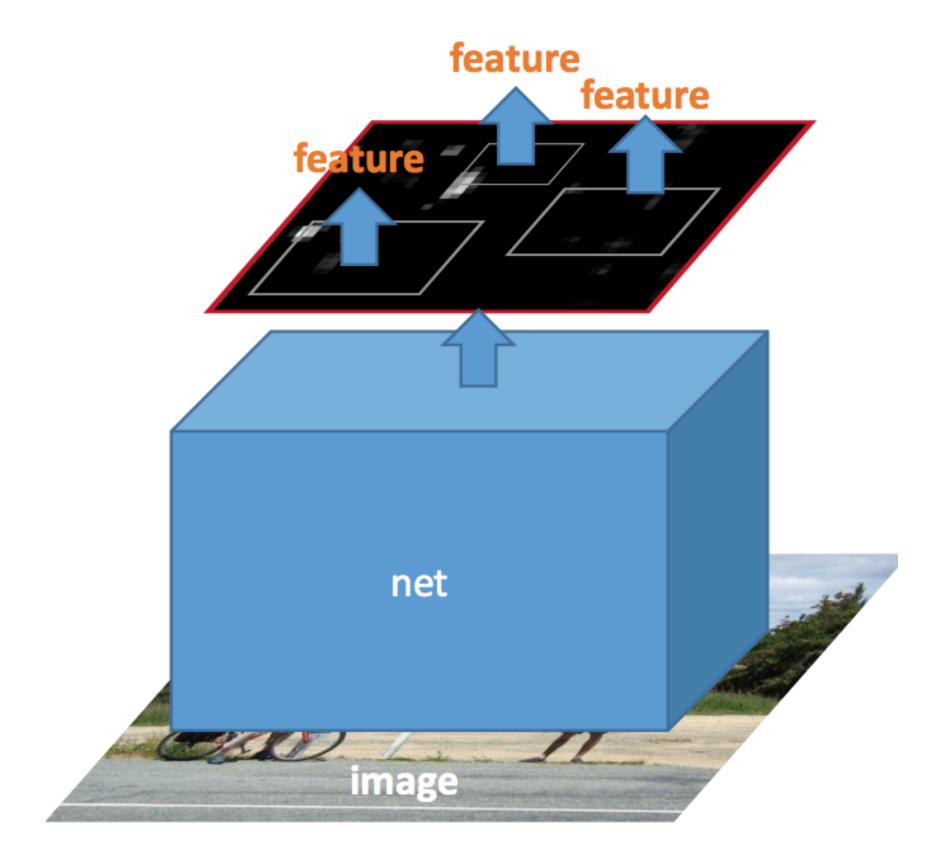
Regions of Interest from a proposal method (~2k)

R-CNN vs. SPP

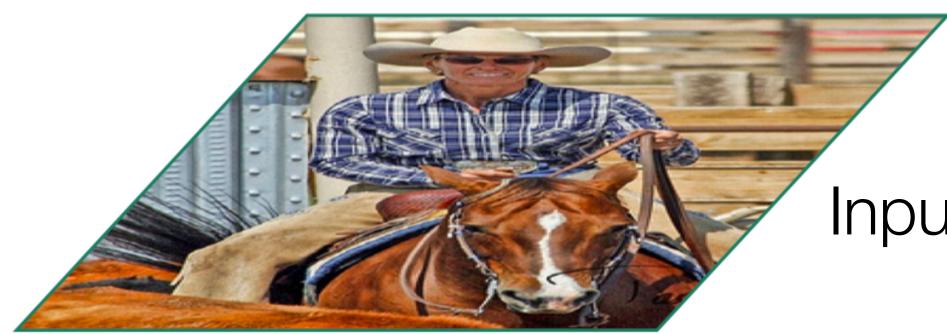


R-CNN 2000 nets on image regions

[He et al, ECCV 2014]

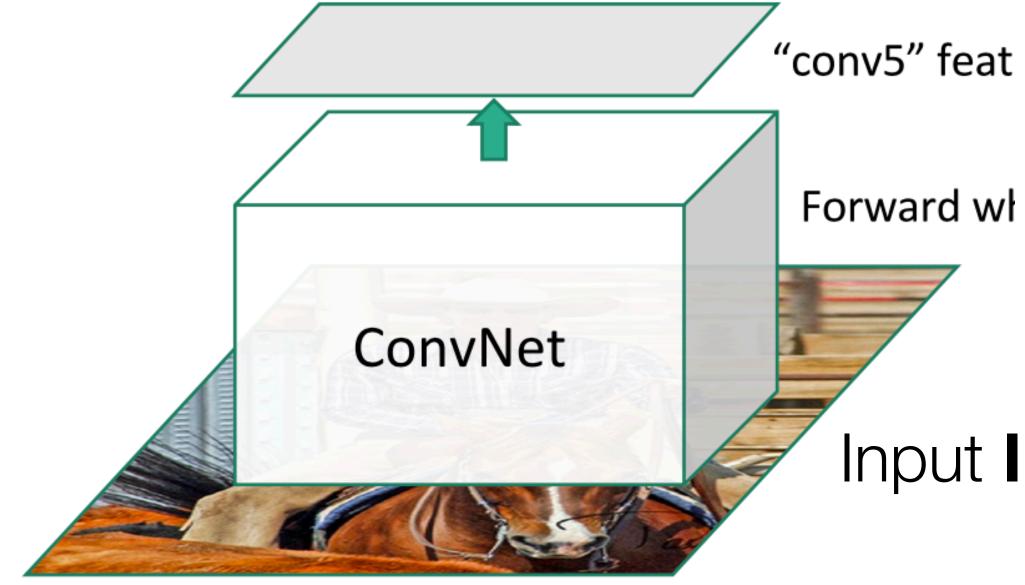


SPP-net **1 net on full image**



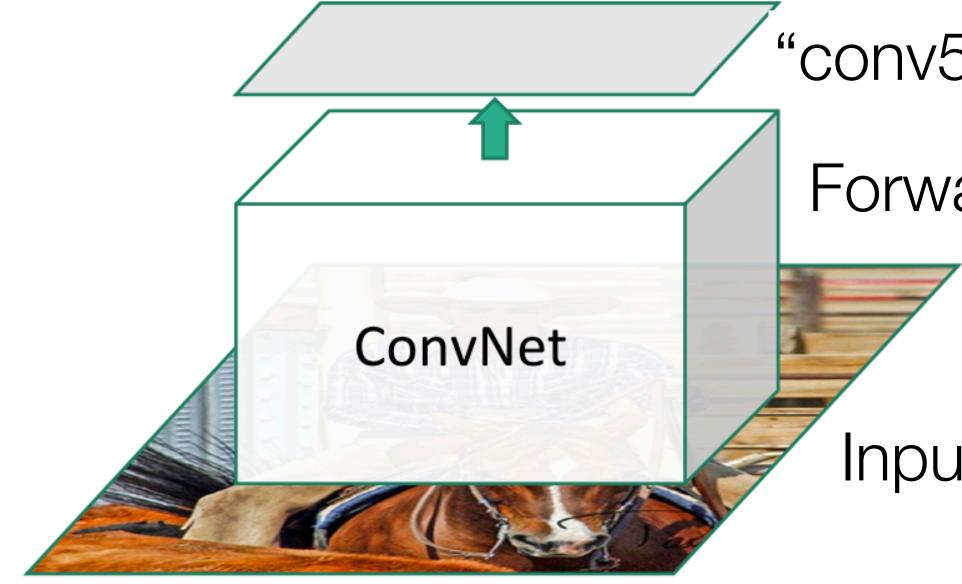
* image from Ross Girshick

Input Image



[Girshick et al, ICCV 2015]

Input Image



[Girshick et al, ICCV 2015]

"conv5" feature map

Forward prop the **whole image** through CNN

Input **Image**

Regions of Interest "conv5" feature map from the Forward prop the **whole image** through CNN proposal method ConvNet

[Girshick et al, ICCV 2015]

Input **Image**

Regions of $\overline{}$ Interest from the proposal method ConvNet

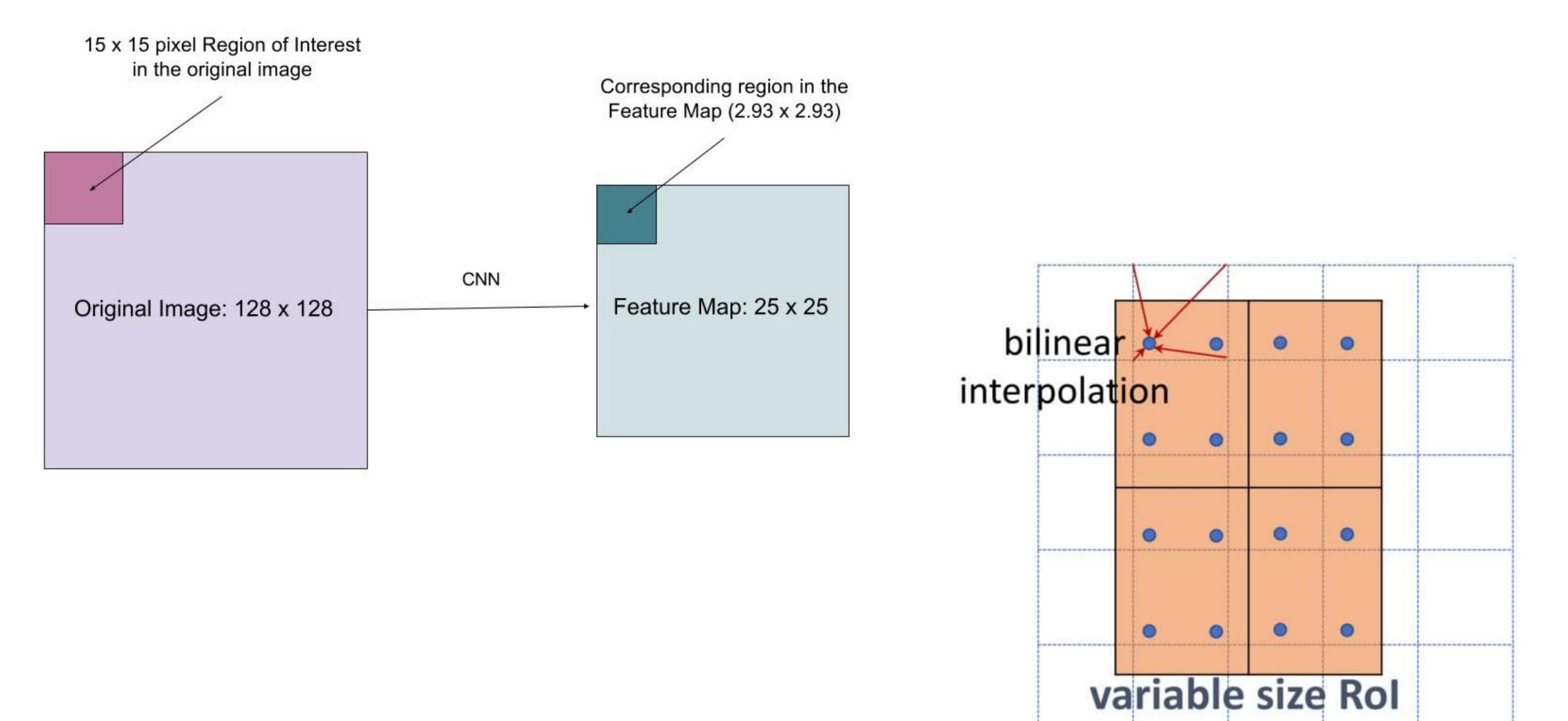
[Girshick et al, ICCV 2015]

- "Rol Pooling" layer
- "conv5" feature map
 - Forward prop the whole image through CNN

