THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 7: Convolutional Neural Networks (part 4)



Logistics:

Assignment 2 due Monday
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COmpUter ViSiOn PrOblemS (no language for now)

Categorization

Multi-class: Horse
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Multi-label: Horse
Church

Toothbrush
Person
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ILSVRC winner 2012
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GoogleleNet: Inception Module (Szegedy etal, 2014]

Idea: design good local topology (“network within network”) and then stack
these modules

Fiter
concatenation

| — ! ! | e '
| -
| . | | | 3x3 max
POOINg
. ‘ . L— ————-'——-——--——- #
Previous Laye

Inception module

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



GcogleLeNet [ Szegedy et al., 2014 |

even deeper network with computational efficiency

— 22 layers

— Efficient “Inception” module

— No FC layers - o

— Only 5 million parameters! | l\it PR e =

(12x less than AlexNet!) — . =3

— Better performance (@6.7 top 5 error) Inception module }:\\:
3

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Optimizing Deep Neural Networks

Consider multi-layer neural network with sigmoid activations and loss C

('

Source: http://neuralnetworksanddeeplearning.com/chap5b.html



Optimizing Deep Neural Networks
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Source: http://neuralnetworksanddeeplearning.com/chap5b.html



Optimizing Deep Neural Networks

oCc  _ 1 : ; : ! : ! aC
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Expression for gradient of bias in Layer 3:
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Source: http://neuralnetworksanddeeplearning.com/chap5b.html



Optimizing Deep Neural Networks

aC ¢ : ! : ! : / aC
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Expression for gradient of bias in Layer 3: 5. = O (23) wao '(34)%

Source: http://neuralnetworksanddeeplearning.com/chap5b.html



Optimizing Deep Neural Networks

S = o'(21) x w2 x 0 (22) X W3 X 0’ (23) X Wa X 0" (24) X Hu-
O— (==L

'
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'weight| < 1 (due to initialization) |
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I
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Source: http://neuralnetworksanddeeplearning.com/chap5b.html



Optimizing Deep Neural Networks

S = o'(21) x w2 x 0 (22) X W3 X 0’ (23) X Wa X 0" (24) X Hu-
O— (=)=
'
< 3 < 3
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~———
Observations:
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'weight| < 1 (due to initialization) |
max of derivative of sigmoid = 1/4 @ O . %0
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Source: http://neuralnetworksanddeeplearning.com/chap5b.html



Optimizing Deep Neural Networks

:))Zl = g'(z1) X W2 X' (22) X W3 X 0 (23) X W1 X0 (24) X (‘)’54
O—C)r—()—L)——()
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< 7 < 3
aC e N TN o oC
55, — 0 (21) w20 (22) w30 (23) wao (24)
l ()(1.4
— —
ThIS IS CaHed VaniShing gradient prOb‘em common terms
— makes deep networks hard to train —
— later layers learn faster than earlier ones 9C _ o/ (23) wao'(24) ())(
o a4

Source: http://neuralnetworksanddeeplearning.com/chaps.htmi



Optimizing Deep Neural Networks

:))'Sl — 0‘,(.31) X W2 X (7,(-3‘2) W W3 X 0"(33) X W4 X 0‘,(.34) X :))54
O O w2 O we O wy
b1 bo ba ,< ) O
> >1
9C _ NNy OC
55, — 0 (21) w20 (22) w30 (23) wao (24)
l ()(1.4
— —
Exploding gradient prob\em common terms
— makes weights large (e.g., 100) —
— make bias such that pre-activation = O 9C _ o1(20) wao (1) ())(
o a4

Source: http://neuralnetworksanddeeplearning.com/chaps.htmi



GcogleLeNet [ Szegedy et al., 2014 |

even deeper network with computational efficiency

— 22 layers

— Efficient “Inception” module

— No FC layers - o

— Only 5 million parameters! | l\it PR e =

(12x less than AlexNet!) — . =3

— Better performance (@6.7 top 5 error) Inception module }:\\:
3

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



An Aside: Neural Network Cascades

Cascade

” Model O

| |
i

/

Prediction
confident
enough?

