

Topics in AI (CPSC 532S): Multimodal Learning with Vision, Language and Sound

Lecture 6: Convolutional Neural Networks (Part 3)

Logistics:

Assignment 2 is due on Friday (will postpone to Monday)

Assignment 2 check out Piazza for debugging hints and some guides

TA office hours are Tuesdays (today) @ 3pm

My office hours are Fridays

Will make slides available later today

Fully Connected:

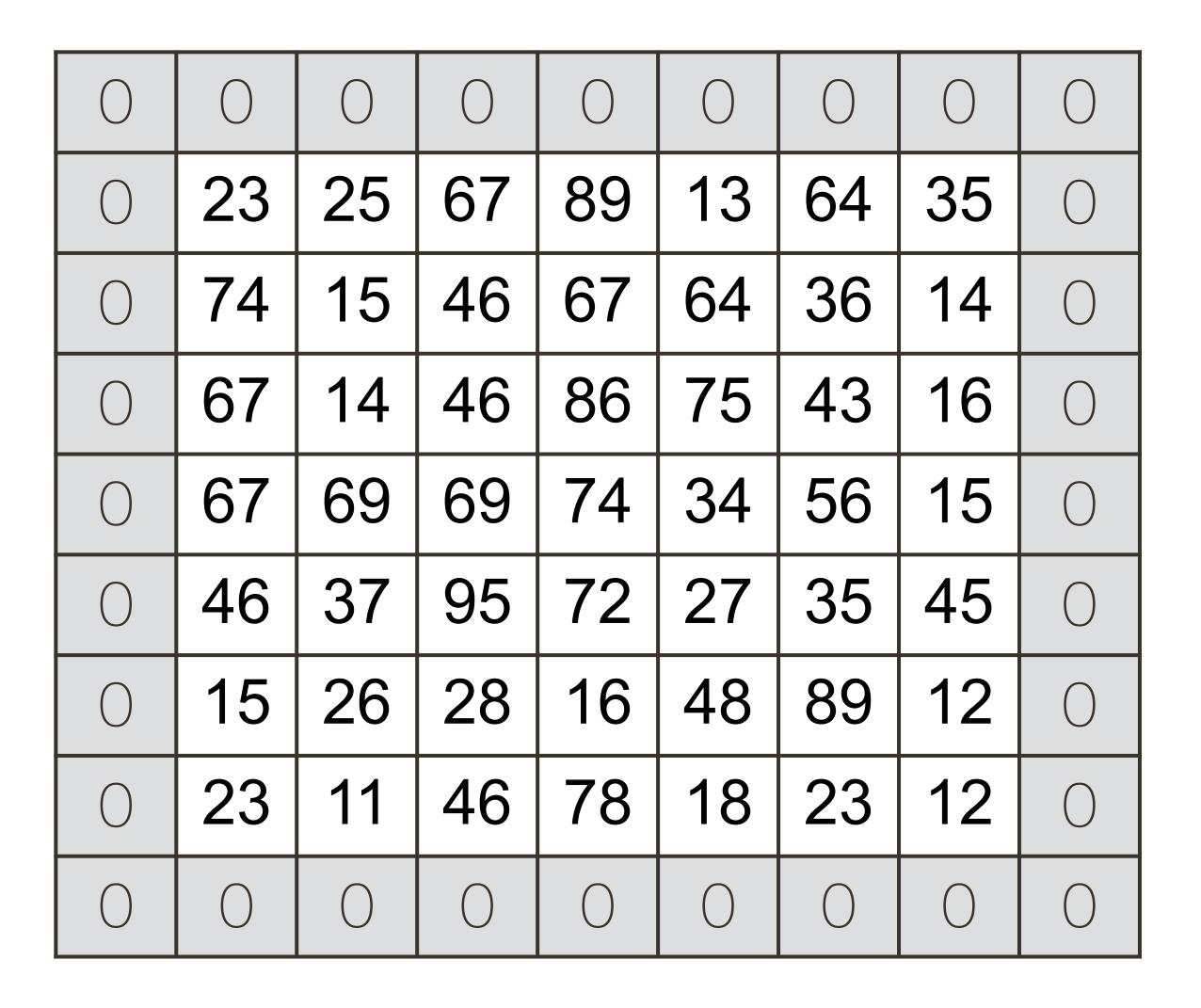
- Not invariant to any transformations
- Not equivariant to any transformations

Convolutional:

- Not invariant to any transformations
- Convolution is <u>translation equivariant</u>

Note: convolution can "learn" to encode positional information when padding is used

Input to Layer 1:



CNN Layer 1:

Weight

0	0	0
1	0	0
0	0	0

Bias

1

Output of Layer 1:

0	0	0	0	0	0	0	0	0
0	1	24	26	68	90	14	65	0
0	1	75	16	47	68	65	37	0
0	1	68	15	47	87	76	44	0
0	1	68	70	70	75	35	57	0
0	1	47	38	96	73	28	36	0
0	1	16	27	29	17	49	90	0
0	1	24	12	47	79	19	24	
		0	0	0	0	0		

CNN Layer 1:

Weight

0	0	0
1	0	0
0	0	0

Bias

1

Input to Layer 2:

0	0	0	0	0	0	0	0	0
0	1	24	26	68	90	14	65	0
0	1	75	16	47	68	65	37	0
0	1	68	15	47	87	76	44	0
0	1	68	70	70	75	35	57	0
0	1	47	38	96	73	28	36	0
0	1	16	27	29	17	49	90	0
0	1	24	12	47	79	19	24	

CNN Layer 2:

Weight

0	0	0
1	0	0
0	0	0

Bias

1

Output of Layer 2:

0	0	0	0	0	0	0	0	0
0	1	2	25	27	69	91	15	0
0	1	2	76	17	48	69	66	0
0	1	2	69	16	48	88	77	0
0	1	2	69	71	71	76	36	0
0	1	2	48	39	97	74	29	0
0	1	2	17	28	30	18	50	0
0	1	2	25	13	48	80	20	
		0		0	0			

CNN Layer 2:

Weight

0	0	0
1	0	0
0	0	0

Bias

1

Output of Layer 7:

0								0
0	1	2	3	4	5	6	7	0
0	1	2	3	4	5	6	7	0
0	1	2	3	4	5	6	7	0
0	1	2	3	4	5	6	7	0
0	1	2	3	4	5	6	7	0
0	1	2	3	4	5		7	
0	1	2	3	4	5	6	7	0
	0	0	0	0	0	0	0	

CNN Layer 7:

Weight

0	0	0
1	0	0
0	0	0

Bias

1

Input to Layer 1:

0	0	0	0	0	0	0	0	0
0	23	25	67	89	13	64	35	0
0	74	15	46	67	64	36	14	0
0	67	14	46	86	75	43	16	0
0	67	69	69	74	34	56	15	0
0	46	37	95	72	27	35	45	0
0	15	26	28	16	48	89	12	0
0	23	11	46	78	18	23	12	

CNN Layer 1:

Weight

0	1	0
0	0	0
0	0	0

Bias

1

PosENet = Simple 1 layer convolutional neural net with one 3 x 3 kernel

(trained to minimize mean squared error)

PosENet = Simple 1 layer convolutional neural net with one 3 x 3 kernel

(trained to minimize mean squared error)

SPC = Spearmen Correlation

	Model	Black		
		SPC	MAE	
	PosENet	.0	.251	
H				

PosENet = Simple 1 layer convolutional neural net with one 3 x 3 kernel

(trained to minimize mean squared error)

SPC = Spearmen Correlation

	Model	Black		
	Middei	SPC	MAE	
	PosENet	.0	.251	
H				
	PosENet	.0	.251	
\mathbf{V}				

PosENet = Simple 1 layer convolutional neural net with one 3 x 3 kernel

(trained to minimize mean squared error)

SPC = Spearmen Correlation

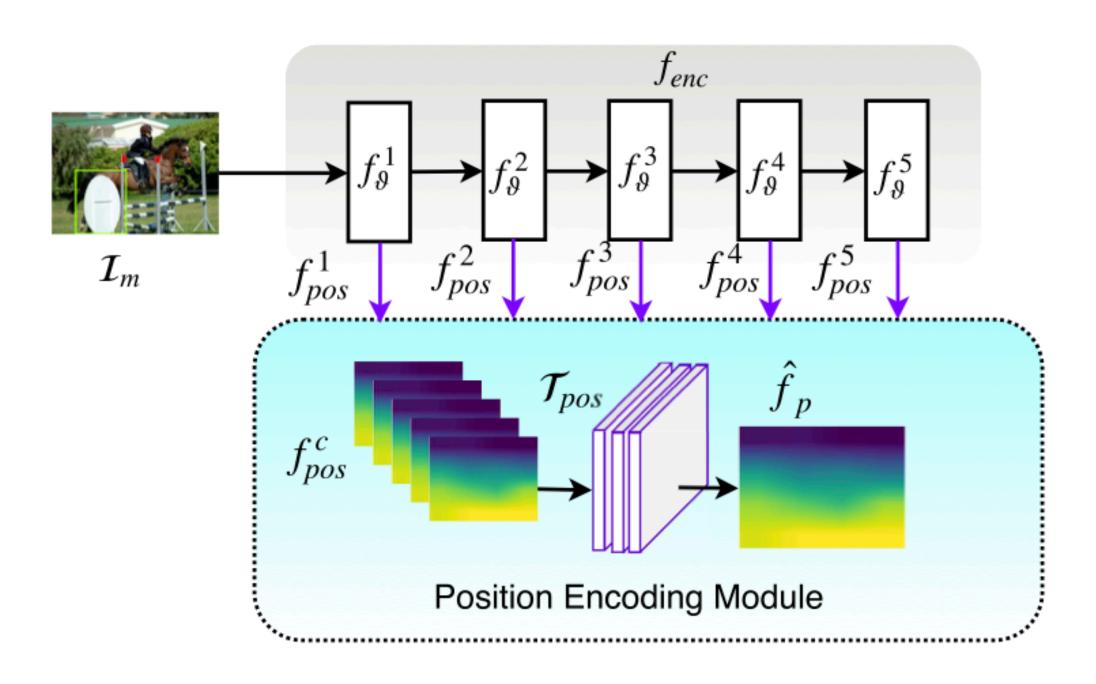
	Model	Bl	ack	White		
	Model	SPC	MAE	SPC	MAE	
	PosENet	.0	.251	.0	.251	
H						
T 7	PosENet	.0	.251	.0	.251	
V						

PosENet = Simple 1 layer convolutional neural net with one 3 x 3 kernel

(trained to minimize mean squared error)