Input **Image**

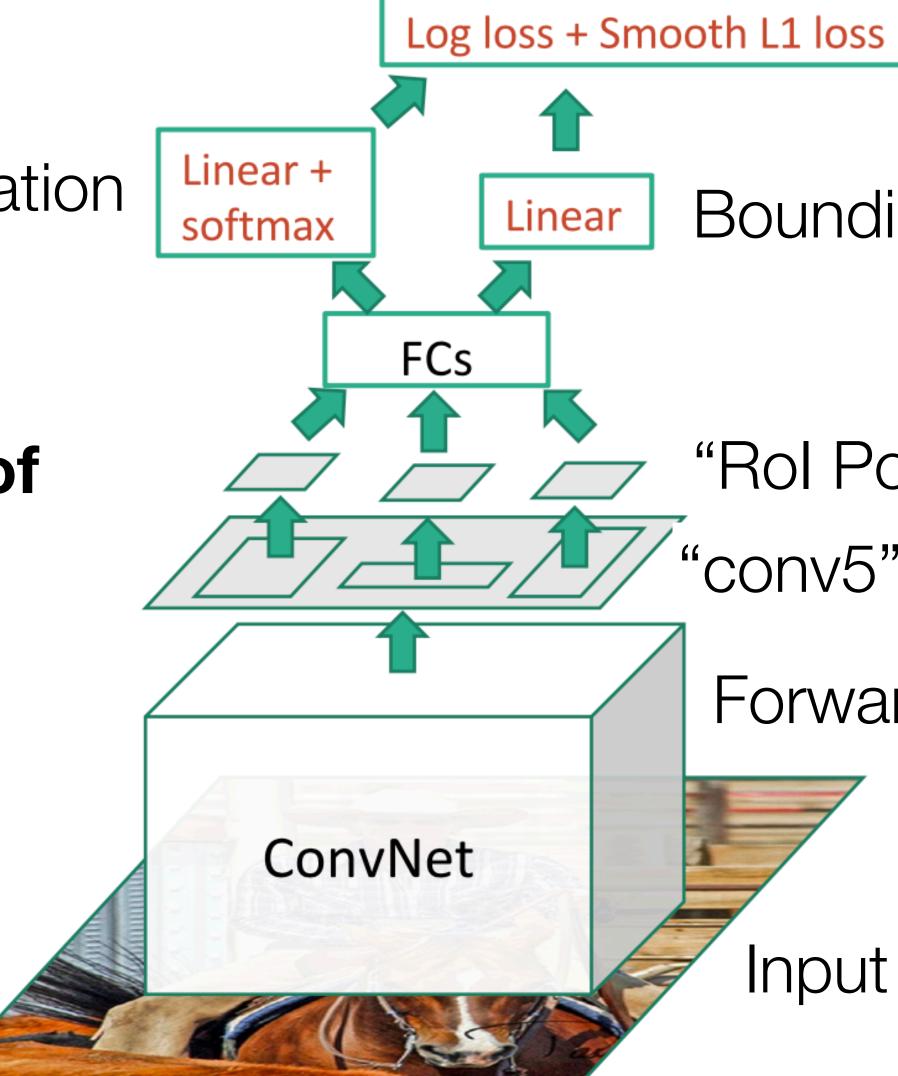
Girshick, "Fast R-C Figure copyright Re

Rol Align



Object classification

Regions of Interest from the proposal method



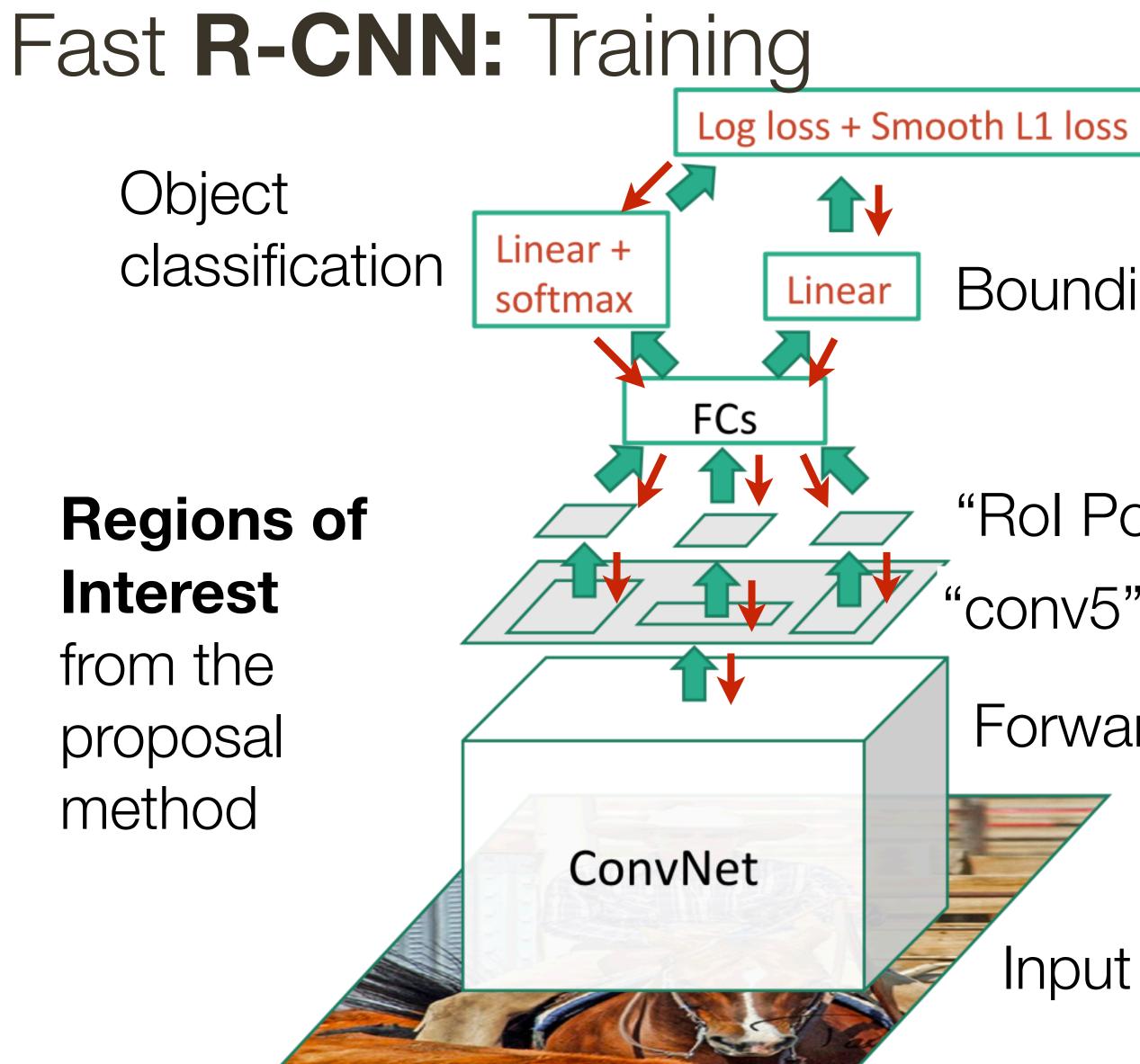
Multi-task loss

[Girshick et al, ICCV 2015]

Bounding box regression

- "Rol Pooling" layer
- "conv5" feature map
 - Forward prop the **whole image** through CNN

Input **Image**



Multi-task loss

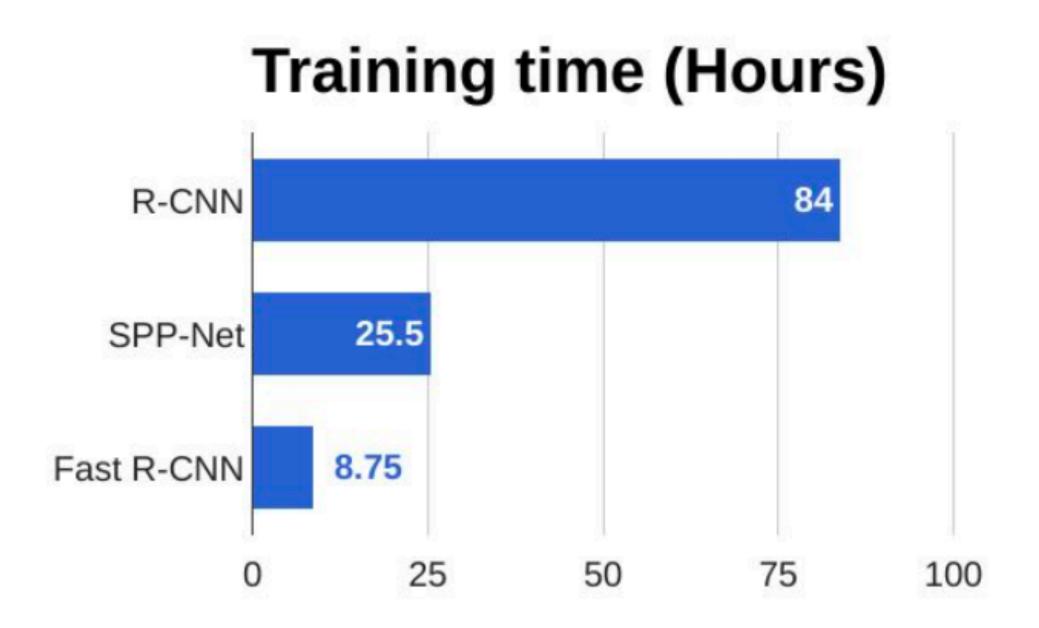
[Girshick et al, ICCV 2015]

Bounding box regression

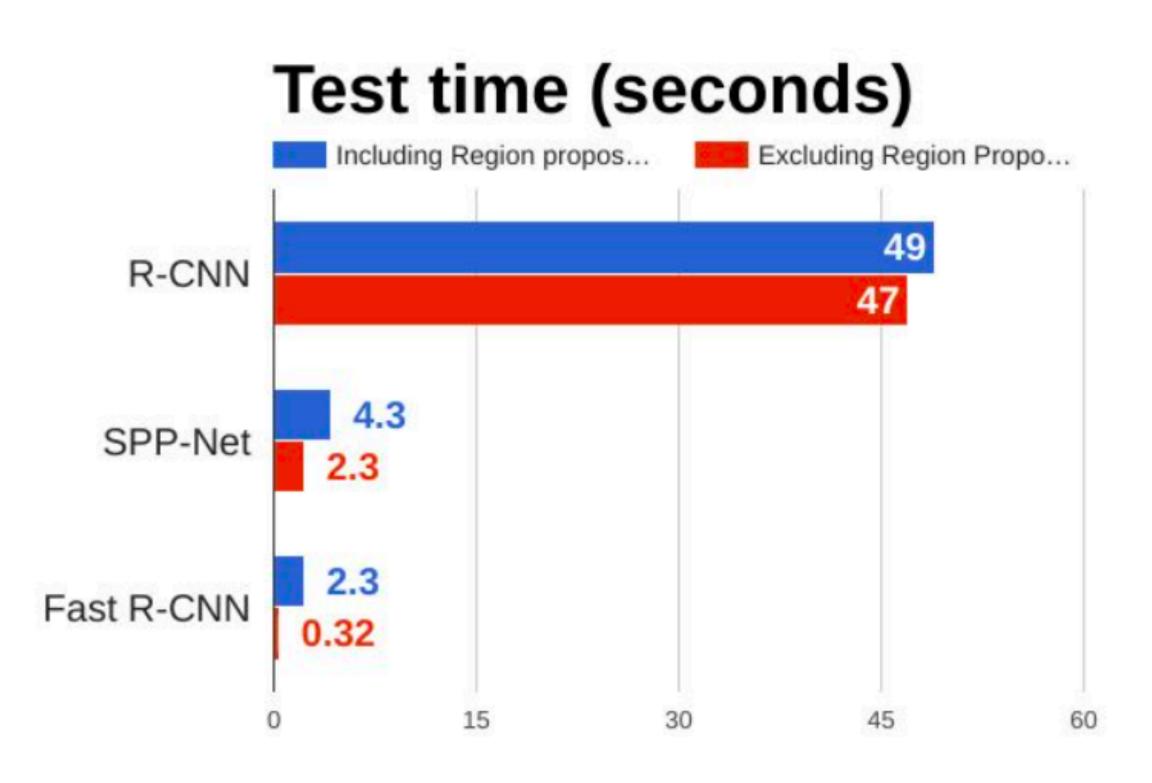
- "Rol Pooling" layer
- "conv5" feature map
 - Forward prop the **whole image** through CNN