Yes

Prediction
of model O

No | )
'—’{ Model 1

Y

Early exit

(easy examples)

Averaged
Prediction

Use more models
(hard examples)

[ Wang et al., ICLR 2022 ]
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ILSVRC winner 2012
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ResNet

even deeper — 152 layers!

using residual connections T relu
F(x) + X

conyv
F(X) ] relu

COonv

X
Residual block

A
| He et al., 2015 ]
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* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



ResNet: Motivation [He et al., 2015

What happens when we continue to stacking deeper layers on a “plain” CNN

56-layer

20-layer

est error

lterations

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford
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ResNet: Motivation [He et al., 2015

What happens when we continue to stacking deeper layers on a “plain” CNN

56-layer
b56-layer

20-layer

raining error
est error

20-layer

lterations lterations

Whats the problem?

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



ResNet: Motivation [He et al., 2015

Hypothesis: deeper models are harder to optimize (optimization problem)



ResNet: Motivation [He et al., 2015

Hypothesis: deeper models are harder to optimize (optimization problem)

Observation: the deeper model should (conceptually) perform just as well
(e.q., take shallower model and use identity for all remaining layers)



ResNet: Motivation [He et al., 2015

Hypothesis: deeper models are harder to optimize (optimization problem)

Observation: the deeper model should (conceptually) perform just as well
(e.q., take shallower model and use identity for all remaining layers)

How do we implement this idea In practice



ResNet e ot al, 20151

Solution: use network to fit residual mapping instead of directly trying to fit a
desired underlying mapping

B Use layers to fit residual
H(X) = F(x) + X F(x) = H(X) - X instead of H(x) directly
T relu
H(x) F(x) + X
X

‘ relu F() |relu iIdentity

!

X X

“Plain” layers Residual block

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



| He et al., 2015 ]

Full detalls

— Stacked residual blocks F(x) + x

T relu

— Every residual block consists of two 3x3 filters

3X3 conv

— Periodically double # of filters and downsample spatially
using stride of 2

X Caic
identity

\ relu

3X3 conv

— Additional convolutional layer in the beginning

— No FC layers at the end (only FC to output 1000 classes) X -m—m%.
Residual block —

[xzcony. 64 /2

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford
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ILSVRC winner 2012

MSRA @ [LSVRC & COCO 2015 Competitions 28

* 1st places in all five main tracks 25 8

{ 1 52 I ay e r s ] * ImageNet Classification: “Ultra-deep” (quote vann) 152-layer nets

* ImageNet Detection: 16% better than 2nd

A * ImageNet Localization: 27% better than 2nd
\ * COCO Detection: 11% better than 2nd
\ * COCO Segmentation: 12% better than 2nd
\
\ ——
\
\
\

[ 22 layers } 19 Iayers

357

8 layers H 8 layers shallow

— — — — .
— — —

ILSVRC'1S  ILSVRC'14 ILSVRC'14 ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford




Regularization: Stochastic Depth (Huang et al. ECCV 2016

Effectively “dropout” but for layers

Stochastically with some probability turn off
some layer (for each batch)

Effectively trains a collection of neural networks

Residual Block

E

-1
[ Input ]—
4

fe(He—1)

RelLU

id(H-1)

N
Hy
RelLU —>[ Output ]
/

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



ResNet: A little theory

One can view a seqguence of outputs from residual layers as a Dynamical

System
y Stage 1 Stage 2 Stage 3
) DTS | s
o LS block1 block 2 block1 block2 block 1 block 2

Ty

[ Cheng et al., ICLR 2018 |



ResNet: A little theory

One can view a seqguence of outputs from residual layers as a Dynamical

SyStem Stage 1 Stage 2 Stage 3
3 g"‘ ||-‘ﬁk
xS0 block1 block 2 block1 block2 block 1 block 2
T() T5 T6
Time
Y;
|dentity
G(Y,) Yj