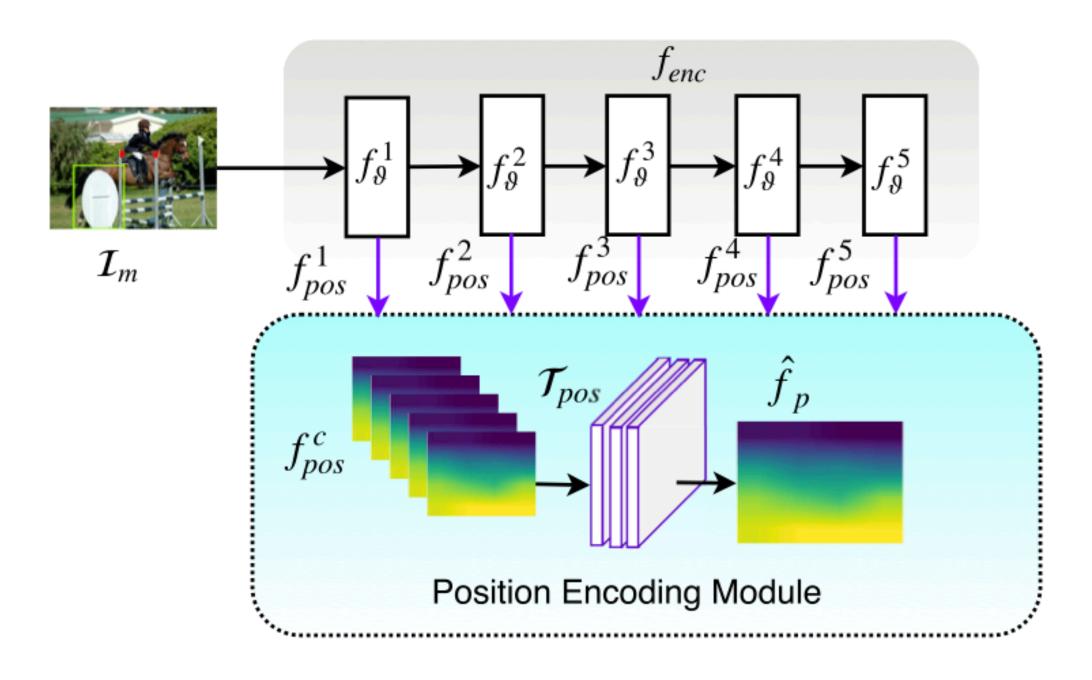
SPC = Spearmen Correlation

	Model	PASCAL-S		Black		White	
	Middel	SPC	MAE	SPC	MAE	SPC	MAE
	PosENet	.012	.251	.0	.251	0.	.251
H							
	PosENet	.131	.248	.0	.251	.0	.251
V							



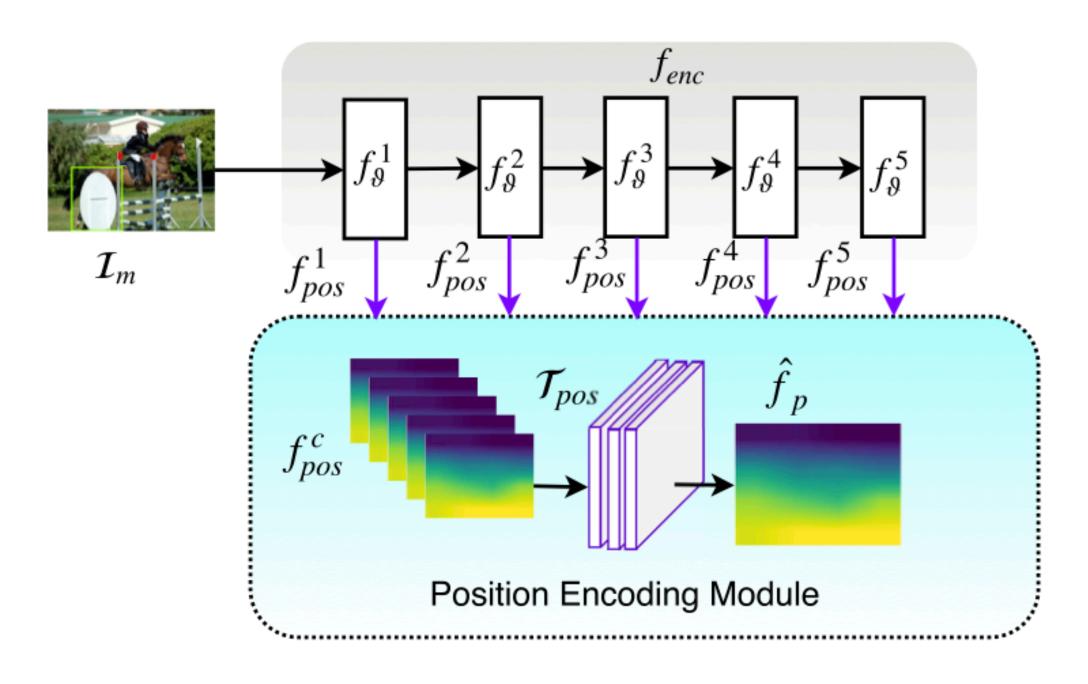
SPC = Spearmen Correlation

	Model	PASCAL-S		Black		White	
	Middel	SPC	MAE	SPC	MAE	SPC	MAE
	PosENet	.012	.251	.0	.251	.0	.251
H							
	PosENet	.131	.248	0.	.251	0.	.251
V							



SPC = Spearmen Correlation

	Model	PASCAL-S		Black		White	
	Wiodei	SPC	MAE	SPC	MAE	SPC	MAE
	PosENet	.012	.251	.0	.251	.0	.251
H	VGG	.742	.149	.751	.164	.873	.157
	PosENet	.131	.248	.0	.251	.0	.251
${f V}$	VGG	.816	.129	.846	.146	.927	.138



SPC = Spearmen Correlation

	Model	PASC	CAL-S	Black		White	
	Wiodei	SPC	MAE	SPC	MAE	SPC	MAE
	PosENet	.012	.251	.0	.251	.0	.251
H	VGG	.742	.149	.751	.164	.873	.157
	ResNet	.933	.084	.987	.080	.994	.078
	PosENet	.131	.248	.0	.251	.0	.251
V	VGG	.816	.129	.846	.146	.927	.138
	ResNet	.951	.083	.978	.069	.979	.072

This result is robust even if we use 1 x 1 CNN kernel

	Kernel	Posl	ENet	V	GG
	Kerner	SPC	MAE	SPC	MAE
	1×1	.013	.251	.542	.196
H	3×3	.012	.251	.742	.149
	7×7	.060	.250	.828	120
	1×1	.017	.188	.724	.127
\mathbf{G}	3×3	001	.233	.814	.109
	7×7	.068	.187	.816	111
	1×1	004	.628	.317	.576
HS	3×3	001	.723	.405	.556
	7×7	.002	.628	.487	.532

More positional information is stored in deeper layer feature maps

	Method	$ f_{pos}^1 $	f_{pos}^2	f_{pos}^3	f_{pos}^4	f_{pos}^5	SPC	MAE
		√					.101	.249
			\checkmark				.344	.225
\mathbf{H}	VGG			\checkmark			.472	.203
					\checkmark		.610	.181
						\checkmark	.657	.177
		✓	\checkmark	\checkmark	\checkmark	\checkmark	.742	.149
		√					.241	.182
			\checkmark				.404	.168
\mathbf{G}	VGG			\checkmark			.588	.146
					\checkmark		.653	.138
						\checkmark	.693	.135
		✓	✓	✓	✓	✓	.814	.109

Where does positional information coming from?

Model		H		G		HS	
	SPC	MAE	SPC	MAE	SPC	MAE	
VGG16	.742	.149	.814	.109	.405	.556	
VGG16 w/o. padding	.381	.223	.359	.174	.011	.628	

(padding appears to contribute significantly to encoded positional information)

Where does positional information coming from?

Model		H		G		HS	
	SPC	MAE	SPC	MAE	SPC	MAE	
VGG16	.742	.149	.814	.109	.405	.556	
VGG16 w/o. padding	.381	.223	.359	.174	.011	.628	

(padding appears to contribute significantly to encoded positional information)

Why is it there?

Model	mIoU (%)
VGG w/o padding	12.3
VGG	23.1

(results of semantic segmentation with and without padding)

Common "Wisdom": You need a lot of data to train a CNN

Common "Wisdom": You need a lot of data to train a CNN

Solution: Transfer learning — taking a model trained on the task that has lots of data and adopting it to the task that may not

Common "Wisdom": You need a lot of data to train a CNN

Solution: Transfer learning — taking a model trained on the task that has lots of data and adopting it to the task that may not

This strategy is PERVASIVE.

[Yosinski et al., NIPS 2014] [Donahue et al., ICML 2014] [Razavian et al., CVPR Workshop 2014]

Train on ImageNet

FC-1000 FC-4096 FC-4096 **MaxPool** Conv-512 Conv-512 MaxPool Conv-512 Conv-512 **MaxPool** Conv-256 Conv-256 **MaxPool** Conv-128 Conv-128 MaxPool Conv-64 Conv-64

Image

[Yosinski et al., NIPS 2014] [Donahue et al., ICML 2014] [Razavian et al., CVPR Workshop 2014]

Train on **ImageNet**

FC-1000

FC-4096

FC-4096

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

Image

Why on ImageNet?

[Yosinski et al., NIPS 2014] [Donahue et al., ICML 2014] [Razavian et al., CVPR Workshop 2014]

Train on **ImageNet**

FC-4096 FC-4096

MaxPool Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

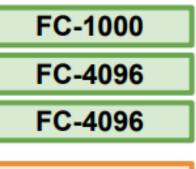
Image

Why on ImageNet?

- Convenience, lots of data
- We know how to train these well

[Yosinski et al., NIPS 2014] [Donahue et al., ICML 2014] Razavian et al., CVPR Workshop 2014]

Train on ImageNet



MaxPool Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

Image

Why on ImageNet?

- Convenience, lots of data
- We know how to train these well

However, for some tasks we would need to start with something else (e.g., videos for optical flow)

[Yosinski et al., NIPS 2014] [Donahue et al., ICML 2014] [Razavian et al., CVPR Workshop 2014]

Train on ImageNet

Small dataset with C classes

FC-1000 FC-4096 FC-4096 **MaxPool** Conv-512 Conv-512 MaxPool Conv-512 Conv-512 **MaxPool** Conv-256 Conv-256 **MaxPool** Conv-128 Conv-128 **MaxPool** Conv-64 Conv-64 Image

[Yosinski et al., NIPS 2014] [Donahue et al., ICML 2014] [Razavian et al., CVPR Workshop 2014]

Train on ImageNet

Small dataset with C classes

FC-1000 FC-4096 FC-4096 **MaxPool** Conv-512 Conv-512 MaxPool Conv-512 Conv-512 **MaxPool** Conv-256 Conv-256 MaxPool **Conv-128** Conv-128 **MaxPool** Conv-64 Conv-64

Image

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 **MaxPool** Conv-64 Conv-64 Image

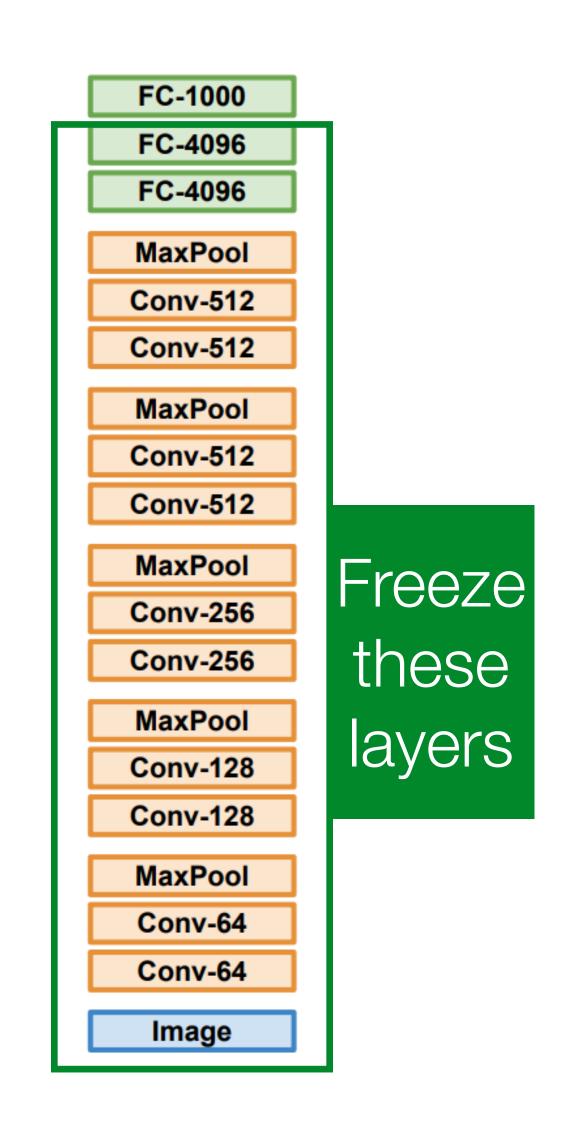
^{*} adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[Yosinski et al., NIPS 2014] [Donahue et al., ICML 2014] [Razavian et al., CVPR Workshop 2014]