Input **Image**

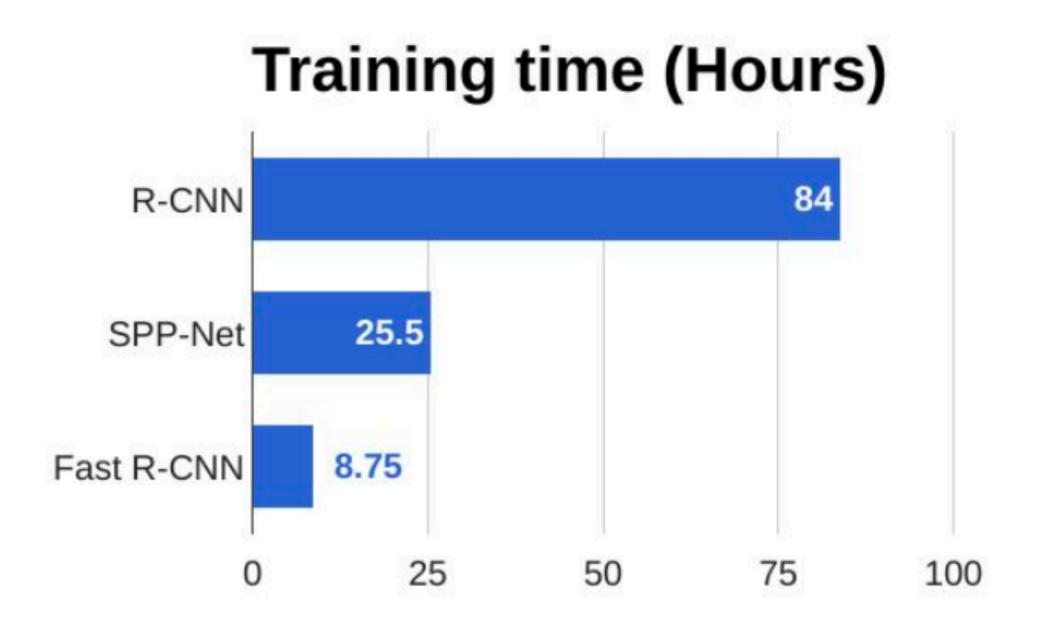
R-CNN vs. SPP vs. Fast R-CNN



[Girshick et al, CVPR 2014] [Girshick et al, ICCV 2015] [He et al, ECCV 2014]

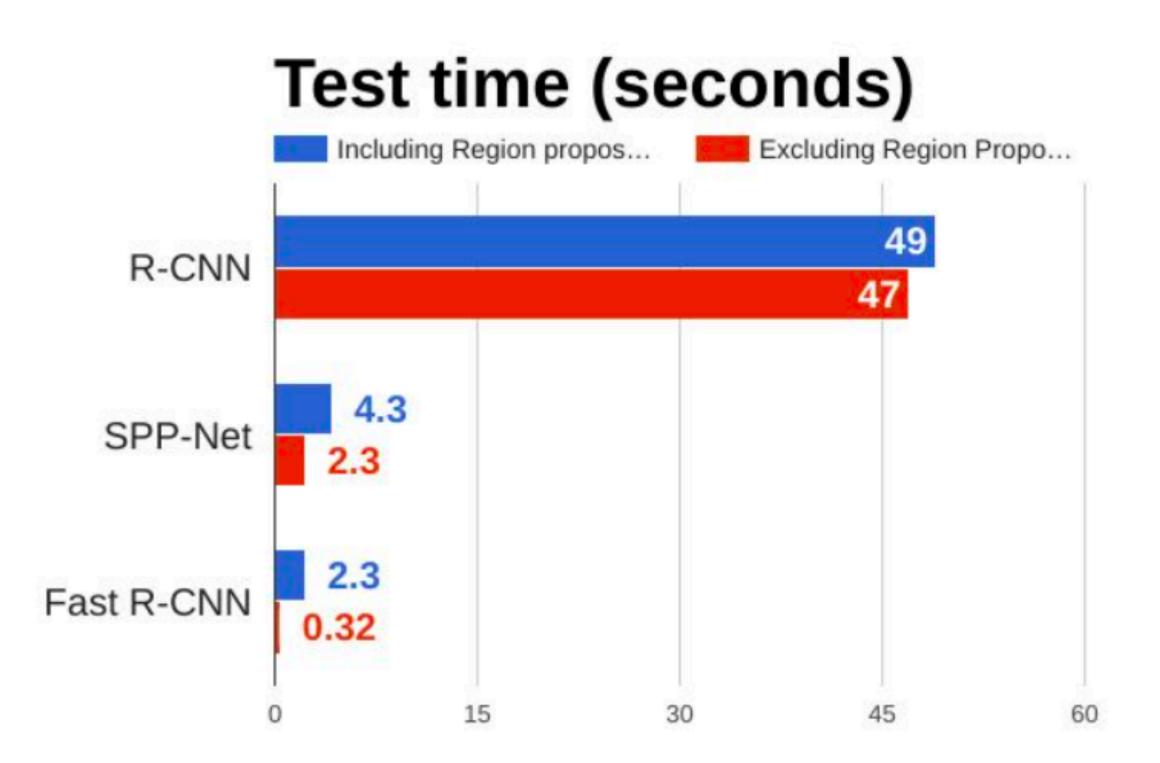


R-CNN vs. SPP vs. Fast R-CNN



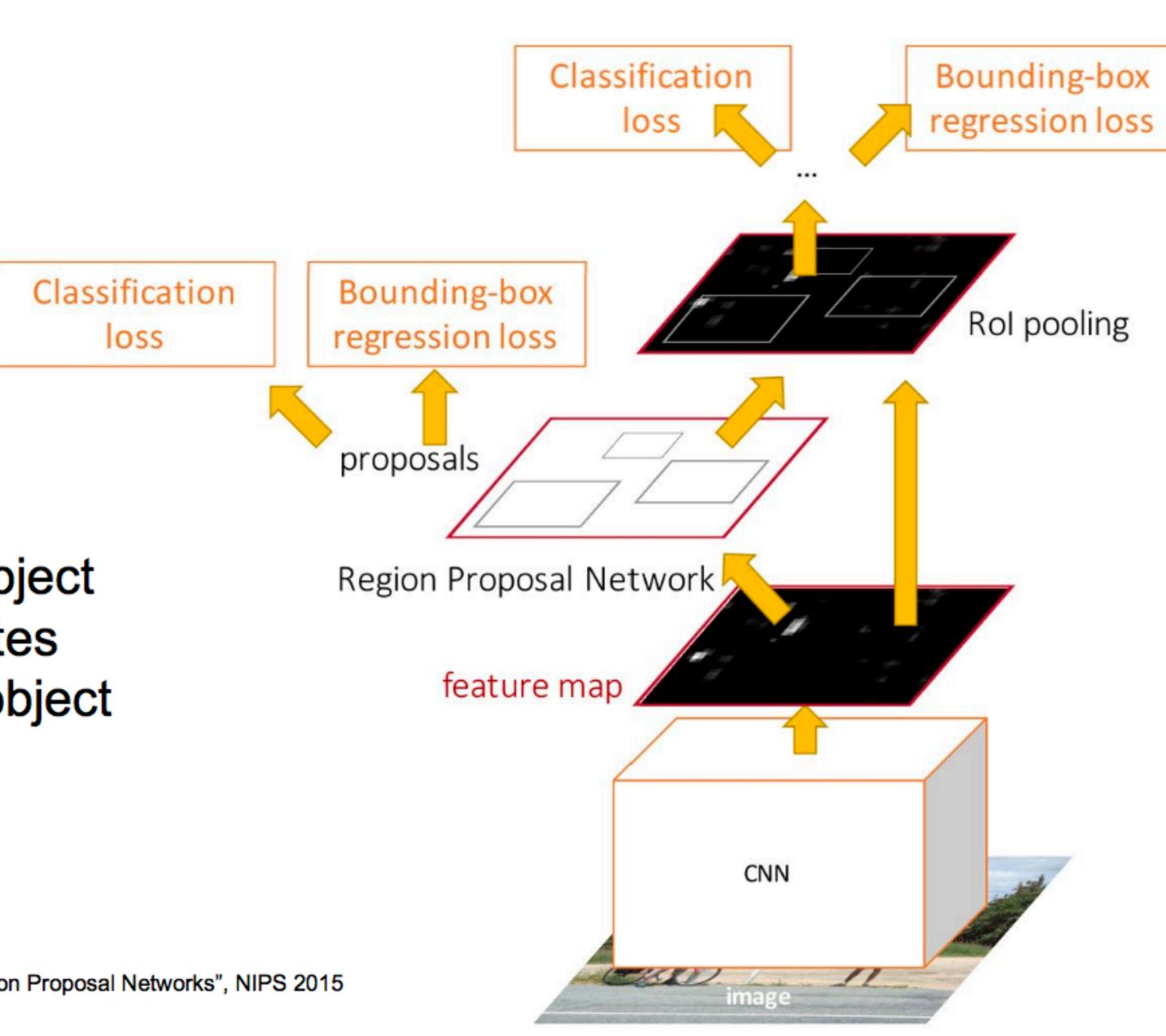
Observation: Performance dominated by the region proposals at this point!

Girshick et al, CVPR 2014 [Girshick et al, ICCV 2015] [He et al, ECCV 2014]



Make CNN do proposals!

Insert Region Proposal Network (RPN) to predict proposals from features

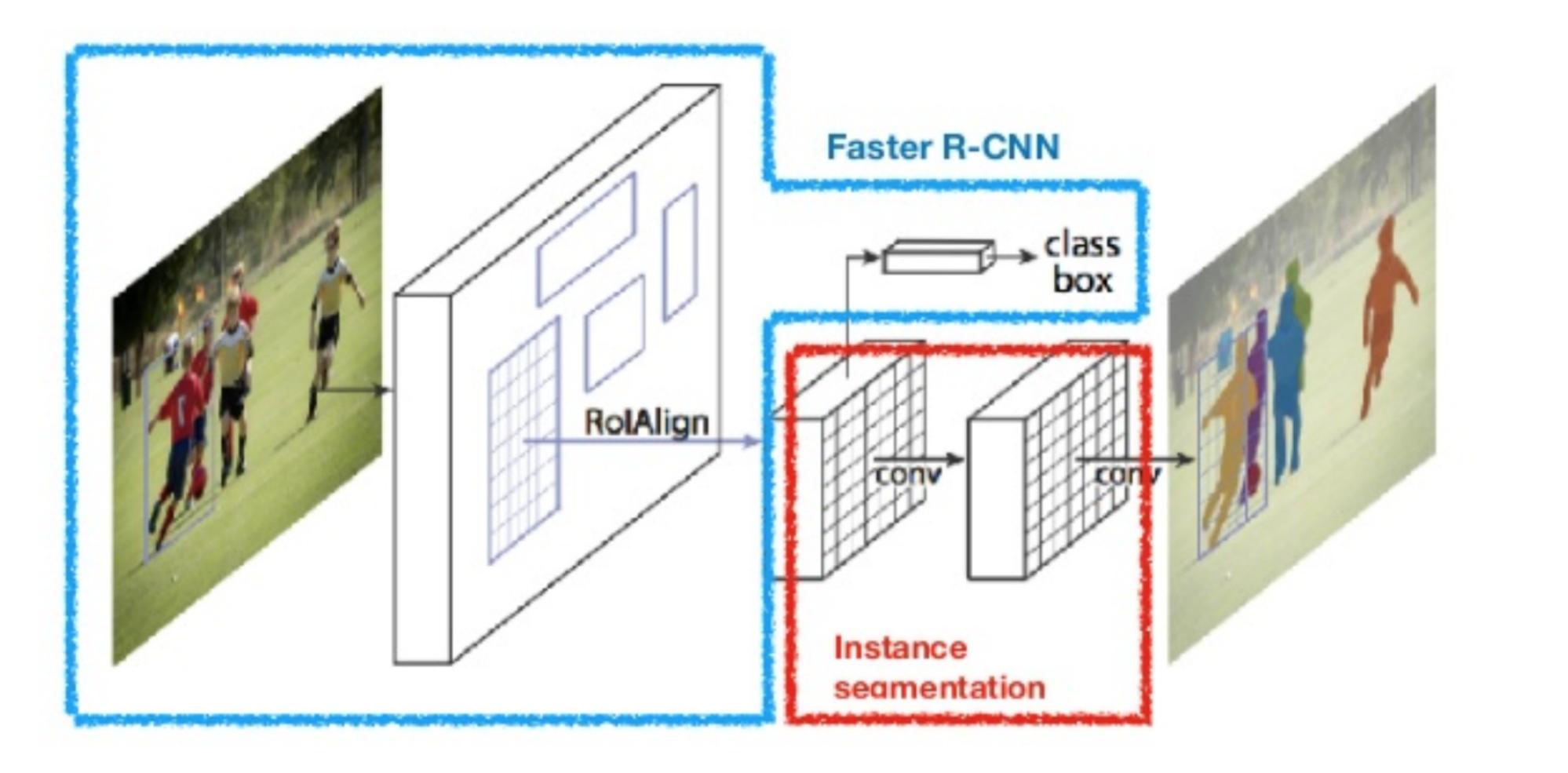


Jointly train with 4 losses:

- RPN classify object / not object 1.
- **RPN regress box coordinates** 2.
- Final classification score (object 3. classes)
- Final box coordinates 4.