[ Cheng et al., ICLR 2018 |



ResNet: A little theory

One can view a seqguence of outputs from residual layers as a Dynamical

SyStem Stage 1 Stage 2 Stage 3

""‘""*" z H %
block 1 block 2 block 1 block 2 block 1 block 2

Cat

What happens if you take more layers and take smaller steps®

| Chen et al., NIPS 2018 best paper |



ResNet: A little theory

One can view a seqguence of outputs from residual layers as a Dynamical

System
y Stage 1 Stage 2 Stage 3
0l I I I I I 14 I '
= S block1 block 2 block1 block2 block 1 block 2
_ TO T5

What happens if you take more layers and take smaller steps®

dh(t)

| Chen et al., NIPS 2018 best paper |

You can actually treat a neural network as an ODE:



Comparing Complexity
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An Analysis of Deep Neural Network Models for Practical Applications, 2017.

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Neural Architecture Search



Neural Architecture Search

Consider finding an optimal neural cell (with a total number of layers = N and
number of possible operations = K). The space of all possible architectures is:

K NoNx(N-1)/2

Note: K may include operator types (conv, pool), kernel sizes (1x1, 3x3, 5x5),
strides (1, 3, 5), etc.



Neural Architecture Search

Consider finding an optimal neural cell (with a total number of layers = N and
number of possible operations = K). The space of all possible architectures is:

K NoNx(N-1)/2

Random Search:

1. Randomly pick operators and connectivity of the graph

2. Evaluate how good is this cell architecture (this is REALLY expensive)

3. Keep best performing architecture



Neural Architecture Search

Consider finding an optimal neural cell (with a total number of layers = N and
number of possible operations = K). The space of all possible architectures is:

K NoNx(N-1)/2

Smarter Search:

1. Sample operators and connectivity of the graph (initially at random)

2. Evaluate how good is this cell architecture (this is REALLY expensive)

3. Keep all sampled and evaluated architectures <Architecture, Score>



Neural Architecture Search

Consider finding an optimal neural cell (with a total number of layers = N and
number of possible operations = K). The space of all possible architectures is:

K NoNx(N-1)/2

Smarter Search: Policy

1. Sample operators and connectivity of the graph (initially at random)

2. Evaluate how good is this cell architecture (this is REALLY expensive) Reward

3. Keep all sampled and evaluated architectures <Architecture, Score>
Replay Buffer

discrete optimization problem => Reinforcement Learning



COmpUter ViSiOn PrOblemS (no language for now)

Categorization Detection Segmentation Instance Segmentation

TR

. -~
- y

o v Ny A
o AL ALY b

s I P
! N RO '
it o
" -
\ ‘»
4 4 o
’

Multi-class:  Horse Horse (x, y, w, h) Horse1
Horse (X, y, w, h) Horse?2
Church
Toothbrush Person (x, vy, w, h) PersonT
OOtbIUS Person (x, vy, w, h) - Person?
Person Common Objects in Context
IMAGENET

Common Objects in Context

Multi-label: Horse
Church

Toothbrush
Person



COmpUter ViSiOn PrOblemS (no language for now)

Segmentation

Common Objects in Context



emantic Segmentation

Label every pixel with a

category label (without
differentiating instances

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Semantic Segmentation: Sliding Window  Farabet et al, TPAMI 2013

| Pinheiro et al, ICML 2014 |

Extract patches Classify center pixel with CNN

7’

3-5])—s cov

2

GP—s con

<l

. )—) Grass

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



emantic Segmentation: Sliding Window  Farabet et al, TPAMI 2013

| Pinheiro et al, ICML 2014 |

Extract patches Classify center pixel with CNN

7’

all .. || gy G OW

j?l J—) Cow

ol - :ﬂ—» Grass

VERY inefficient, no reuse of computations for overlapping patches

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Semantic Segmentation: Fully Convolutional CNNs

Design a network as a number of convolutional layers to make
oredictions for all pixels at once!