Train on **ImageNet**

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 **MaxPool** Conv-256 Conv-256 MaxPool **Conv-128** Conv-128 **MaxPool** Conv-64 Conv-64 Image

Small dataset with C classes

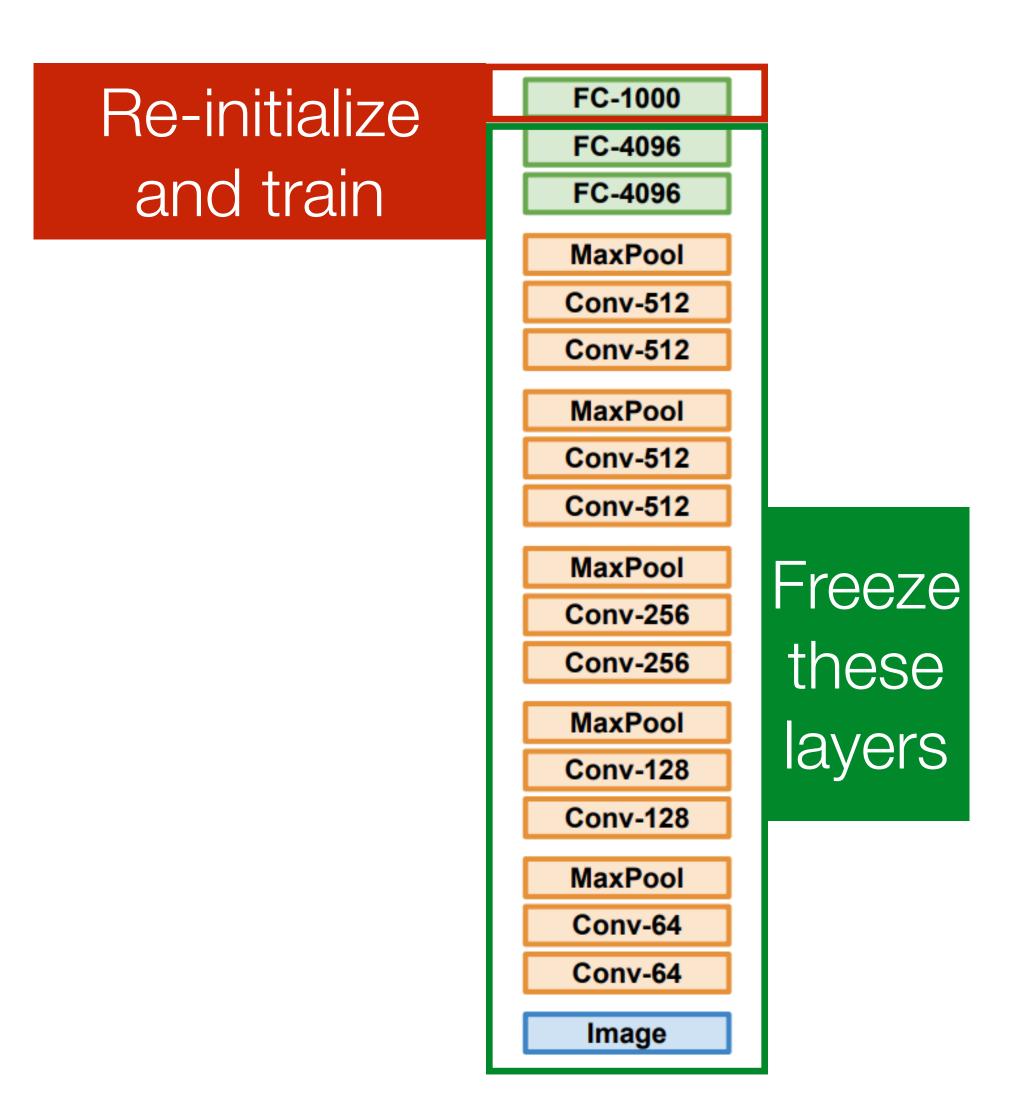


[Yosinski et al., NIPS 2014] [Donahue et al., ICML 2014] [Razavian et al., CVPR Workshop 2014]

Train on **ImageNet**

Small dataset with C classes

FC-1000 FC-4096 FC-4096 **MaxPool** Conv-512 Conv-512 MaxPool Conv-512 Conv-512 **MaxPool** Conv-256 Conv-256 **MaxPool Conv-128** Conv-128 **MaxPool** Conv-64 Conv-64 **Image**



^{*} adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[Yosinski et al., NIPS 2014] [Donahue et al., ICML 2014] [Razavian et al., CVPR Workshop 2014]

Frain on ImageNet Small dataset with C classes

Train on ImageNet

FC-1000 FC-4096 FC-4096 **MaxPool** Conv-512 Conv-512 **MaxPool** Conv-512 Conv-512 **MaxPool** Conv-256 Conv-256 **MaxPool Conv-128 Conv-128 MaxPool** Conv-64 Conv-64

Image

FC-1000 Re-initialize FC-4096 and train FC-4096 **MaxPool** Conv-512 Conv-512 **MaxPool** Conv-512 Conv-512 MaxPool Freeze Conv-256 these Conv-256 **MaxPool** layers Conv-128 Conv-128 **MaxPool** Conv-64 Conv-64

Image

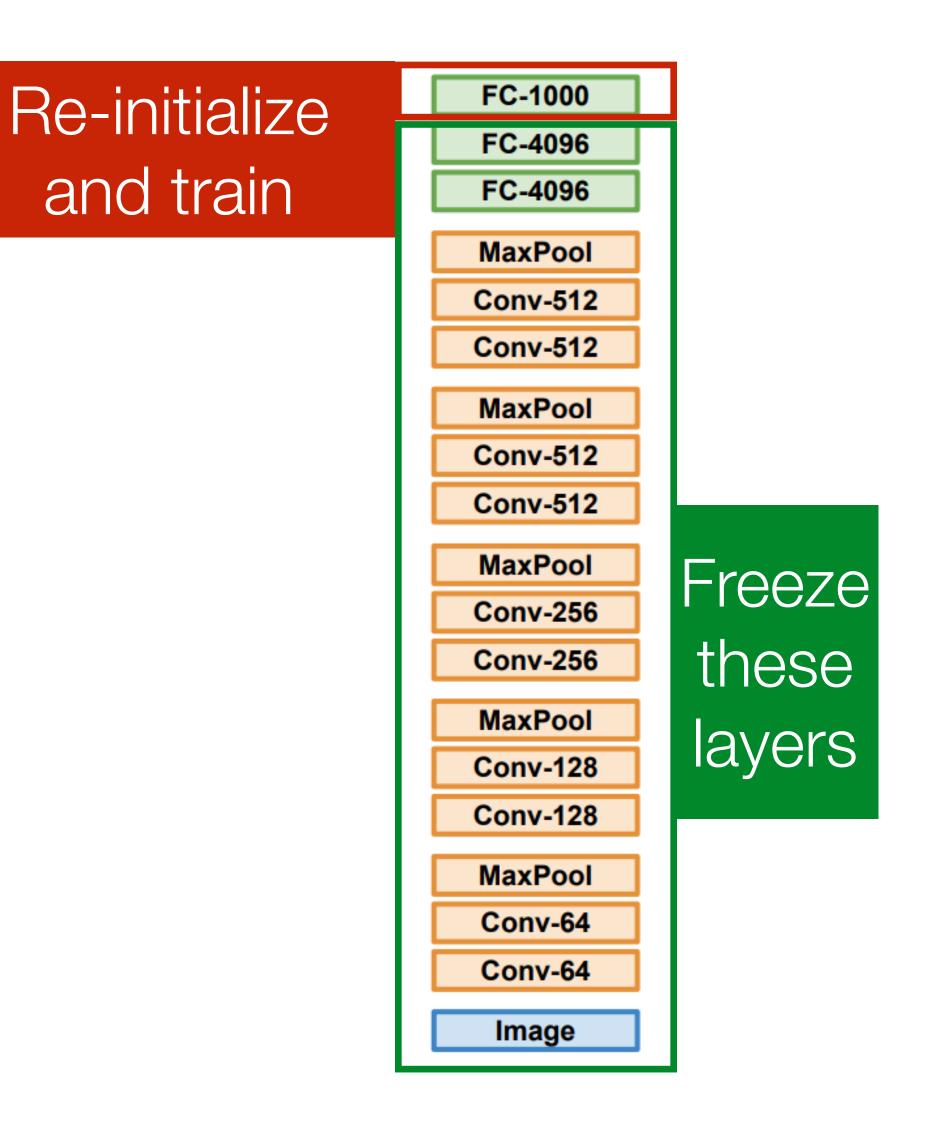
Lower levels of the CNN are at task independent anyways

[Yosinski et al., NIPS 2014] [Donahue et al., ICML 2014] [Razavian et al., CVPR Workshop 2014]

Train on **ImageNet**

Small dataset with C classes

Larger dataset



^{*} adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[Yosinski et al., NIPS 2014] [Donahue et al., ICML 2014]

Razavian et al., CVPR Workshop 2014]