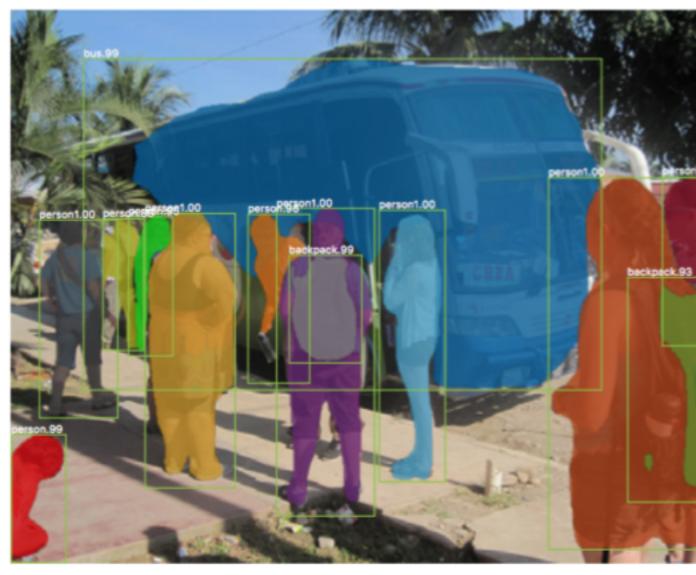
Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015 Figure copyright 2015, Ross Girshick; reproduced with permission

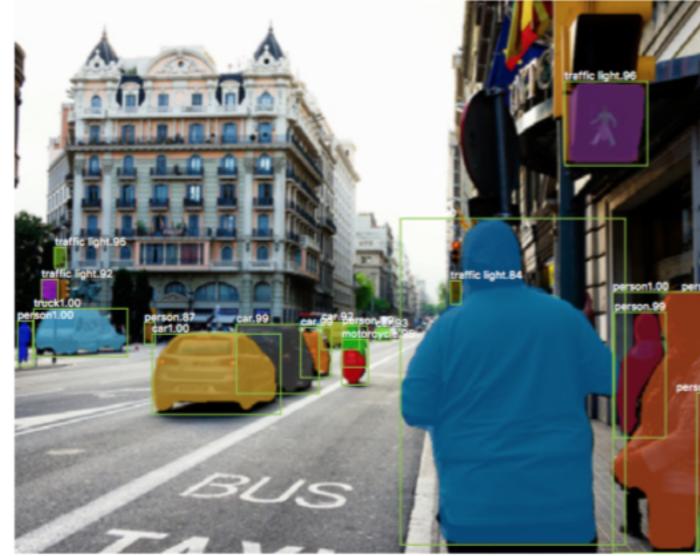
Mask R-CNN

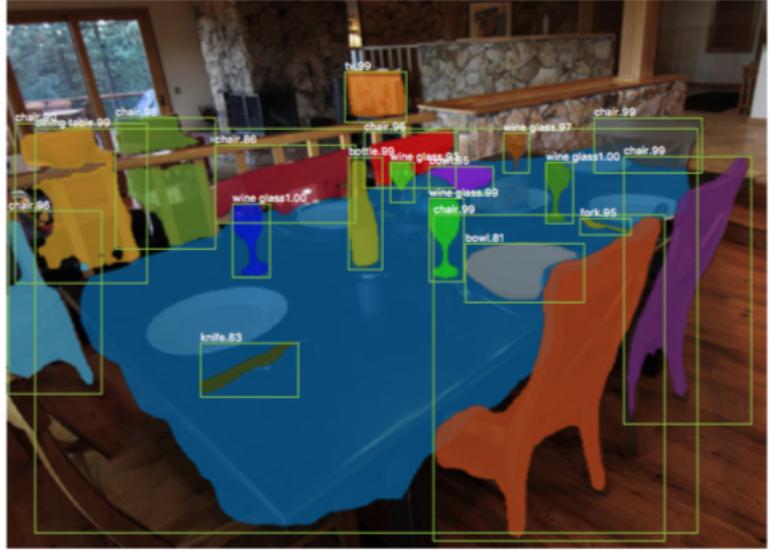


[He et al, 2017]

Mask R-CNN

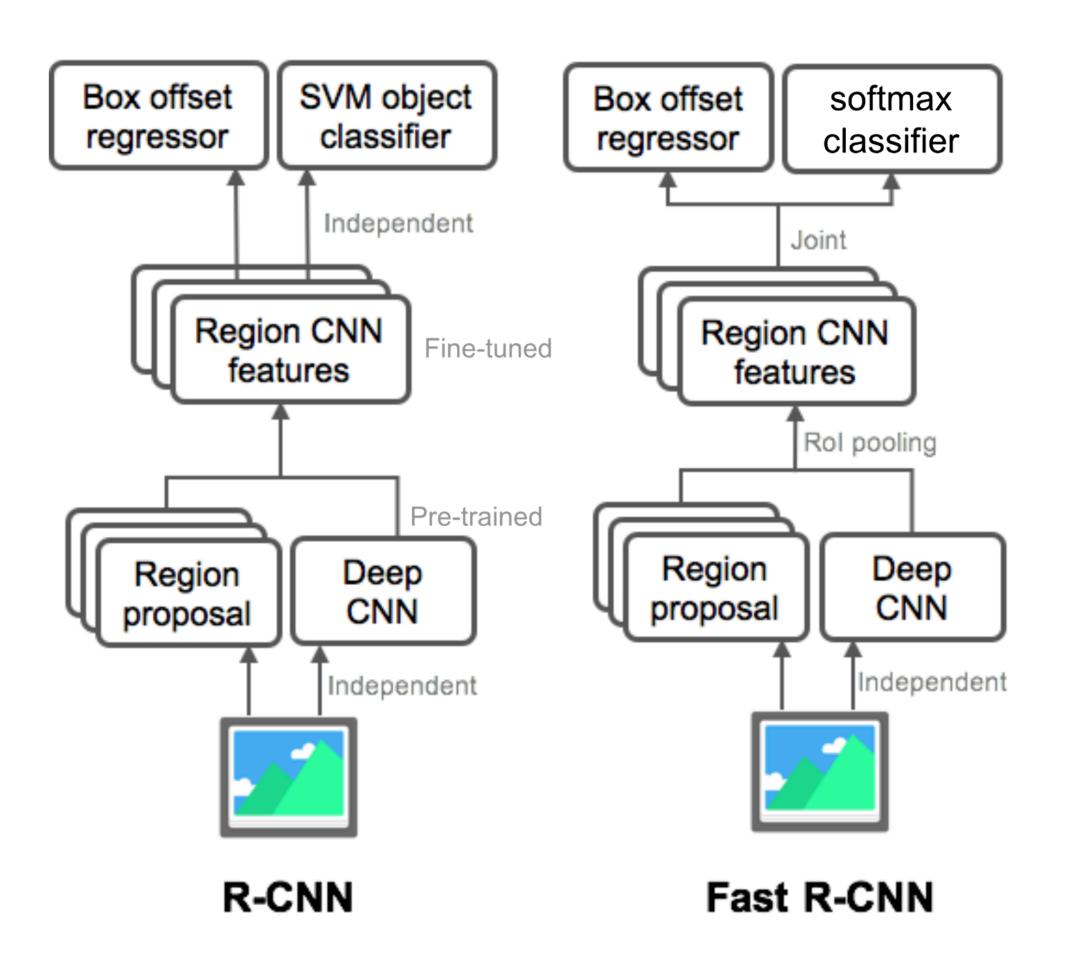




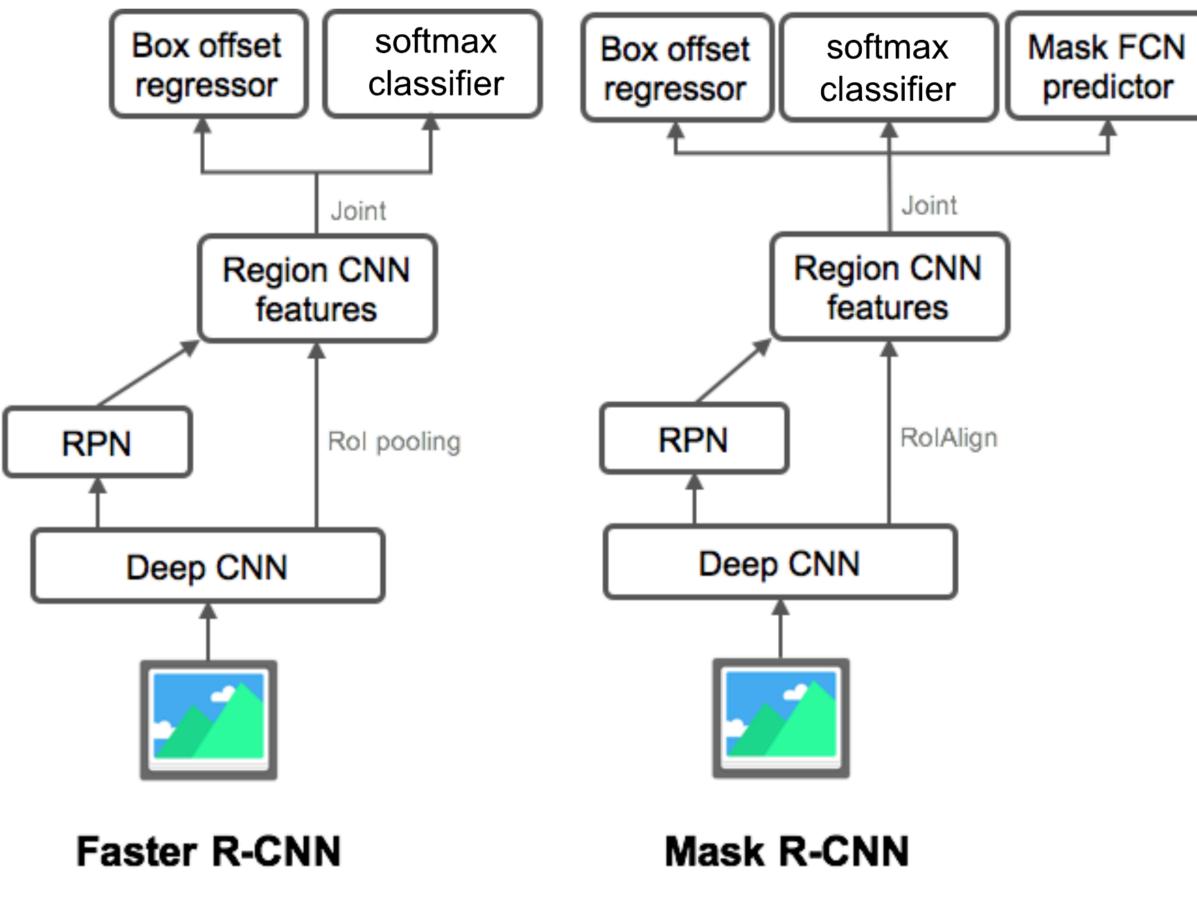


[He et al, 2017]

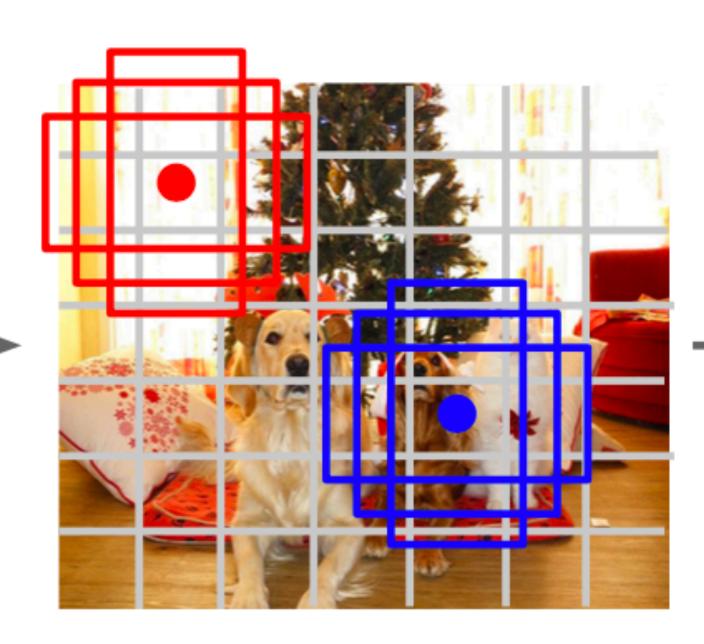
Summary of R-CNN Family of Models



https://lilianweng.github.io/lil-log/2017/12/31/object-recognition-for-dummies-part-3.html



YOLO: You Only Look Once



Input image $3 \times H \times W$

Image a set of **base boxes** centered at each grid cell Here B = 3

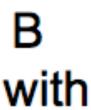
Redmon et al, CVPR 2016]

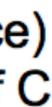
Within each grid cell:

- Regress from each of the B base boxes to a final box with 5 numbers:
 - (dx, dy, dh, dw, confidence) Predict scores for each of C classes (including background as a class)