4

* 3 "6"& \‘ } =
o S B A
w 5 § s s
&2 S W [ SEEET
oF R *«w

S

oy

N oy o

o %3
T TR T "
3 o SO *3
H f o PRt R
/ - AR EERA
\
o 4
5
v
%
=)
o \
Elegiy |
B St
*\
X
b I AN O VA

Input Image Class Scores Predicted Labels
3xHxW ' _ CxXHxW Hx W
Convolutions
DxHxW

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Semantic Segmentation: Fully Convolutional CNNs

Design a network as a number of convolutional layers to make
oredictions for all pixels at once!

-

Input Image

3XHxW '

Convolutions

DxHxW

4

-

Class Scores Predicted Labels

CxHxW Hx W

Problem: Convolutions at the original image scale will be very expensive

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Semantic Segmentation: Fully Convolutional CNNs

Design a network as a number of convolutional layers with
downsampling and upsampling inside the network!

Med-res: Med-res:
D, x H/4 x W/4 Do x H/4 x W/4

Low-res:
Input Image Dsx H/4 x W/4 Predicted Labels

3w Hx W High-res: High-res: H x W
Dy x H/2 x W/2 Dy x H/2 x W/2

| Long et al, CVPR 2015 |
| Noh et al, ICCV 2015 |

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Semantic Segmentation: Fully Convolutional CNNs

Design a network as a number of convolutional layers with
downsampling and upsampling inside the network!

Med-res: Med-res:
D, x H/4 x W/4 Do x H/4 x W/4

Low-res:
Input Image 1 Dsx H/4 x W/4 Predicted Labels
3w Hx W High-res: High-res: H x W
Dy x H/2 x W/2 Dy x H/2 x W/2
Downsampling = Pooling Upsampling = 777

| Long et al, CVPR 2015 |
| Noh et al, ICCV 2015 |

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



INn-network Up Sampling (a.k.a “Unpooling”)

Nearest Neighbor

1T 112 2
1 2 T 112 2
—
3 4 3 3|4 4
3 3|4 4
Input: 2 x 2 Output: 4 x 4

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



INn-network Up Sampling (a.k.a “Unpooling”)

Nearest Neighbor “Bed of Nails”
T 112 2 1T 012 O
1 2 T 112 2 1 2 O 0|10 O
3 4 — 3 314 4 3 4 — 3 014 O
3 3|14 4 O 0|10 O
Input: 2 x 2 Output: 4 x 4 Input: 2 x 2 Output: 4 x 4

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



INn-network Up Sampling: Max Unpooling

Max Pooling Max Unpooling
Remember which element was max! Use positions from pooling layer

1T 210 3 O 02 O
3 o2 5 B 1 2 O 110 O
1T 212 1 /8 Rest of the network 3 4 O 010 0
[ 3|4 38 3 0|0 4

Output: 2 x 2 Input: 2 x 2
Input: 4 x 4 Output: 4 x 4

A — v

Corresponding pairs of downsampling and upsampling layers

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



INn-network Up Sampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 1 pad 1

—_—

Dot product between
filter and input

Input: 4 x 4 Output: 4 x 4

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



INn-network Up Sampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 1 pad 1

—_—

Dot product between
filter and input

Input: 4 x 4 Output: 4 x 4

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



INn-network Up Sampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

—_—

Dot product between
filter and input

Output: 2 x 2

Input: 4 x 4

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



INn-network Up Sampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

—_—

Dot product between
filter and input

Output: 2 x 2

Filter moves 2 pixels in the input for every one
Input: 4 x 4 pixel in the output

Stride gives ratio in movement in input vs output

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



INn-network Up Sampling: Transpose Convolution

3 X 3 transpose convolution, stride 2 pad 1

Output: 4 x 4
Input: 2 x 2

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



INn-network Up Sampling: Transpose Convolution

3 X 3 transpose convolution, stride 2 pad 1

——
Input gives
weight for

filter

Output: 4 x 4
Input: 2 x 2

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



INn-network Up Sampling: Transpose Convolution

3 X 3 transpose convolution, stride 2 pad 1
Sum where

output overlaps

——
Input gives
weight for

filter

Output: 4 x 4
Input: 2 x 2

Filter moves 2 pixels in the output for every one
pixel in the Input

Stride gives ratio in movement in output vs input

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Transpose Convolution: 1-D Example