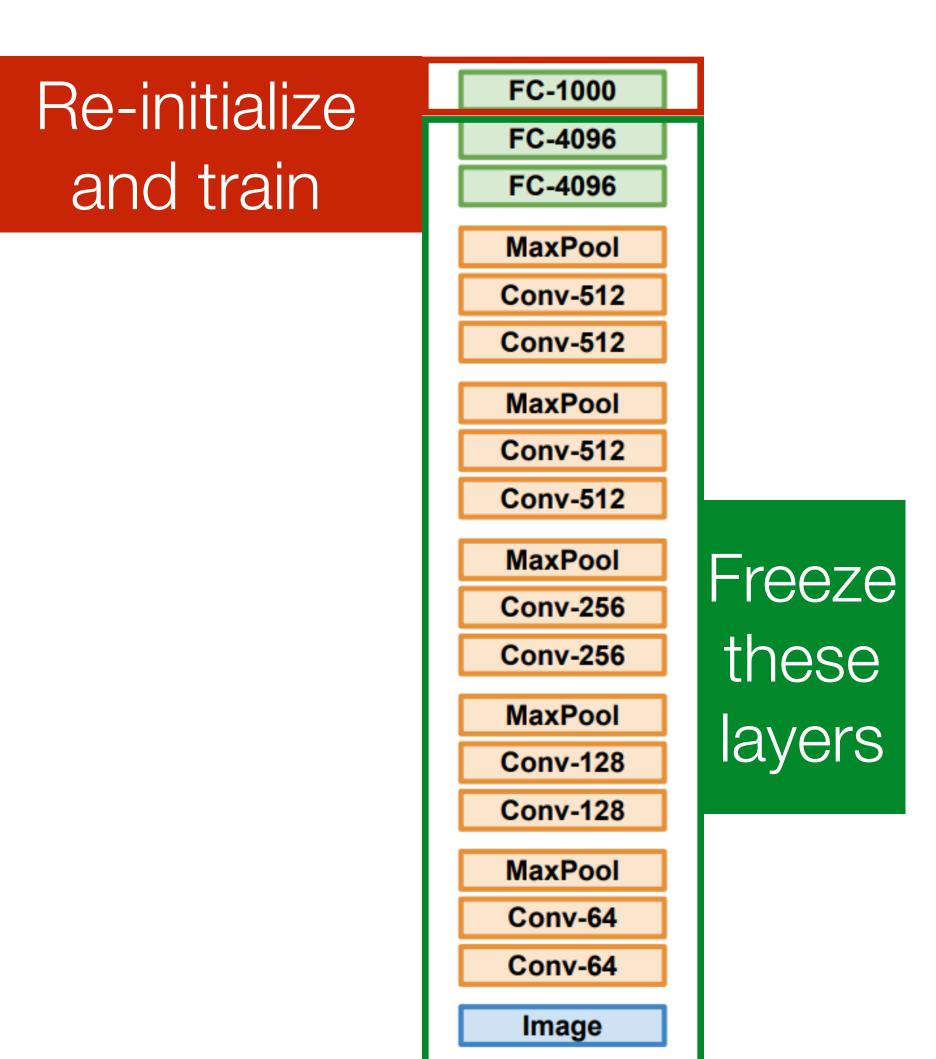
Train on **ImageNet**

Small dataset with C classes

Larger dataset

FC-1000 FC-4096 FC-4096 **MaxPool** Conv-512 Conv-512 MaxPool Conv-512 Conv-512 **MaxPool** Conv-256 Conv-256 MaxPool **Conv-128** Conv-128 **MaxPool** Conv-64 Conv-64

Image



FC-1000 FC-4096 FC-4096 **MaxPool** Conv-512 Conv-512 **MaxPool** Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool **Conv-128** Conv-128 **MaxPool** Conv-64 Conv-64 **Image**

^{*} adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[Yosinski et al., NIPS 2014] [Donahue et al., ICML 2014]

Razavian et al., CVPR Workshop 2014]

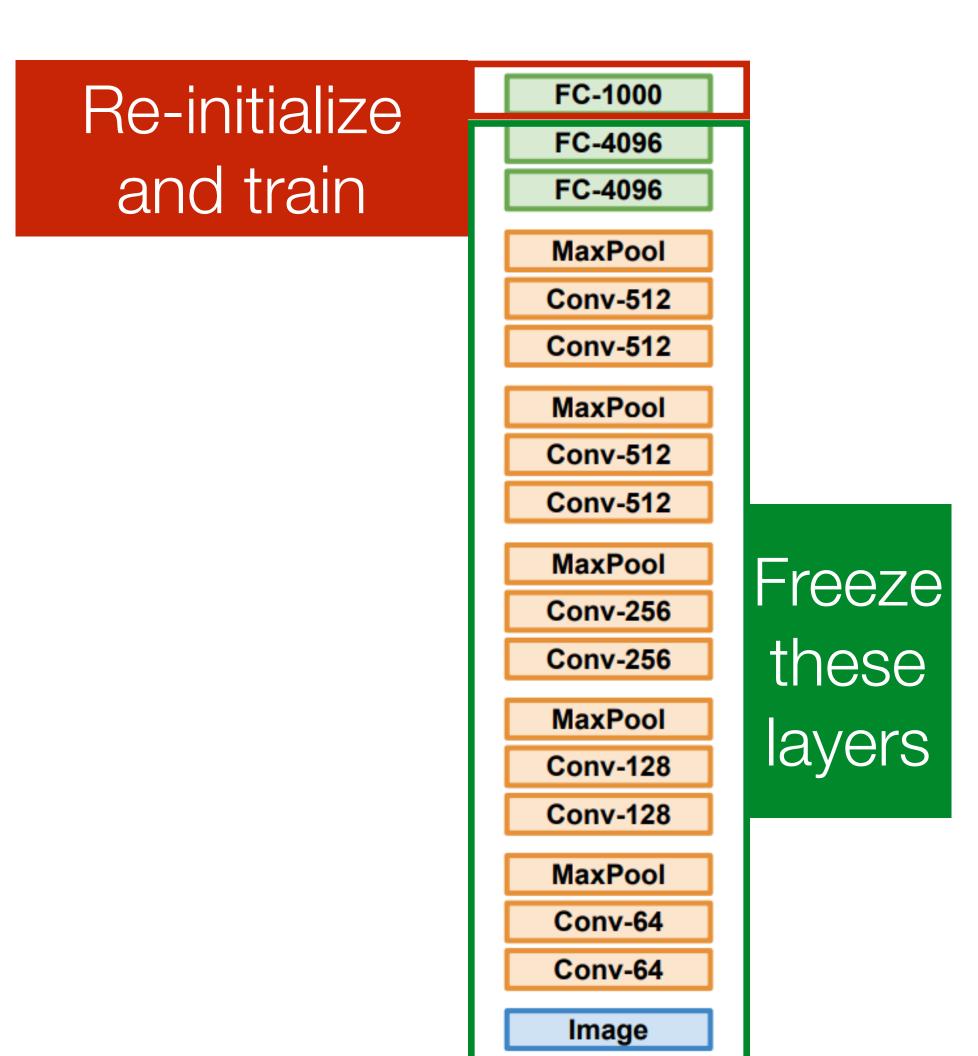
Train on **ImageNet**

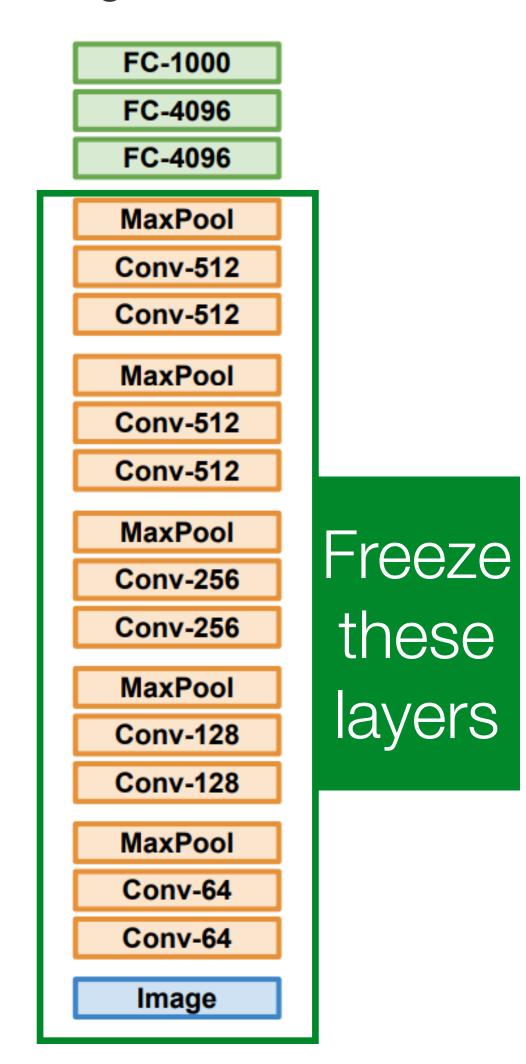
Small dataset with C classes

Larger dataset

FC-1000 FC-4096 FC-4096 **MaxPool** Conv-512 Conv-512 MaxPool Conv-512 Conv-512 **MaxPool** Conv-256 Conv-256 **MaxPool Conv-128** Conv-128 **MaxPool** Conv-64 Conv-64

Image





Transfer Learning with CNNs

[Yosinski et al., NIPS 2014] [Donahue et al., ICML 2014]

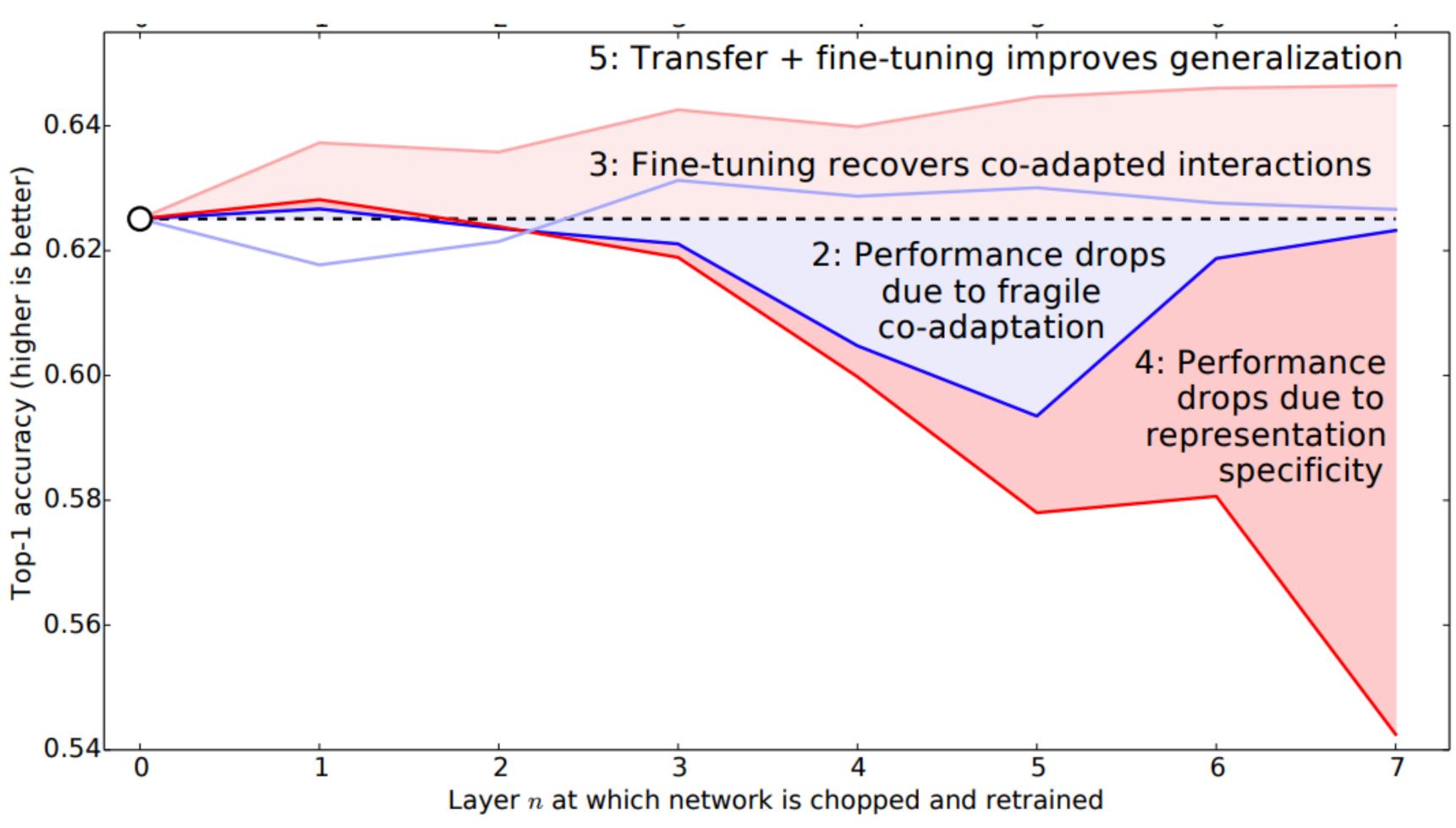
Razavian et al., CVPR Workshop 2014]