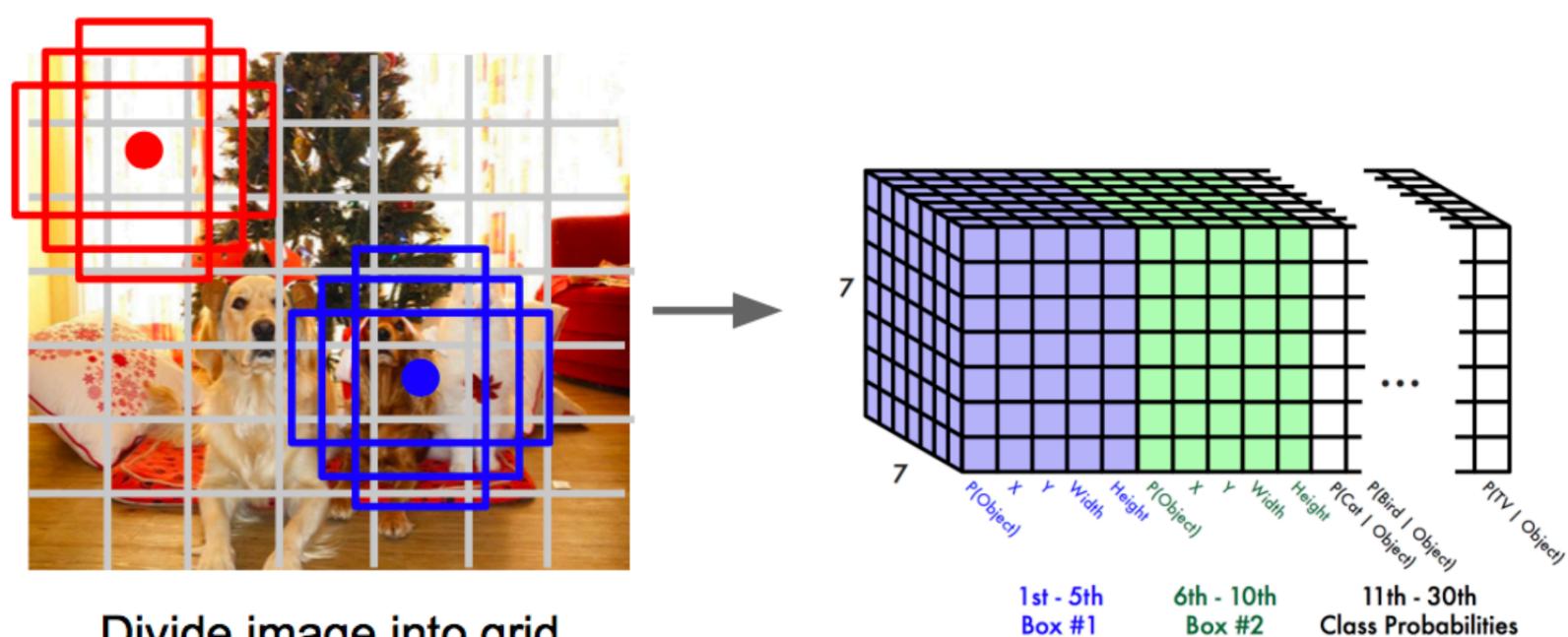
Divide image into grid 7 x 7

Output: $7 \times 7 \times (5 * B + C)$





YOLO: You Only Look Once



Input image 3 x H x W

Divide image into grid 7 x 7

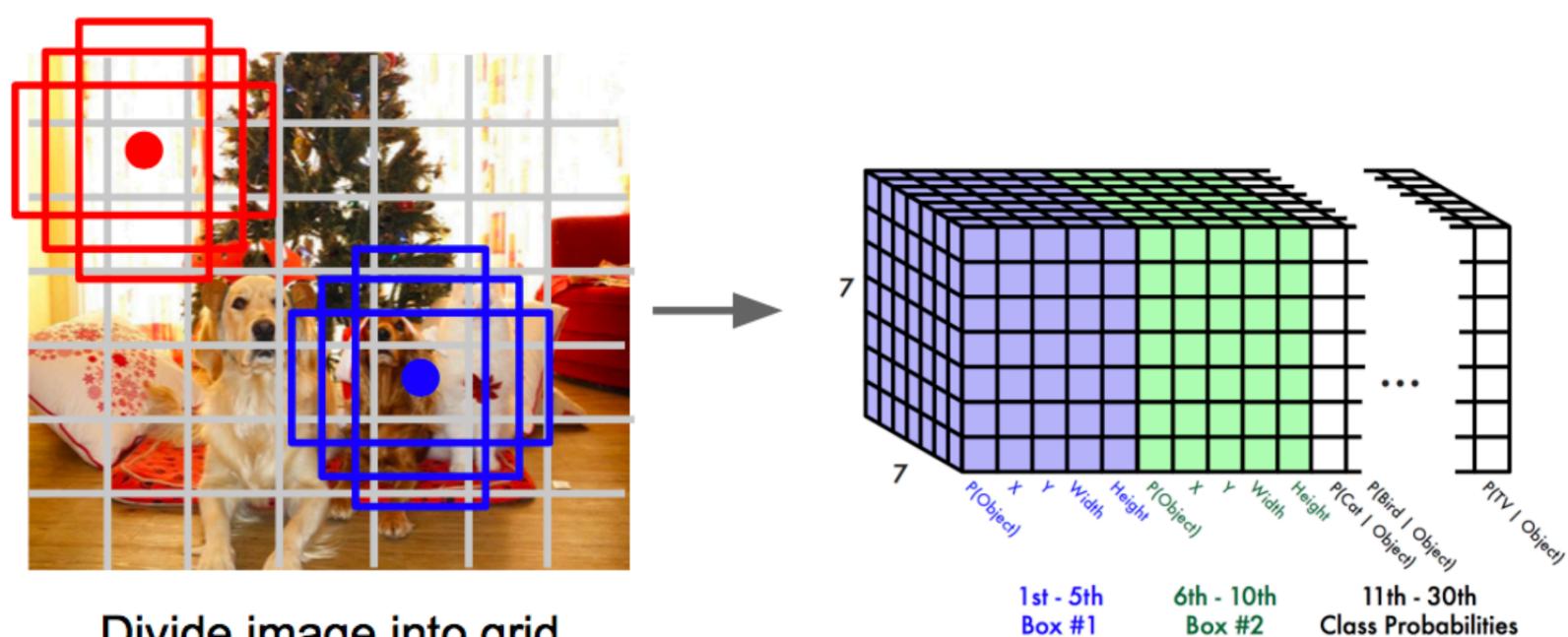
Image a set of base boxes centered at each grid cell Here B = 3

[Redmon et al, CVPR 2016]

http://pureddie.com/yolo

http://pureddie.com/yolo

YOLO: You Only Look Once



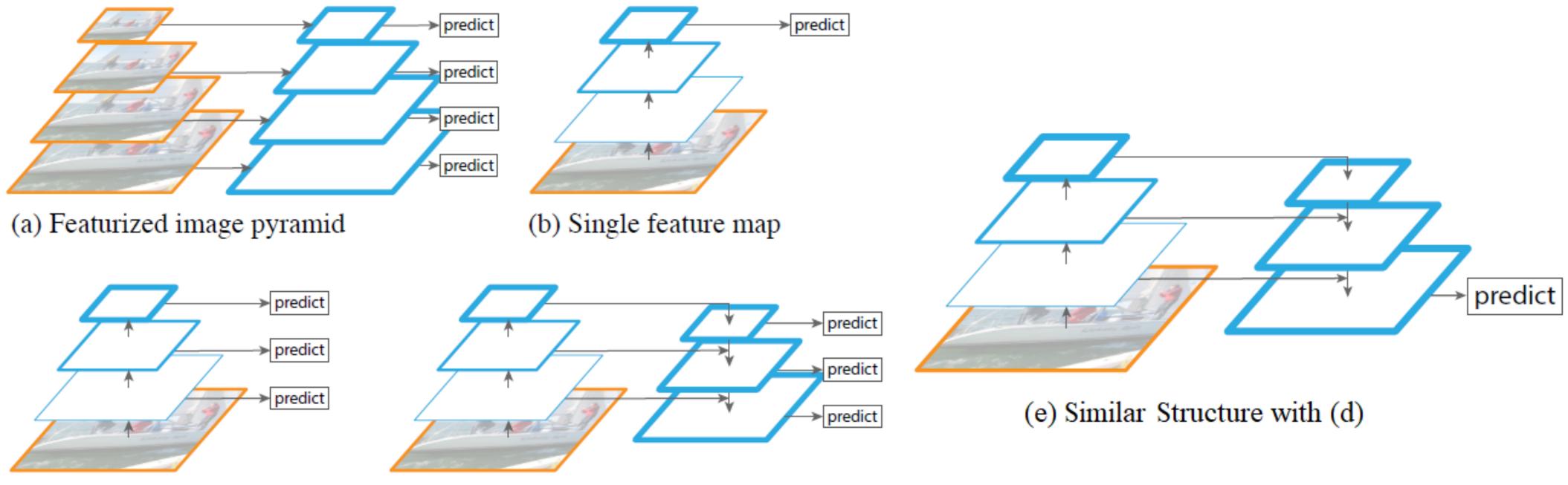
Input image 3 x H x W

Divide image into grid 7 x 7

Image a set of base boxes centered at each grid cell Here B = 3

[Redmon et al, CVPR 2016]

Feature **Pyramid** Networks

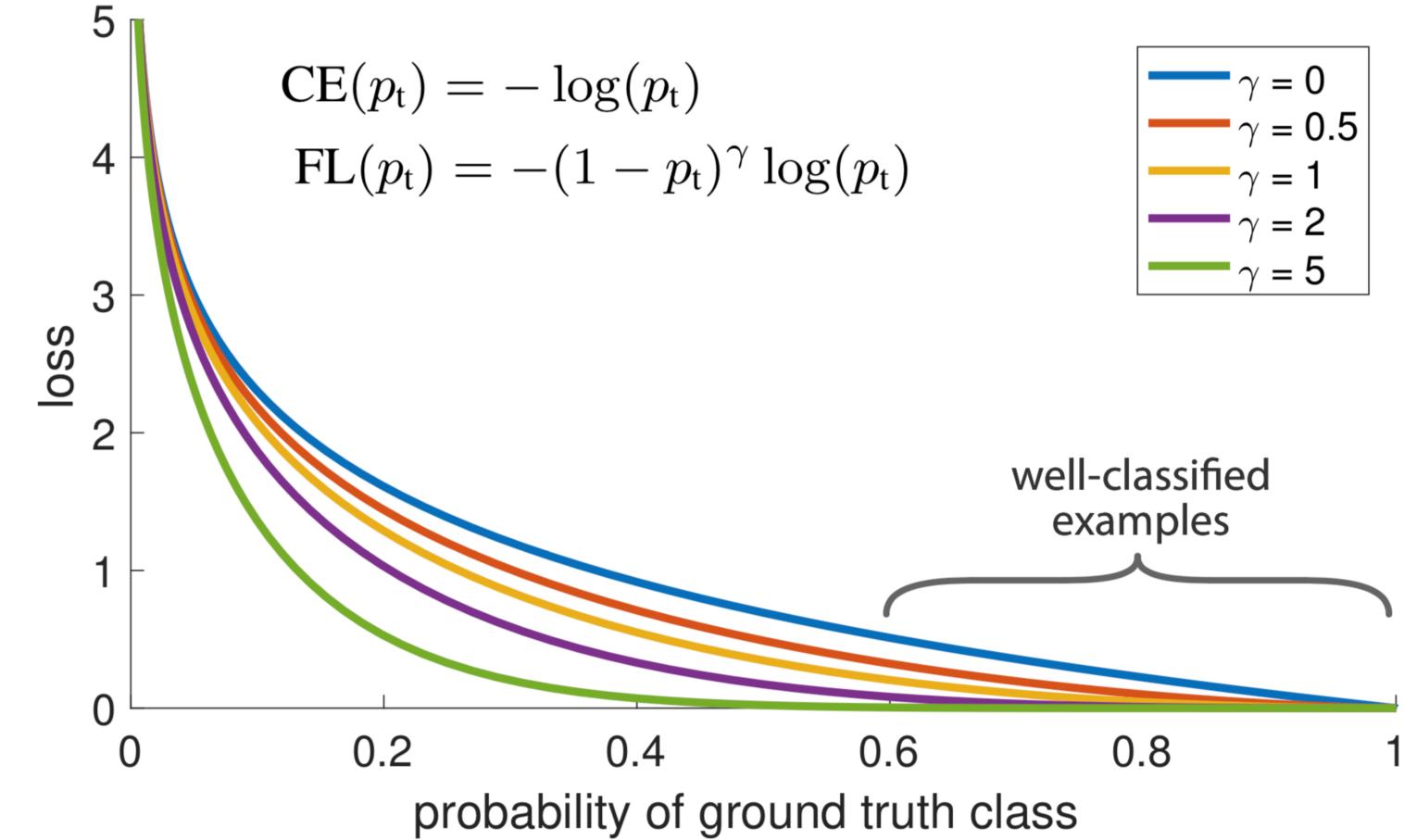


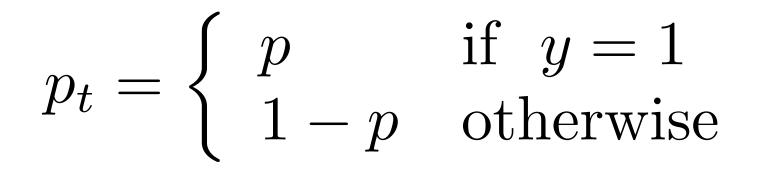
(c) Pyramidal feature hierarchy

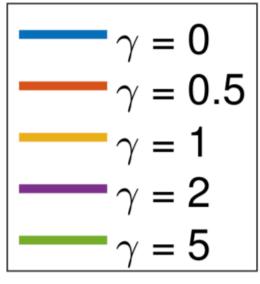
(d) Feature Pyramid Network

[Lin et al, CVPR 2017]