Output
d
Yy az H| DX
o
k / / by

Output contains copies of the filter weighted multiplied by the input, summing
at overlaps In the output

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



U-Net Architecture

input
image
tile

572 x 572

ResNet-like Fully convolutional CNN

| 64 64
128 64 64 2
. olele output
N . segmentation
& % map
O = -
N K S g
XN X
O @
~f ©
N
'128 128 I
256 128
o~ o
% % % & t&’ a
¥ oo 256 512 256
N s o
gIN 1 §D?8IEI =» conv 3x3, RelLU
3 0 f S S = copy and crop
512

512 512 1024
& ¥ max pool 2x2

4 up-conv 2x2
=» CONV 1x1

| Ronneberger et al, CVPR 2015 |




COmpUter ViSiOn PrOblemS (no language for now)

Categorization Detection Segmentation Instance Segmentation

TR

. -~
- y

o v Ny A
o AL ALY b
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it o
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\ ‘»
4 4 o
’

Multi-class:  Horse Horse (x, y, w, h) Horse1
Horse (X, y, w, h) Horse?2
Church
Toothbrush Person (x, vy, w, h) PersonT
OOtbIUS Person (x, vy, w, h) - Person?
Person Common Objects in Context
IMAGENET

Common Objects in Context

Multi-label: Horse
Church

Toothbrush
Person



COmpUter ViSiOn PrOblemS (no language for now)

Detection

Horse (X, y, w, h)
Horse (X, y, w, h)
Person (X, y, w, h)
Person (X, y, w, h)

Common Objects in Context




Datasets: Pascal VOC

20 classes: aeroplane, bicycle, boat, bottle, bus, car, cat, chair, cow, dining
table, dog, horse, motorbike, person, potted plant, sheep, train, 1V

Real images downloaded from flickr, not filtered for “quality”

* slide from Andrew Zisserman



Datasets: Pascal VOC

20 classes: aeroplane, bicycle, boat, bottle, bus, car, cat, chair, cow, dining
table, dog, horse, motorbike, person, potted plant, sheep, train, 1V

‘ |
- 3 "
m_____. : - [
} ~ Ins ol o

Images 10,103 9,637

2 " Objects 23,374 22 992 T

Real images downloaded from flickr, not filtered for “quality”

* slide from Andrew Zisserman



Datasets: COCO

CLCCCCCLS

Object segmentation
Recognition in context
Superpixel stuff segmentation
330K images (>200K labeled)
1.5 million object instances
80 object categories

91 stuff categories

5 captions per image

250,000 people with keypoints



Object Detection

mean Average Precision (mAP)
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* plot from Ross Girshick, 2015



Object Detection as Regression Problem

alffl --- - CAT (X, y, W ,h)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Object Detection as Regression Problem

—  CAT (X, Y, W ,h)
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* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Object Detection as Regression Problem
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* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Object Detection as Classification Problem

Category Prediction
Dog No

. Cat NO
D cee
'Im | Il Flowers No

Background  Yes

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Object Detection as Classification Problem

Category Prediction
Dog No

. Cat NO
! |ll | [ ... —_—) Couch NoO
Il Flowers No

Background  Yes

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Object Detection as Classification Problem

Category Prediction

Dog Yes
. Cat NO
||| | —)  COouch No
D e
Il Flowers NoO
Background NO

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Object Detection as Classification Problem

Category Prediction
Dog Yes

. Cat No

! |ll | [ ... —_—) Couch NoO
Il Flowers NoO

Background  No

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Object Detection as Classification Problem

Category Prediction
Dog No

. Cat Yes
||| | —_—) ouch No
D P
Il Flowers NoO

Background  No

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Object Detection as Classification Problem

Problem: Need to apply CNN to many patches in each image

Category Prediction
Dog No

. Cat Yes
|l| | —_—) ouch No
D P
Il Flowers NoO

Background  No

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



A—..
[ Alexe et al, TPAMI 2012

Region Proposa\s (older idea in vision) [ Uilkings et al, IJCV 2013

[ Cheng et al, CVPR 2014
| Zitnick and Dollar, ECCV 2014

Find image regions that are likely contain objects (any object at all)