Train on ImageNet **Small dataset** with C classes Larger dataset FC-1000 Re-initialize FC-1000 FC-1000 Re-initialize FC-4096 FC-4096 FC-4096 and train FC-4096 and train FC-4096 FC-4096 **MaxPool MaxPool MaxPool** Conv-512 Conv-512 Conv-512 Conv-512 Conv-512 Conv-512 MaxPool MaxPool **MaxPool** Conv-512 Conv-512 Conv-512 Conv-512 Conv-512 Conv-512 MaxPool Freeze **MaxPool** MaxPool Freeze Conv-256 Conv-256 Conv-256 these Conv-256 these Conv-256 Conv-256 MaxPool layers **MaxPool MaxPool** layers Conv-128 Conv-128 **Conv-128** Conv-128 Conv-128 Conv-128 **MaxPool MaxPool MaxPool** Conv-64 Conv-64 Conv-64 Conv-64 Conv-64 Conv-64 Image Image Image

^{*} adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Transfer Learning with CNNs

Dataset A: 500 classes



Layers fine-tuned

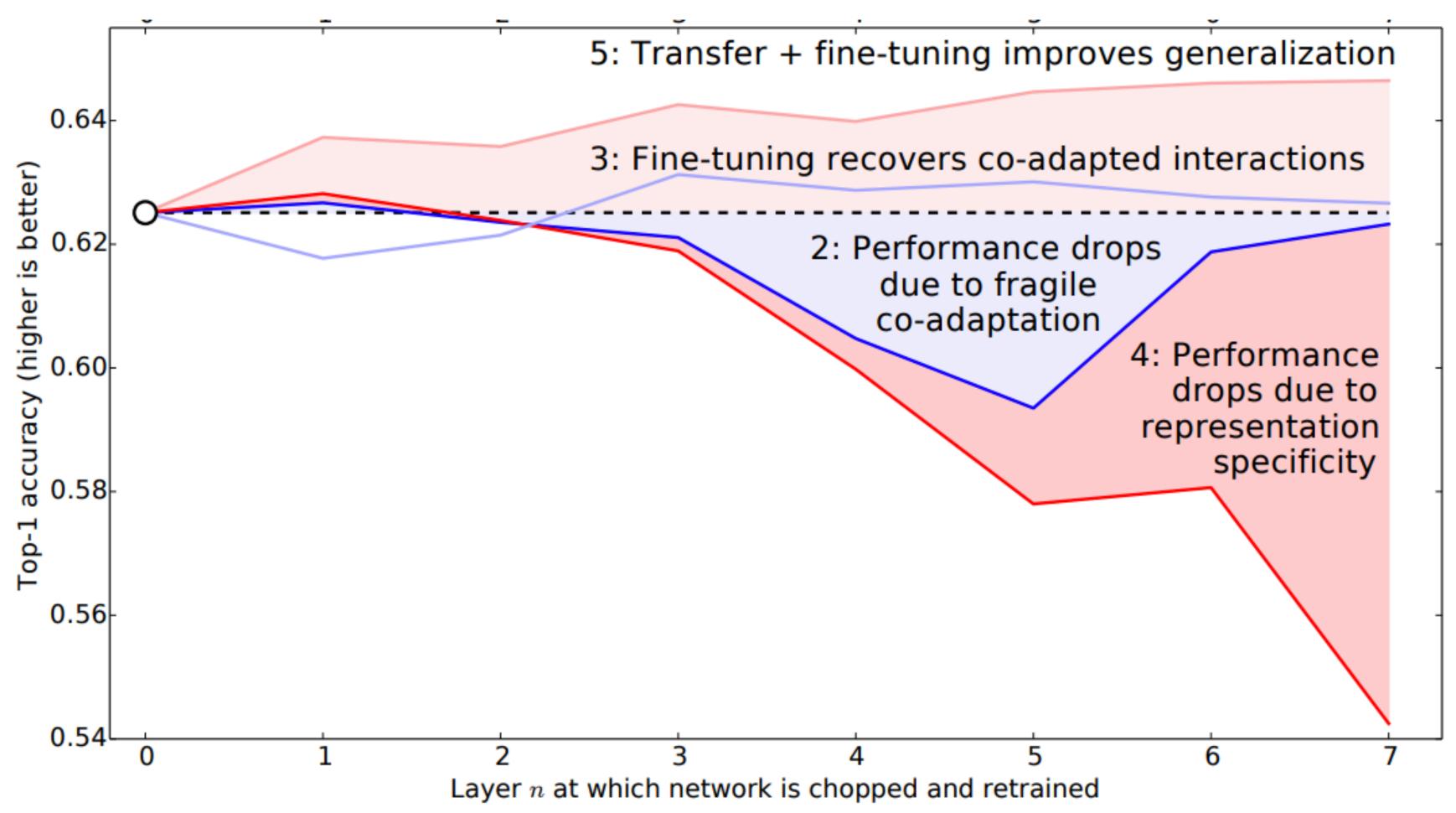
Layers fixed

[Yosinski et al., NIPS 2014]

Transfer Learning with CNNs

Dataset A: 500 classes

Dataset B: (different) 500 classes



Layers fine-tuned

Layers fixed

[Yosinski et al., NIPS 2014]

Layers fine-tuned

Layers fixed

Training: Train multiple independent models

Test: Average their results

Training: Train multiple independent models

Test: Average their results

~ 2% improved performance in practice

Training: Train multiple independent models

Test: Average their results

~ 2% improved performance in practice

Alternative: Multiple snapshots of the single model during training!

Training: Train multiple independent models

Test: Average their results

~ 2% improved performance in practice

Alternative: Multiple snapshots of the single model during training!

Improvement: Instead of using the actual parameter vector, keep a moving average of the parameter vector and use that at test time (Polyak averaging)

Model Ensemble vs. Soup

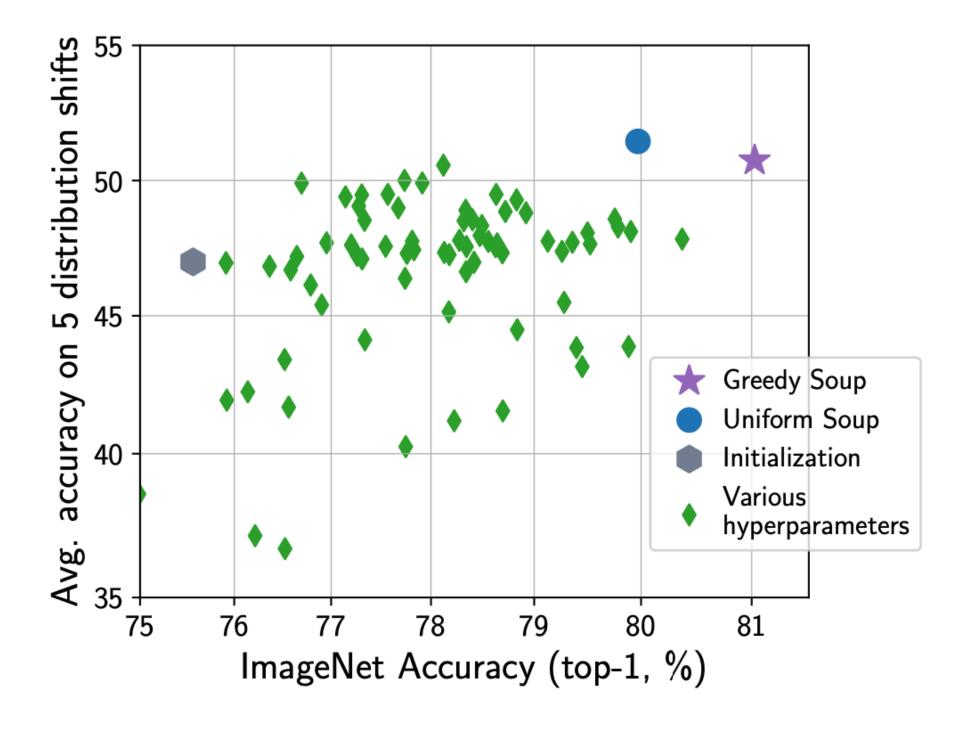
	3.6.1.1	<u> </u>
	Method	Cost
Best on val. set	$f(x, rg \max_i ValAcc(heta_i))$	$\mathcal{O}(1)$
Ensemble	$\frac{1}{k} \sum_{i=1}^k f(x, \theta_i)$	$\mathcal{O}(k)$
Uniform soup	$f\left(x, \frac{1}{k} \sum_{i=1}^{k} \theta_i\right)$	$\mathcal{O}(1)$
Greedy soup	Recipe 1	$\mathcal{O}(1)$
Learned soup	Appendix I	$\mathcal{O}(1)$

Recipe 1 GreedySoup

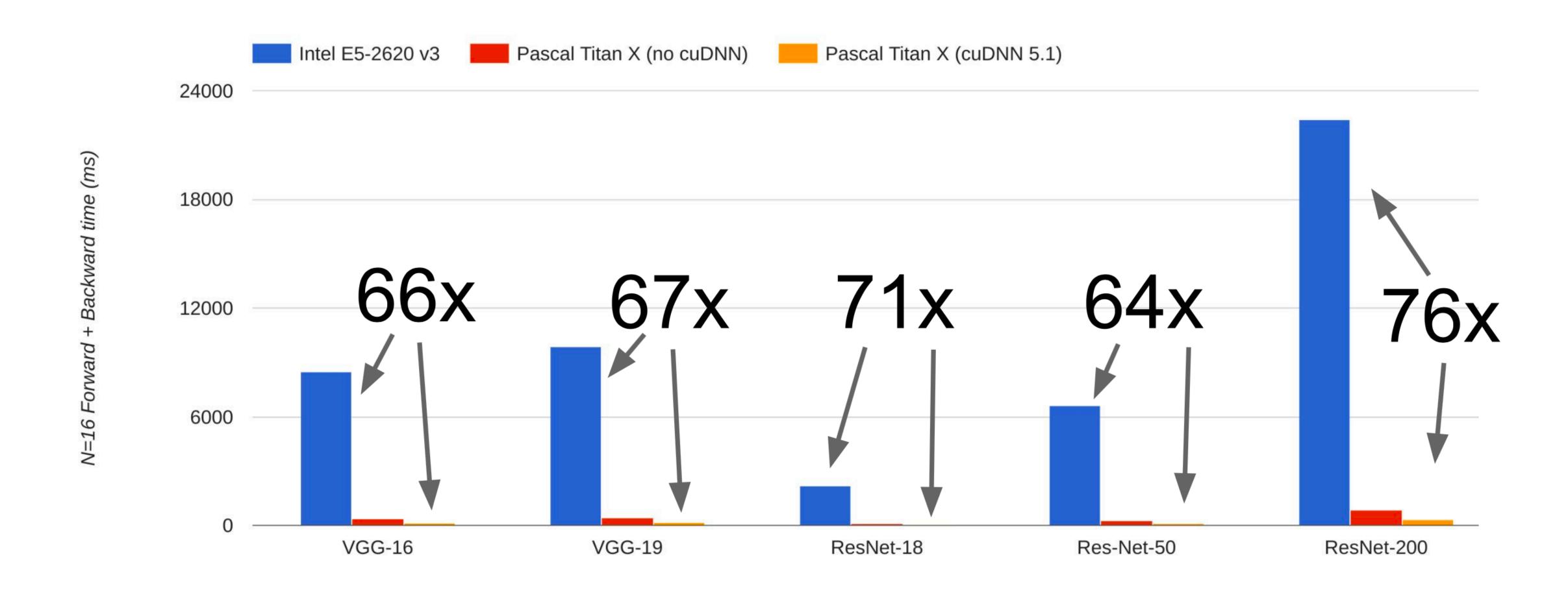
```
Input: Potential soup ingredients \{\theta_1, ..., \theta_k\} (sorted in decreasing order of ValAcc(\theta_i)). ingredients \leftarrow \{\} for i=1 to k do

if ValAcc(average(ingredients \cup \{\theta_i\})) \geq

ValAcc(average(ingredients)) then ingredients \leftarrow ingredients \cup \{\theta_i\}
return average(ingredients)
```



CPU vs. GPU (Why do we need Azure?)