Focal Loss

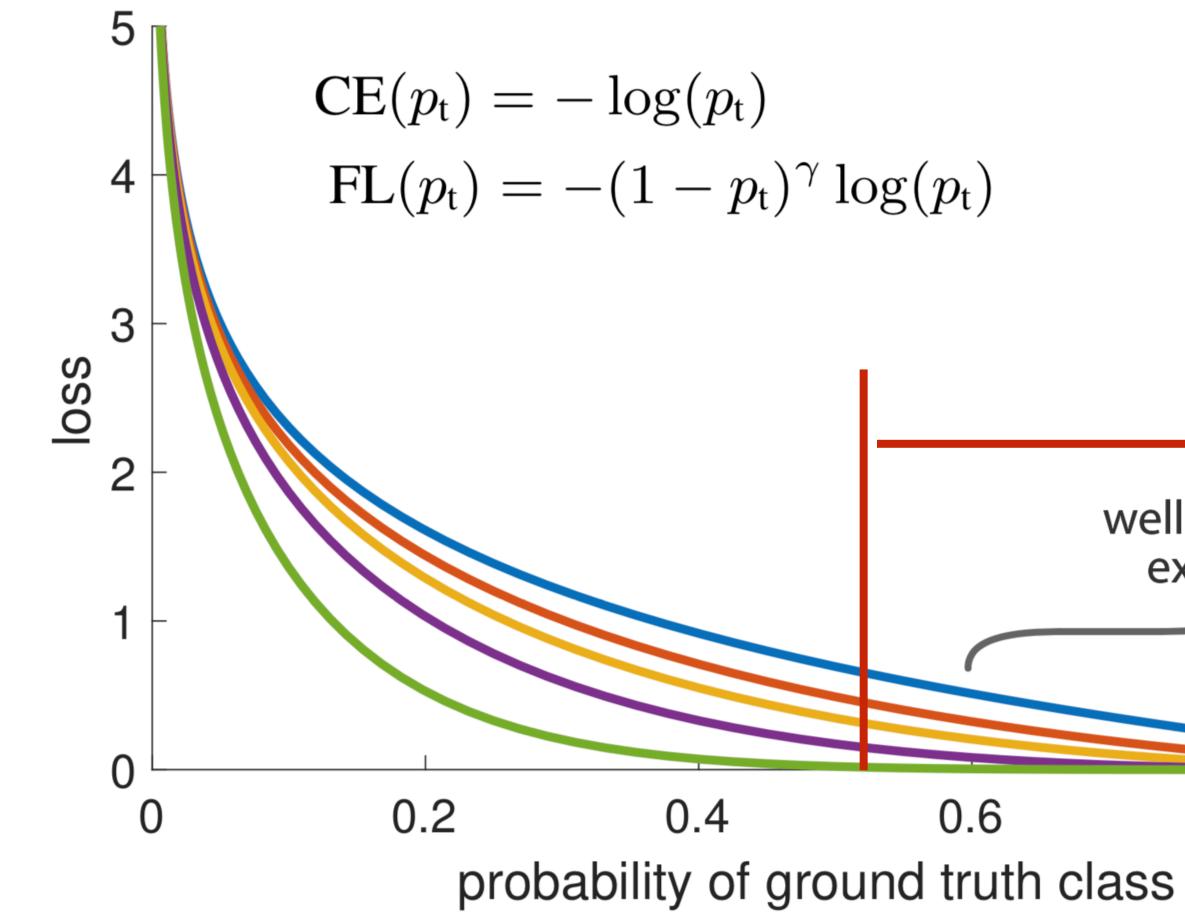






[Lin et al, ICCV 2017]

Focal Loss



$$p_{t} = \begin{cases} p & \text{if } y = 1\\ 1 - p & \text{otherwise} \end{cases}$$

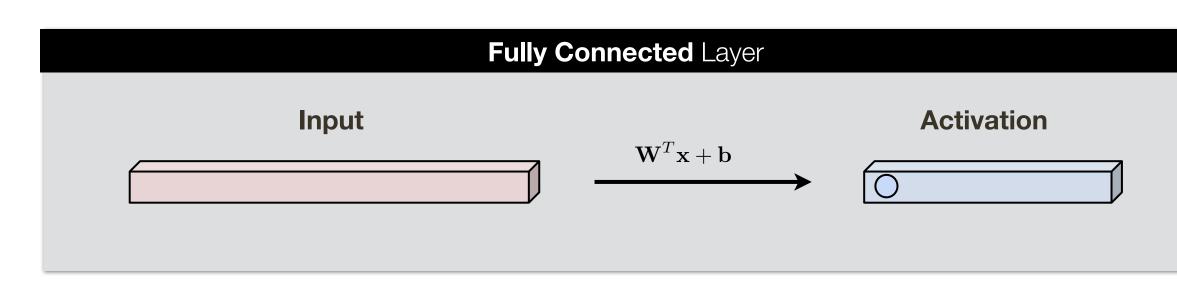
$$p_{t}^{\gamma} = 0 \\ \gamma = 0.5 \\ \gamma = 1 \\ \gamma = 2 \\ \gamma = 5 \end{cases}$$

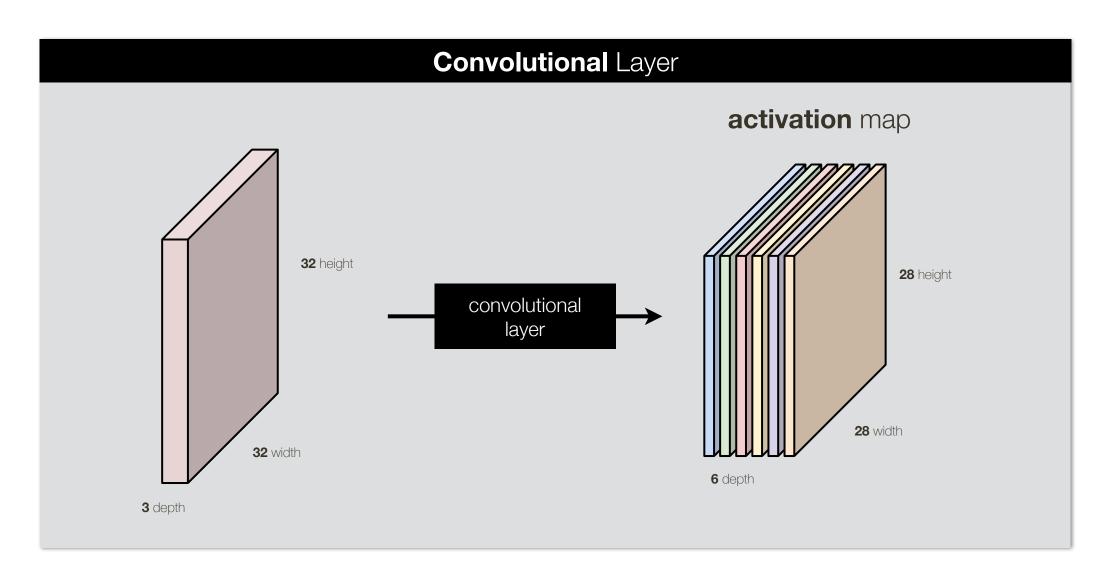
$$(p_{t})^{\gamma} \log(p_{t})$$

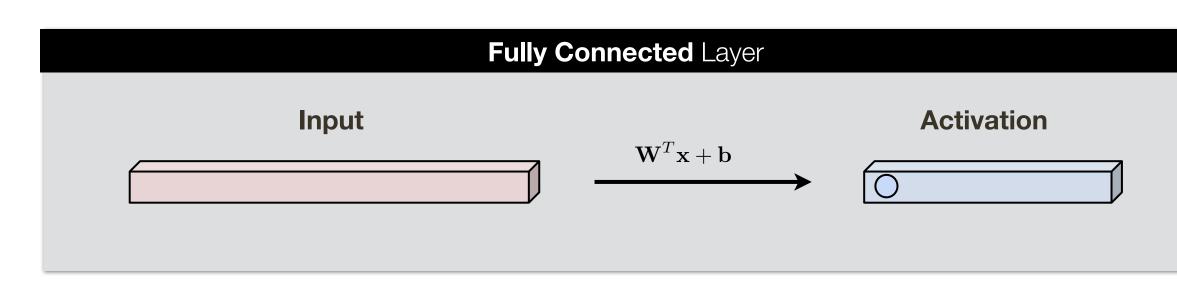
$$(p_{t})$$

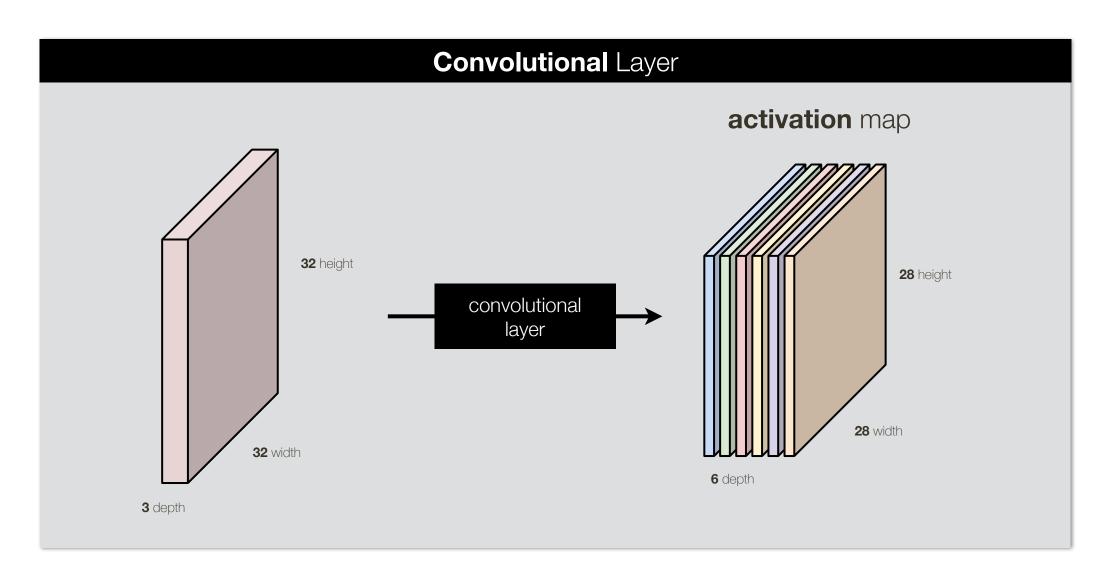
[Lin et al, ICCV 2017]