B~ B WN

- typically works by looking at histogram distributions, region aspect ratio, closed contours, coherent color

Re\ative\y fast to run (Selective Search gives 1000 region proposals in a few seconds on a CPU)

Goal: Get “true” object regions to be in as few top K proposals as possible

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford




| Girshick et al, CVPR 2014 |

Input Image

* image from Ross Girshick



| Girshick et al, CVPR 2014 |

Regions of Interest from
a proposal method (~2k)

Input Image

* image from Ross Girshick



| Girshick et al, CVPR 2014 |

Regions of Interest from
a proposal method (~2k)

Input Image

* image from Ross Girshick



ConvN

ConvN
et

4

[ Girshick et al, CVPR 2014 |

Forward each region
through a CNN

4 g /" Warped image regions

Regions of Interest from

a proposal method (~2k)

Input Image

* image from Ross Girshick



SVMs

SVMs

SVMs

ConvN

ConvN

et

4

[ Girshick et al, CVPR 2014 |

Classify regions with SVM

Forward each region
through a CNN

4 g /" Warped image regions

Regions of Interest from
a proposal method (~2k)

Input Image

* image from Ross Girshick



R-CNN

Linear Regression for bounding box offsets

Bbox reg

SVMs

Bbox reg

Bbox reg

SVMs

ConvN

ConvN

et

4

[ Girshick et al, CVPR 2014 |

Classify regions with SVM

Forward each region
through a CNN

4 g /" Warped image regions

Regions of Interest from
a proposal method (~2k)

* image from Ross Girshick



R-CNN: Training

Fine-tuning ImageNet CNN on object proposal patches

| Girshick et al, CVPR 2014 |

— > b50% Intersection-over-Union overlap with GT considered “object” others “background”

— batches of 128 (32 positives, 96 negatives)

Bbox reg || SVMs

Bbox reg

Bbox reg

SVMs

L]

ConvN

ConvN
et

* image from Ross Girshick



R-CNN:

SSUES

Ad-hoc training objectives

— Fine-tune network with softmax objective (log loss)
— Train post-hoc linear SVM (hinge |0ss)

— Train post-hoc bounding-box regression (least squares)
Training Is slow
— 84 hours and takes a lot of disk space

Inference / Detection is slow

— 47 sec / image with VGG16 [ Simonyan et al, ICLR 2015 |

| Girshick et al, CVPR 2014 |

Bboxreg || SVMs

Bbox reg

Bbox reg

SVMs

ConvN

* image from Ross Girshick



R-CNN vs. SPP

| He et al, ECCV 2014 ]

feature

feature

feature
feature

feature
feature

, ,','

‘\,_..

/9’.»4"“ l m-w"*w.
R s ~1mage v
—

R-CNN SPP-net
2000 nets on image regions 1 net on full image



Fast R-CNN

| Girshick et al, ICCV 2015 |

* image from Ross Girshick



Fast R-CNN

| Girshick et al, ICCV 2015 |

/ /”convS” feat
/ Forward wi

* image from Ross Girshick



Fast R-CNN

[ Girshick et al, ICCV 2015 |

/ ‘convd” feature map

T

ANAN

Forward prop the whole image through CNN

ConvNet

* image from Ross Girshick



Fast R-CNN

Regions of
Interest
from the
poroposal
method

ﬁ/ Vi /47/ “convs” feature map
T

Forward prop the whole image through CNN

ConvNet

[ Girshick et al, ICCV 2015 |

* image from Ross Girshick



Fast R-CNN
[ Girshick et al, ICCV 2015 |
Regions of /7 ,~ ,— RolPooling” layer
Interest 7@/ ) 7/ “convb” feature map
from the /
proposal Forward prop the whole image through CNN
method *

Input Image

Girshick, “Fast R-C
Figure copyright Ri

* image from Ross Girshick