Data from https://github.com/jcjohnson/cnn-benchmarks

Frameworks: Super quick overview

1. Easily build computational graphs

2. Easily compute gradients in computational graphs

3. Run it all efficiently on a GPU (weap cuDNN, cuBLAS, etc.)

Frameworks: Super quick overview

Core DNN Frameworks			
Caffe (UC Berkeley)	Caffe 2 (Facebook)	Puddle (Baidu)	
Torch	PyTorch	CNTK	
(NYU/Facebook)	(Facebook)	(Microsoft)	
Theano	TensorFlow	MXNet	
(U Montreal)	(Google)	(Amazon)	

Frameworks: Super quick overview

Core DNN Frameworks Caffe Caffe 2 Puddle (UC Berkeley) (Facebook) (Baidu) **PyTorch** CNTK Torch (Facebook) (Microsoft) (NYU/Facebook) **MXNet TensorFlow** Theano (U Montreal) (Amazon) (Google)

Wrapper Libraries Keras TFLearn TensorLayer tf.layers TF-Slim tf.contrib.learn Pretty Tensor

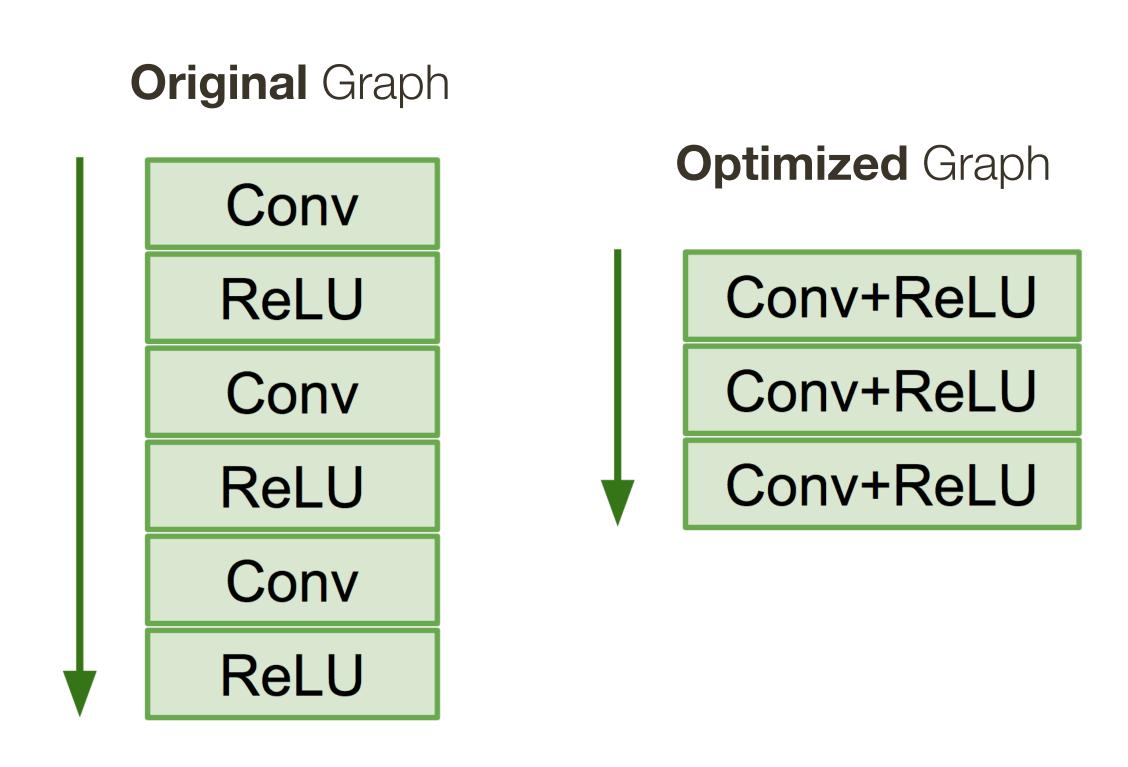
Frameworks: PyTorch vs. TensorFlow (v1)

Dynamic vs. Static computational graphs

Frameworks: PyTorch vs. TensorFlow (v1)

Dynamic vs. Static computational graphs

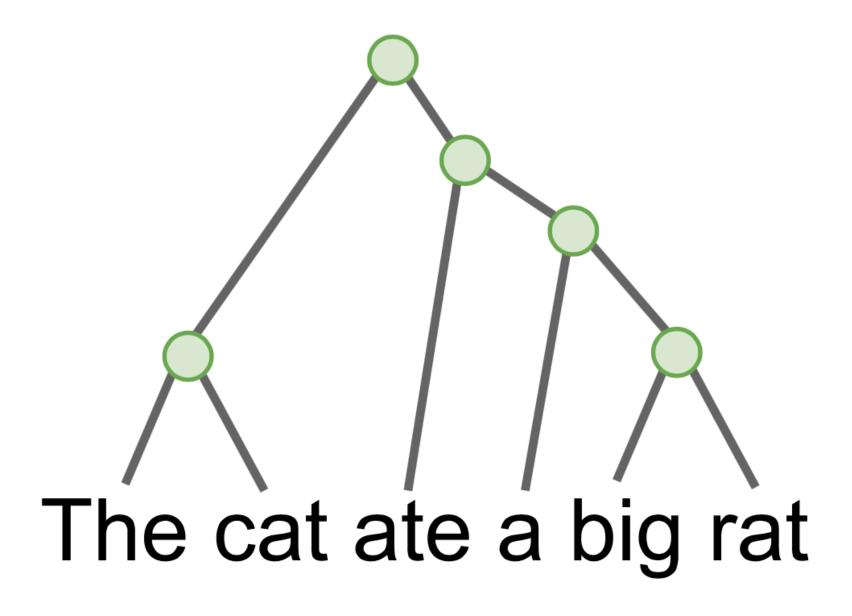
With static graphs, framework can **optimize** the graph for you before it runs!



Frameworks: PyTorch vs. TensorFlow (v1)

Dynamic vs. Static computational graphs

Graph building and execution is intertwined. Graph can be different for every sample.



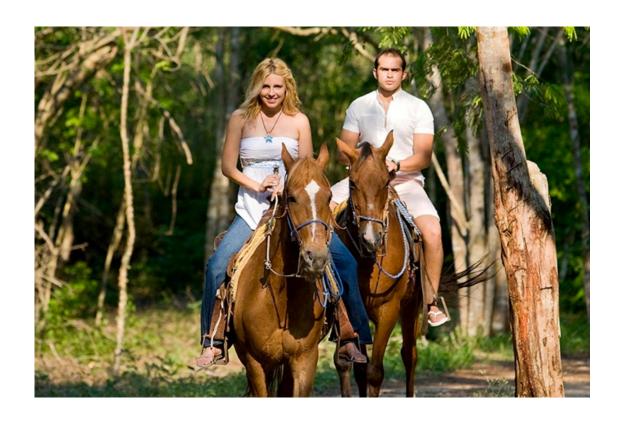
PyTorch: Three levels of abstraction

Tensor: Imperative ndarray, but runs on GPU

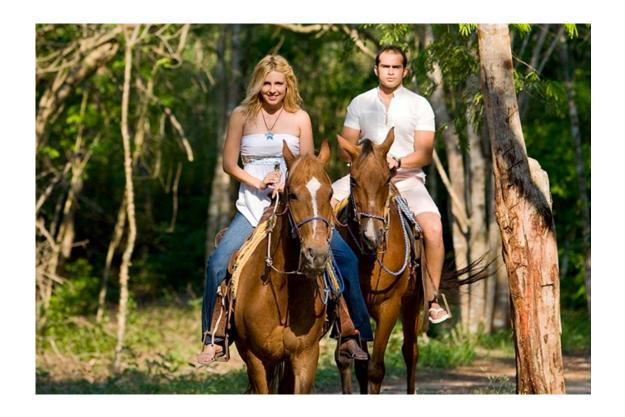
Variable: Node in a computational graph; stores data and gradients

Module: A neural network layer; may store state or learnable weights

Categorization



Categorization



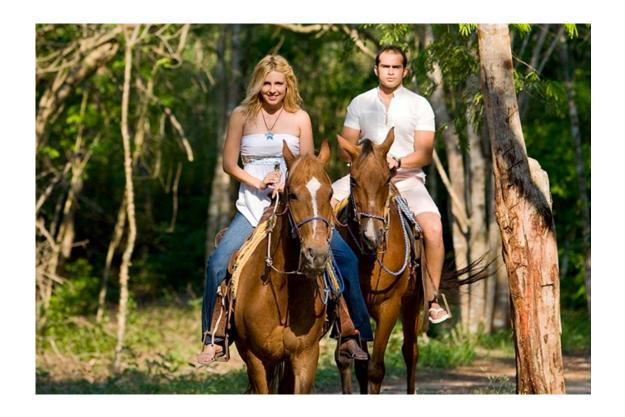
Multi-class:

Horse

Church

Toothbrush

Categorization



Multi-class:

Horse

Church

Toothbrush

Person

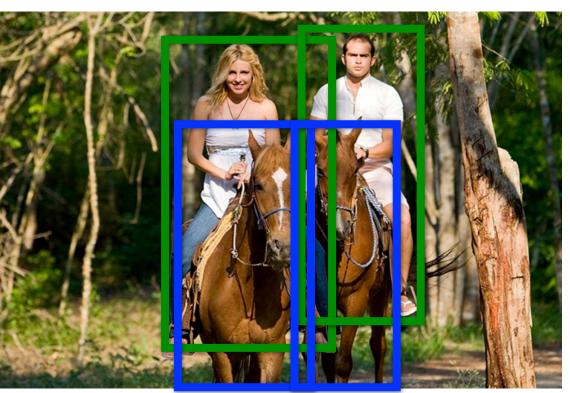
Multi-label: Horse

Church

Toothbrush

Categorization

Detection



Multi-class:

Horse

Church

Toothbrush

Person

Horse (x, y, w, h)

Horse (x, y, w, h)

Person (x, y, w, h)