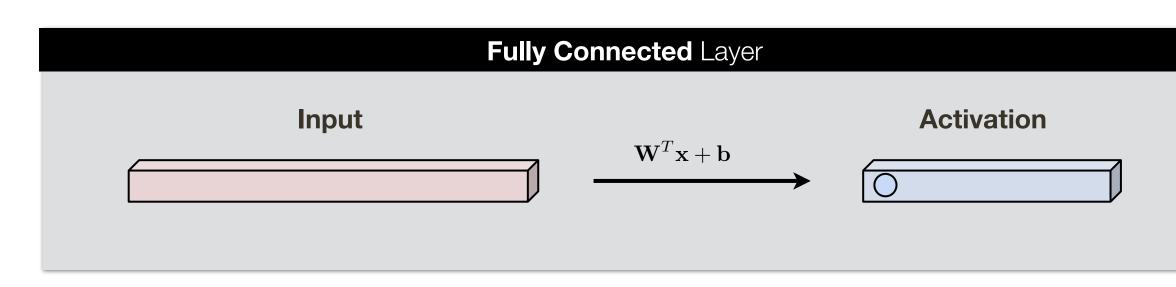
71

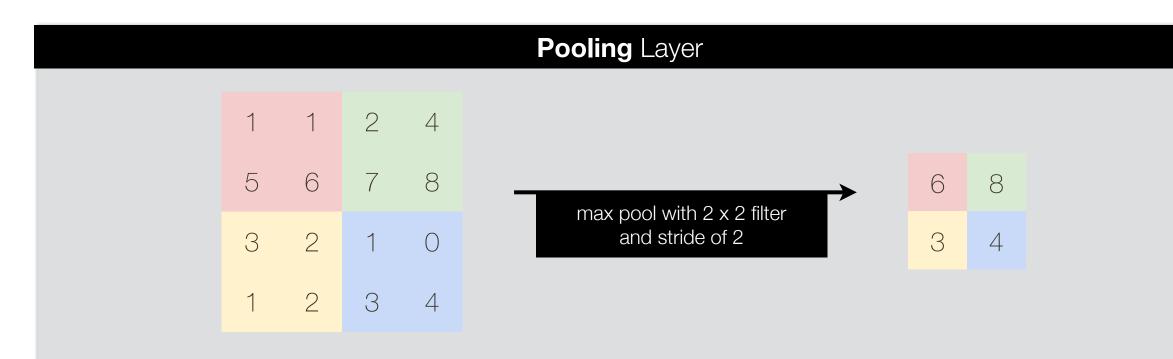


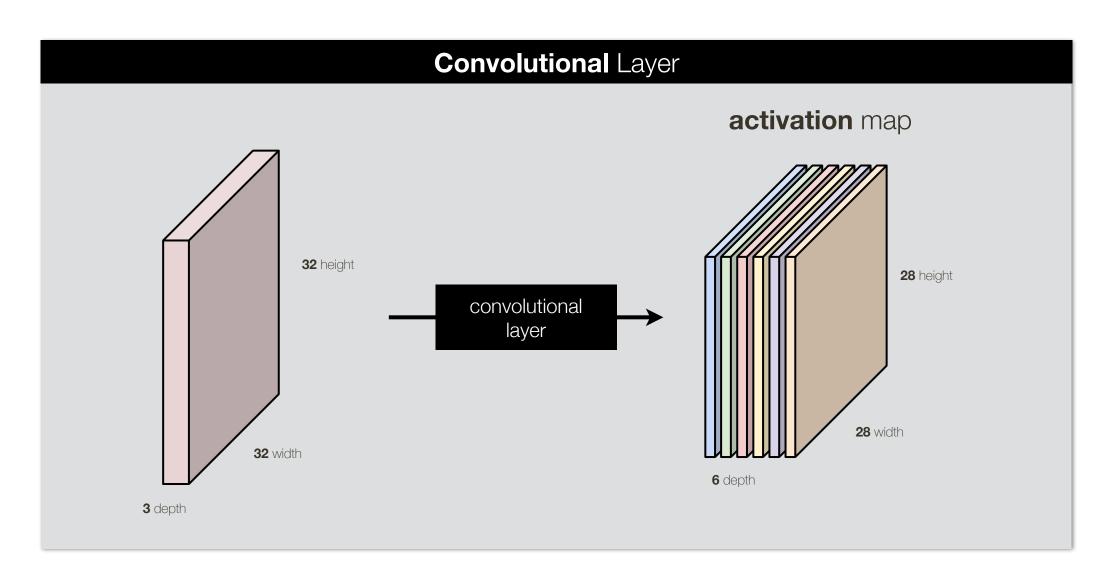






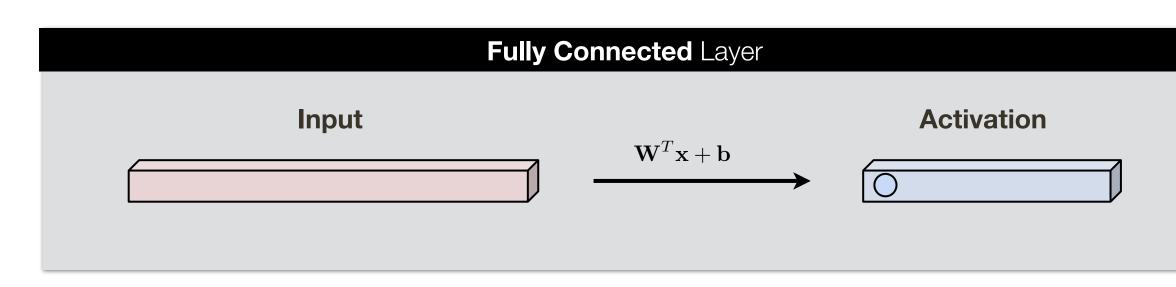


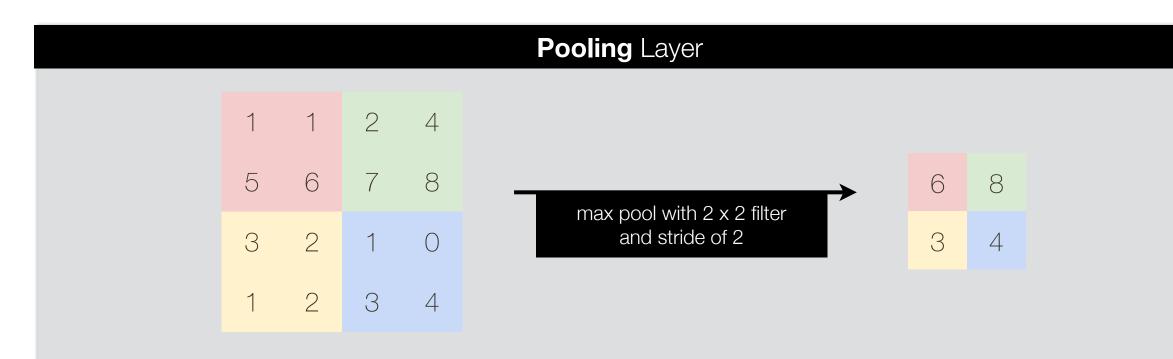


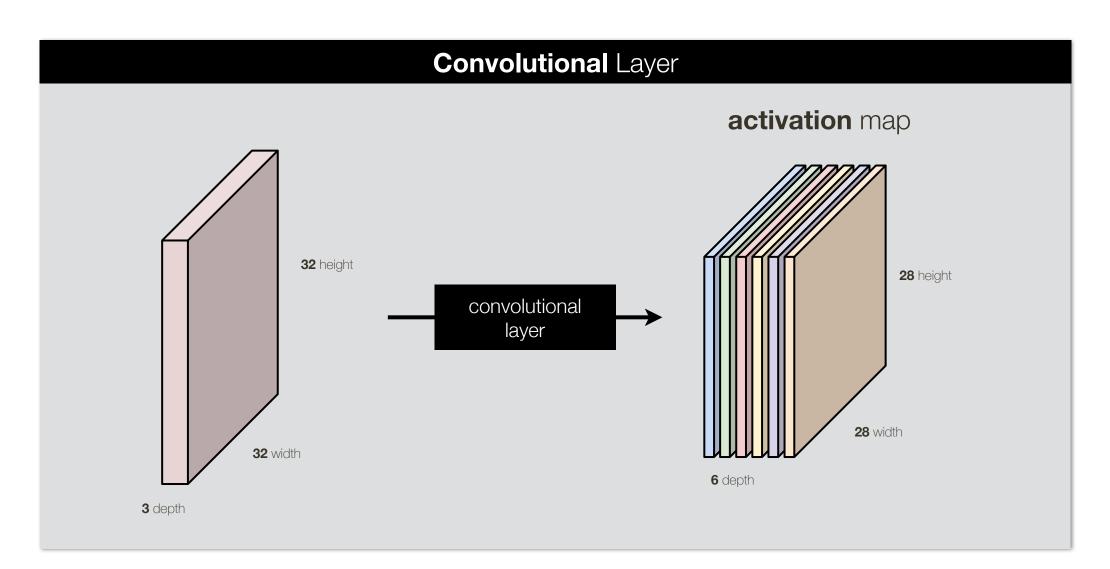


Effective Techniques for Training

- Regularization: L1, L2, data augmentation
- Transfer Learning: fine-tuning networks





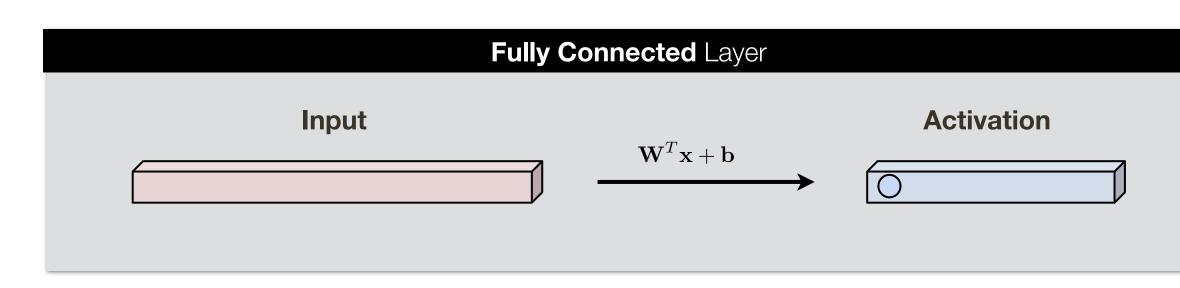


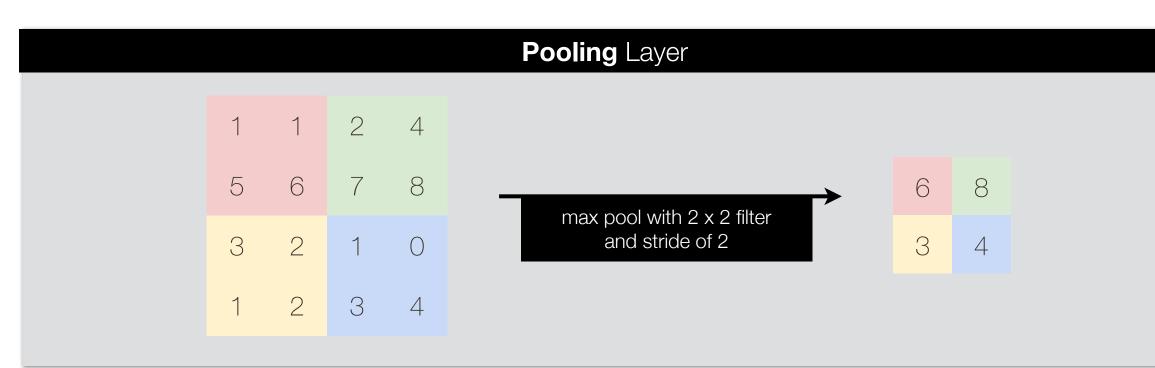
Effective Techniques for **Training**

- **Regularization:** L1, L2, data augmentation
- **Transfer Learning:** fine-tuning networks

Vision **Applications** of CNNs

- Classification: AlexNet, VGG, GoogleLeNet, ResNet
- **Segmentation:** Fully convolutional CNNs
- Detection: R-CNN, Fast R-CNN, Faster R-CNN, YOLO