Person (x, y, w, h)

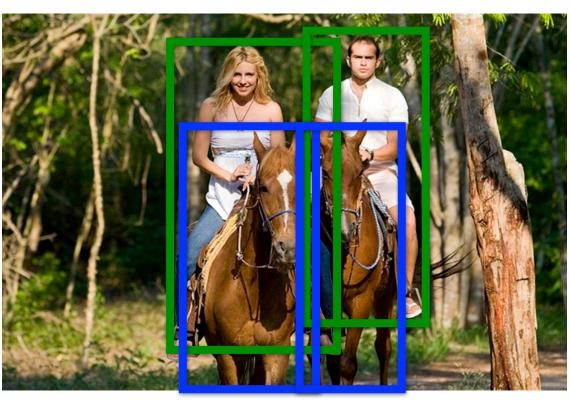
Multi-**label**: **Horse**

Church

Toothbrush

Categorization

Detection



Segmentation

Multi-class:

Horse

Church

Toothbrush

Person

Horse (x, y, w, h) Horse (x, y, w, h)

Person (x, y, w, h)

Person (x, y, w, h)

Horse Person

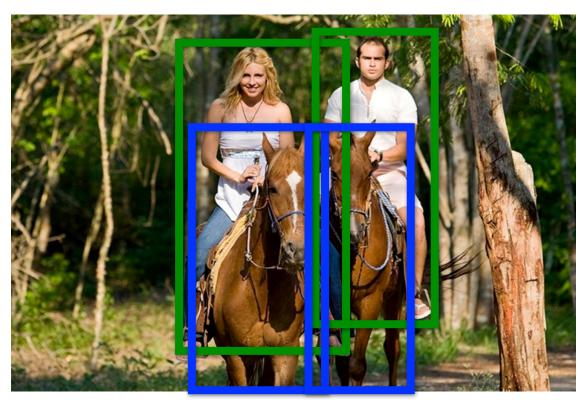
Multi-**label**: **Horse**

Church

Toothbrush

Categorization

Detection



Segmentation

Instance Segmentation

Multi-class:

Horse

Church

Toothbrush

Person

Horse (x, y, w, h)

Horse (x, y, w, h) Person (x, y, w, h)

Person (x, y, w, h)

Horse Person

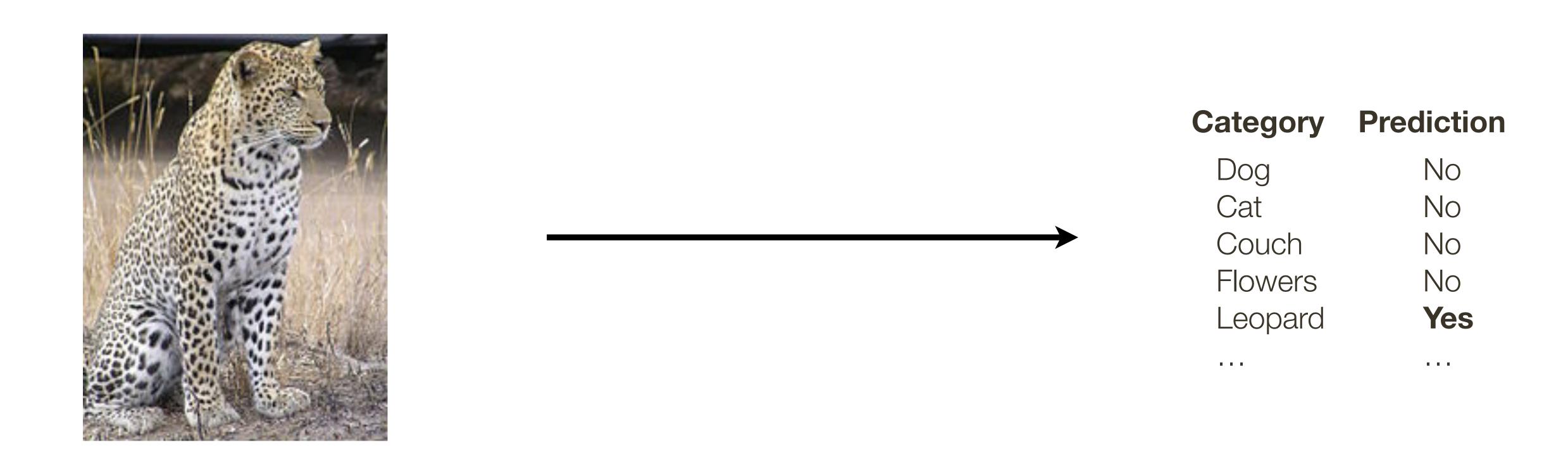
Horse₁ Horse2 Person1 Person2

Multi-**label**: **Horse**

Church

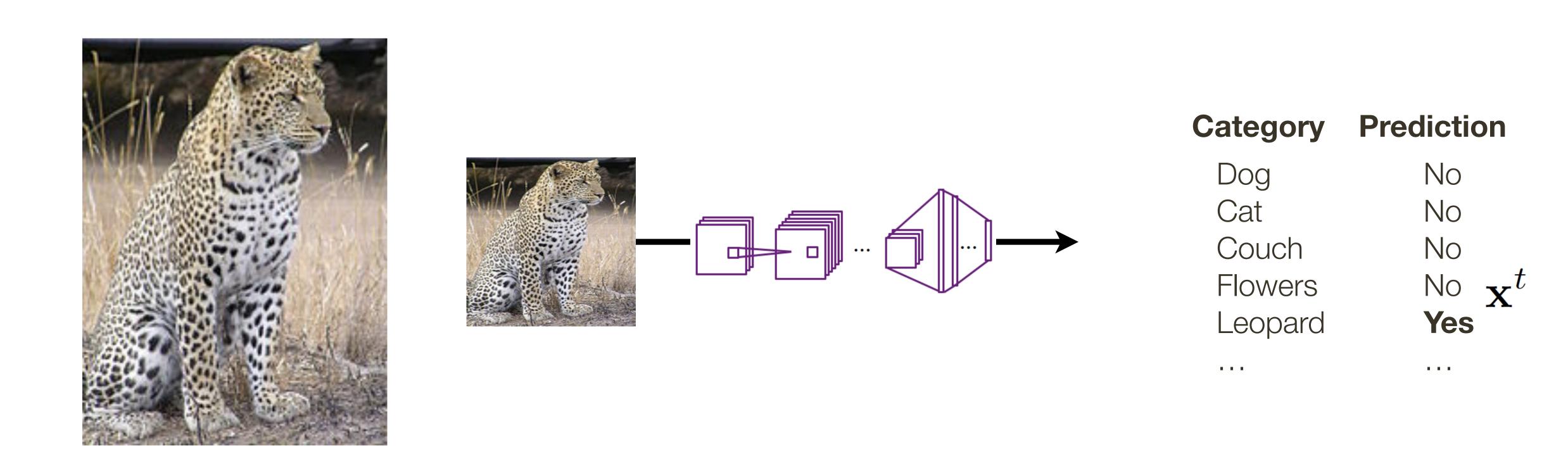
Toothbrush

Object Classification



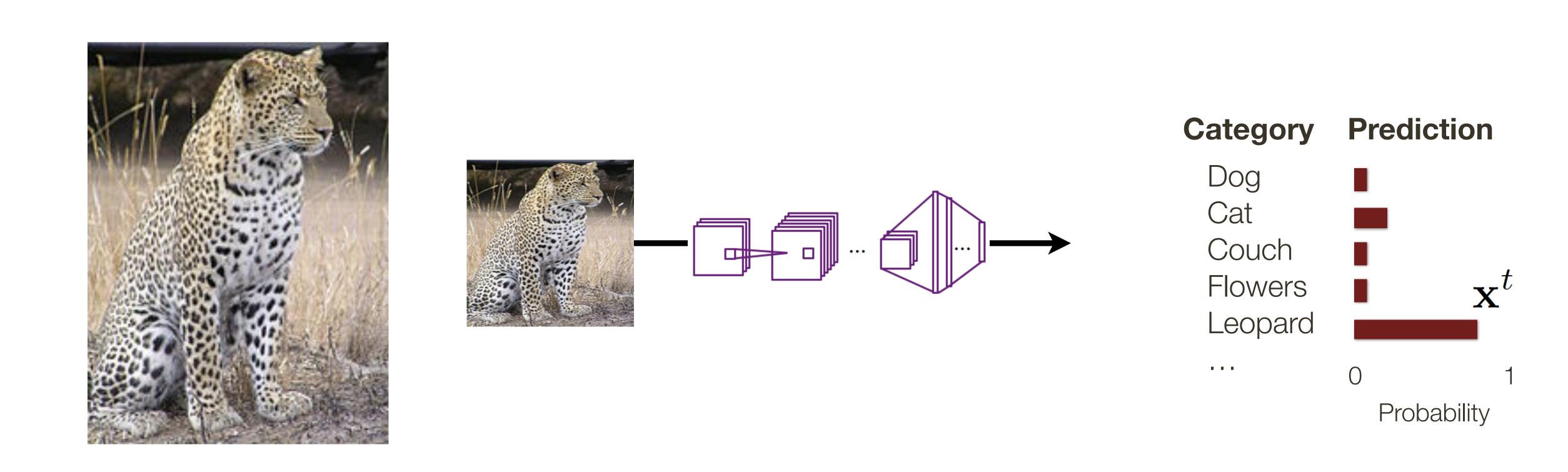
Problem: For each image predict which category it belongs to out of a fixed set

Object Classification



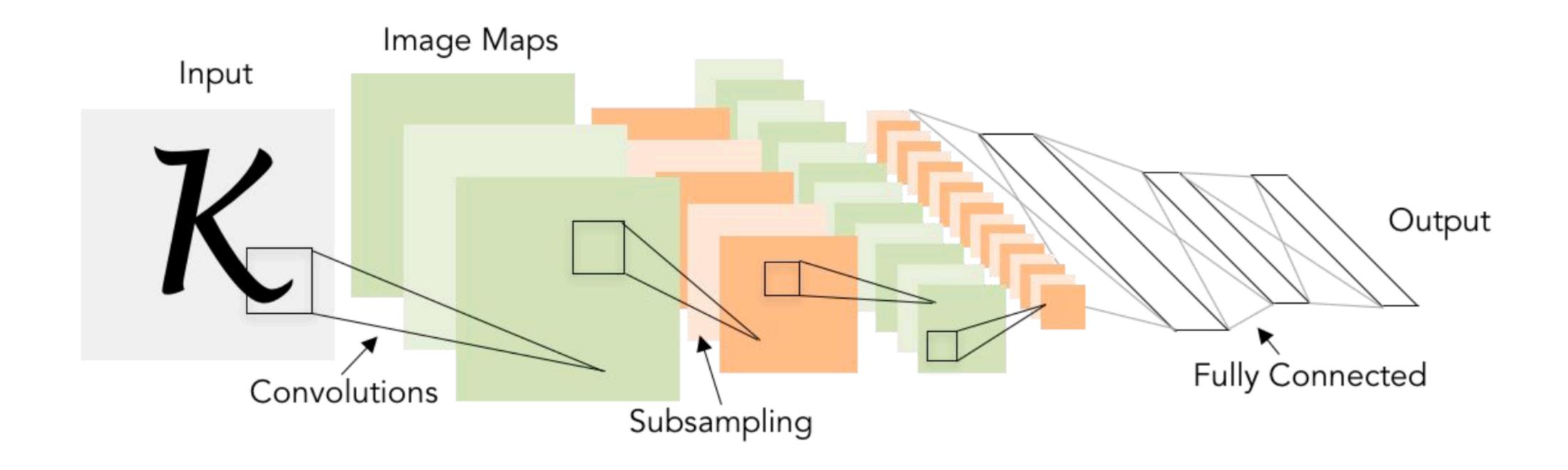
Problem: For each image predict which category it belongs to out of a fixed set