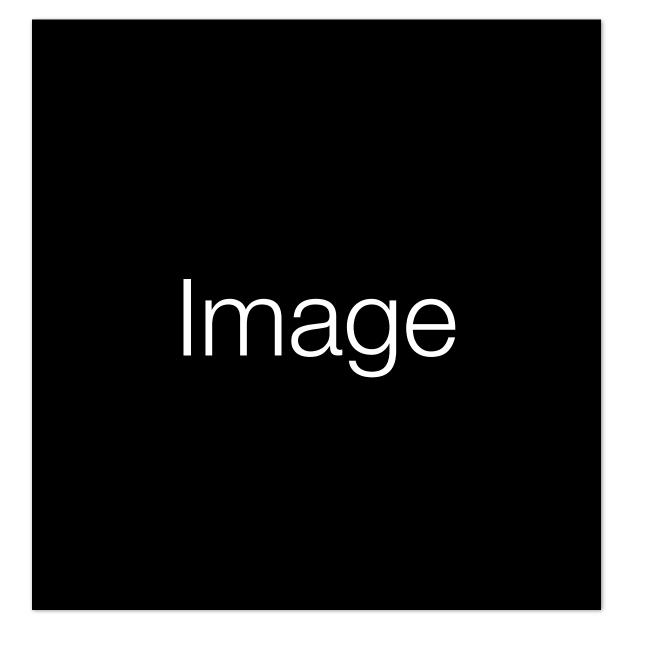


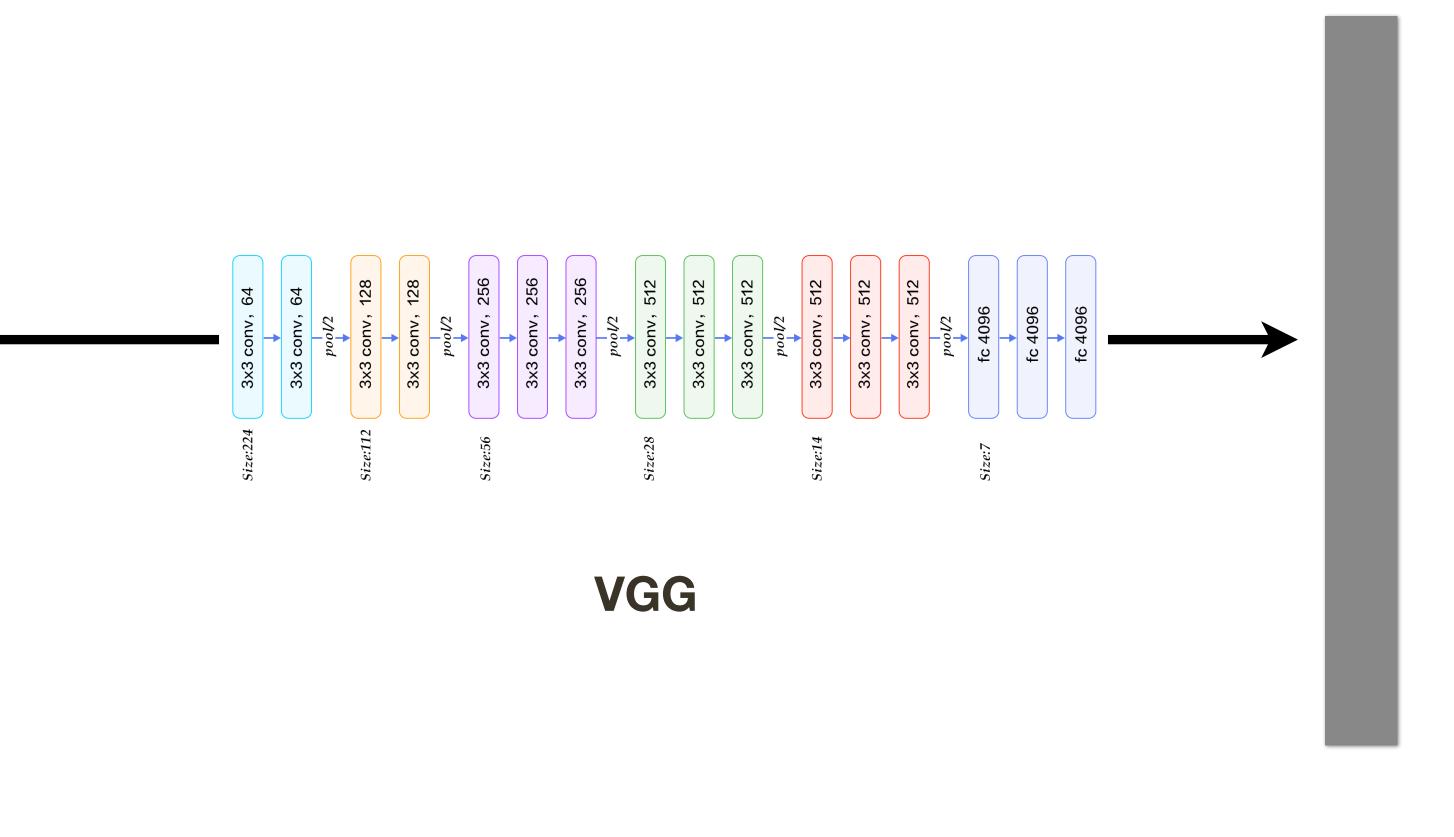


Categorization Instance Segmentation Detection Segmentation Horse Horse⁻ Horse (x, y, w, h Horse Multi-class: Person Horse₂ Horse (x, y, w, h) Church Person (x, y, w, h) Person1 Toothbrush COCO Common Objects in Context Person (x, y, w, h) Person2 Person COCO Common Objects in Con IM . GENET Horse Multi-label:

Church Toothbrush Person

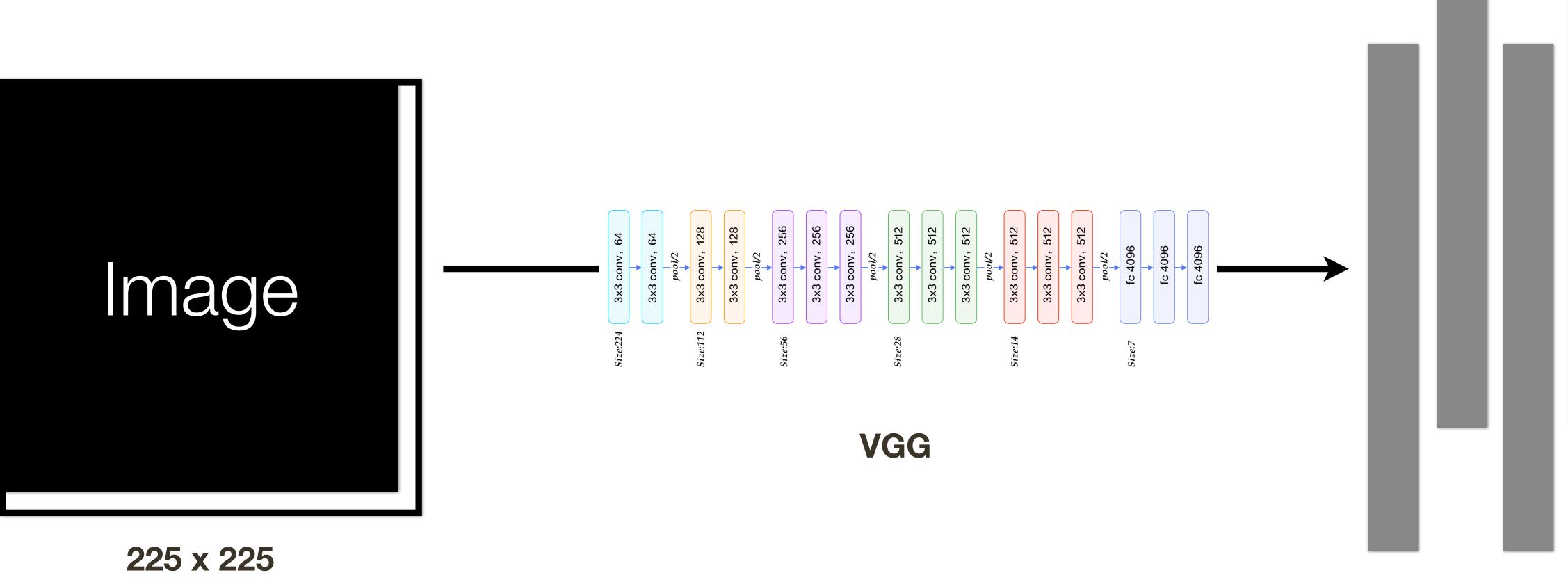
Any CNN Could be Fully Convolutional



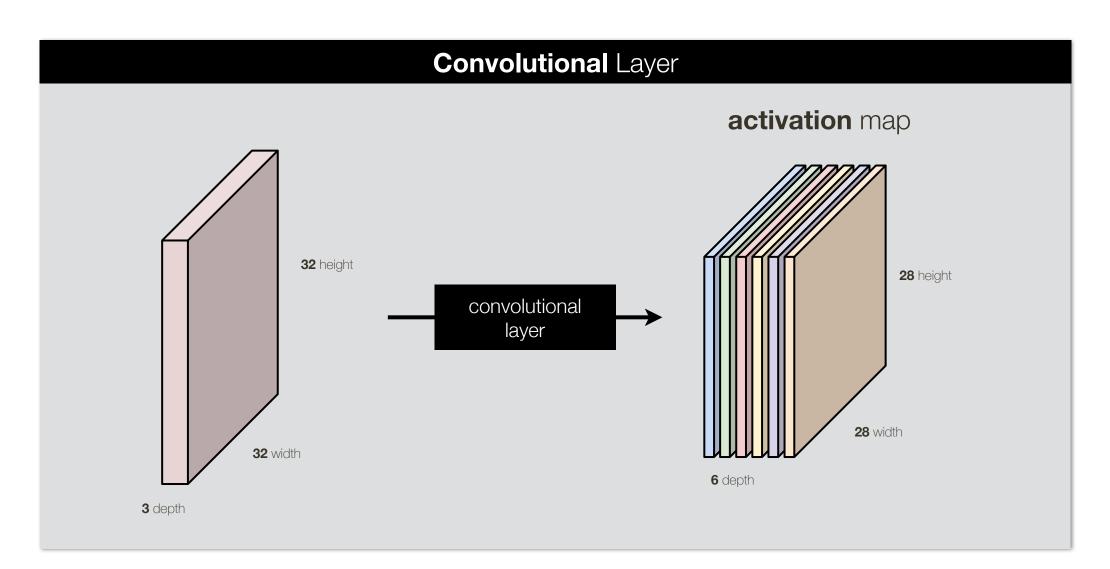


224 x 224

Any CNN Could be Fully Convolutional



2 x 2 x 1000

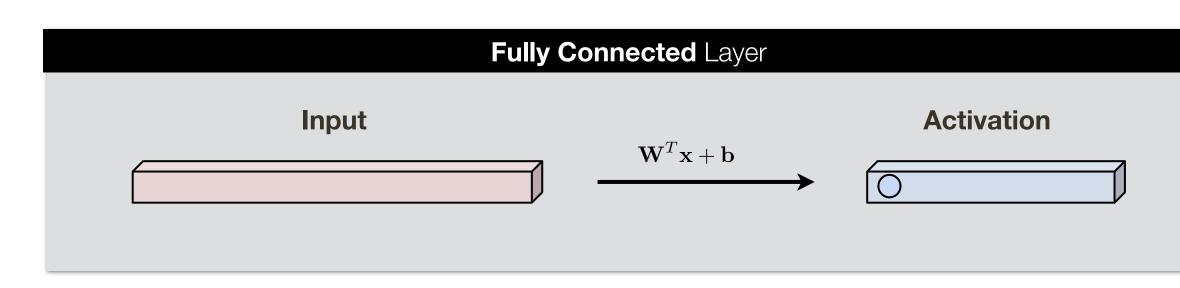


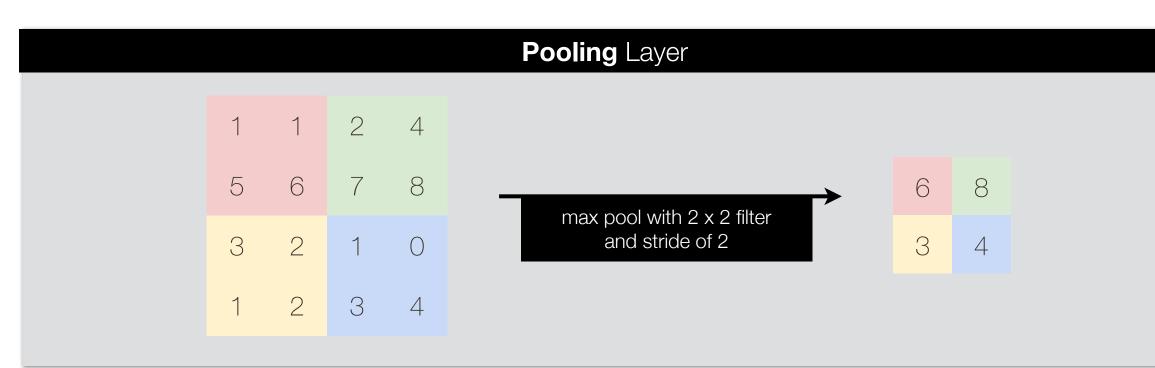
Effective Techniques for **Training**

- **Regularization:** L1, L2, data augmentation
- **Transfer Learning:** fine-tuning networks

Vision **Applications** of CNNs

- Classification: AlexNet, VGG, GoogleLeNet, ResNet
- **Segmentation:** Fully convolutional CNNs
- Detection: R-CNN, Fast R-CNN, Faster R-CNN, YOLO





Categorization Instance Segmentation Detection Segmentation Horse Horse⁻ Horse (x, y, w, h Horse Multi-class: Person Horse₂ Horse (x, y, w, h) Church Person (x, y, w, h) Person1 Toothbrush COCO Common Objects in Context Person (x, y, w, h) Person2 Person COCO Common Objects in Con IM . GENET Horse Multi-label:

Church Toothbrush Person