Object Classification



Problem: For each image predict which category it belongs to out of a fixed set

CNN Architectures: LeNet-5



Architecture: CONV \rightarrow POOL \rightarrow CONV \rightarrow POOL \rightarrow FC

Conv filters: 5x5, Stride: 1

Pooling: 2x2, Stride: 2

ImageNet Dataset

Over 14 million (high resolution) web images

Roughly labeled with 22K synset categories

Labeled on Amazon Mechanical Turk (AMT)

Popular Synsets

Animal

utensil

Instrumentation

nammal

invertebrate musical instrument

Plant

flower vegetable geological formation

Scene

beverage

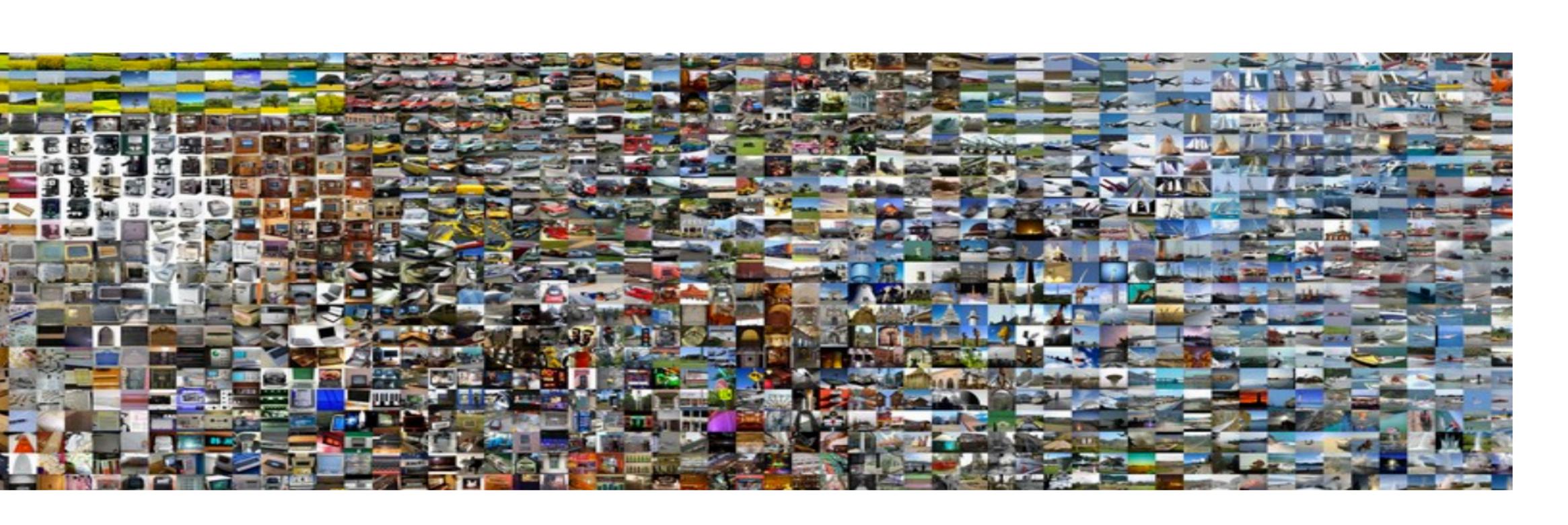
Activity

cnort

Food

Material

fabric

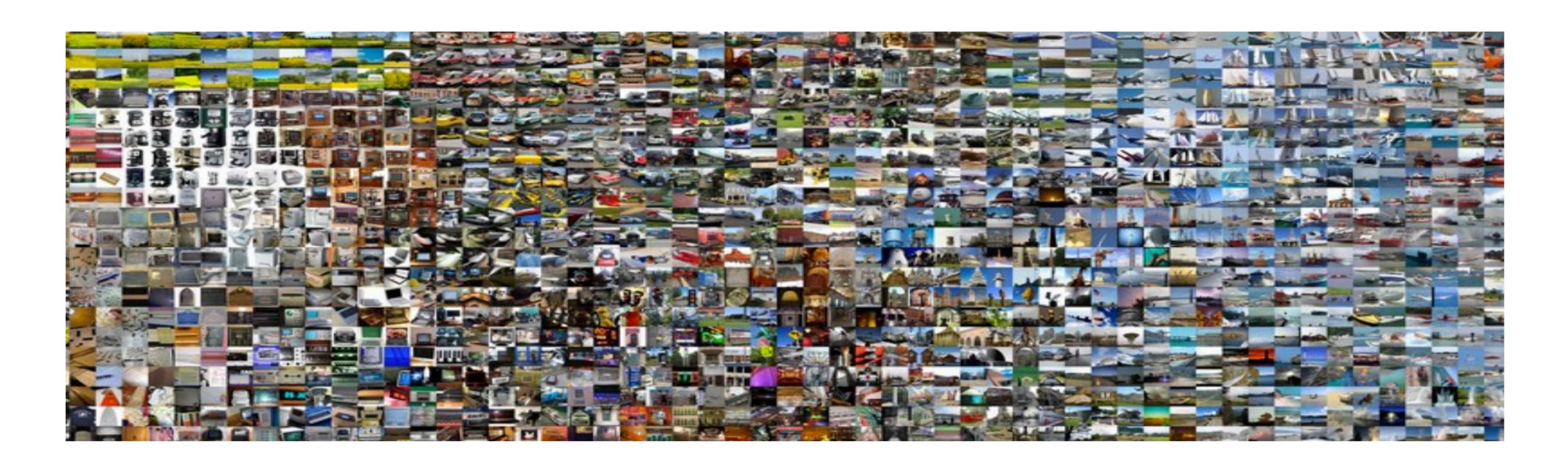


ImageNet Competition (ILSVRC)

Annual competition of image classification at scale

Focuses on a subset of 1K synset categories

Scoring: need to predict true label within top K (K=5)



[Krizhevsky et al., 2012]

Architecture:

CONV1

MAX POOL1

NORM1

CONV2

MAX POOL2

NORM2

CONV3

CONV4

CONV5

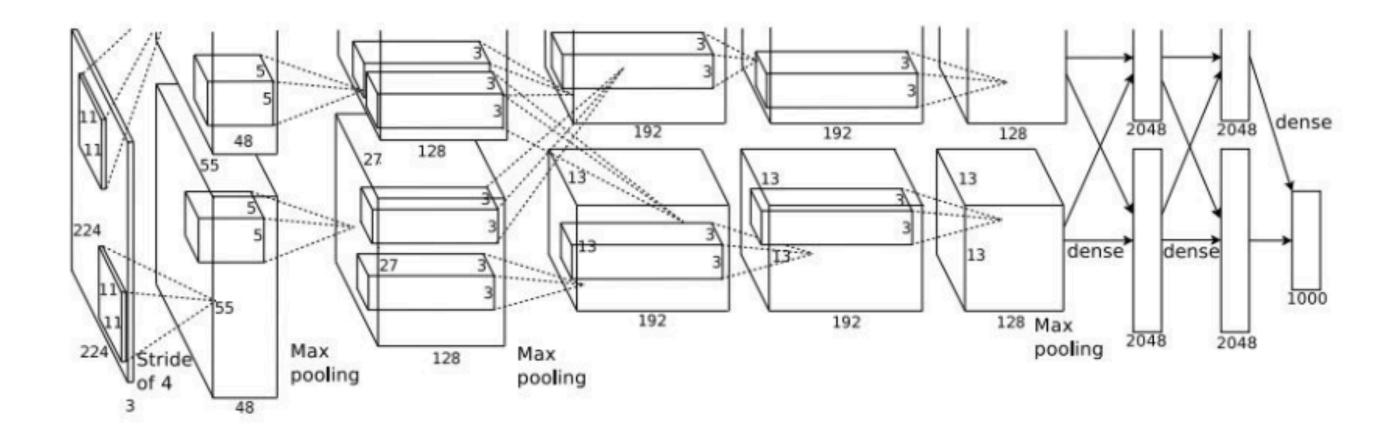
Max POOL3

FC6

FC7

FC8

Input: 227 x 227 x 3 images



[Krizhevsky et al., 2012]

Architecture:

CONV1

MAX POOL1

NORM1

CONV2

MAX POOL2

NORM2

CONV3

CONV4

CONV5

Max POOL3

FC6

FC7

FC8

Input: 227 x 227 x 3 images

CONV1: 96 11 x 11 filters applied at stride 4

[Krizhevsky et al., 2012]

Architecture:

CONV1

MAX POOL1

NORM1

CONV2

MAX POOL2

NORM2

CONV3

CONV4

CONV5

Max POOL3

FC6

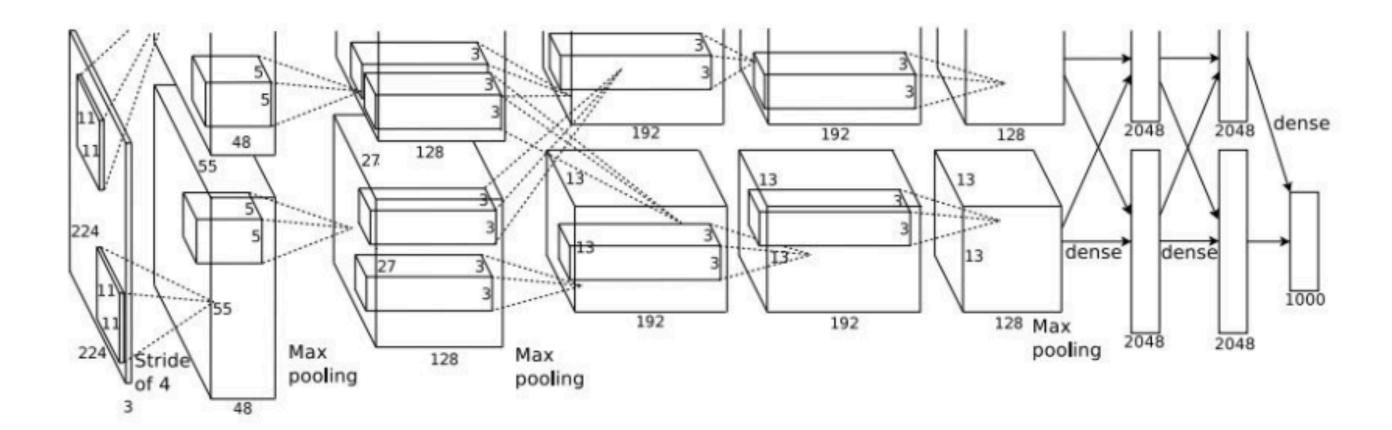
FC7

FC8

Input: 227 x 227 x 3 images

CONV1: 96 11 x 11 filters applied at stride 4

Output: 55 x 55 x 96



[Krizhevsky et al., 2012]

Architecture:

CONV1

MAX POOL1

NORM1

CONV2

MAX POOL2

NORM2

CONV3

CONV4

CONV5

Max POOL3

FC6

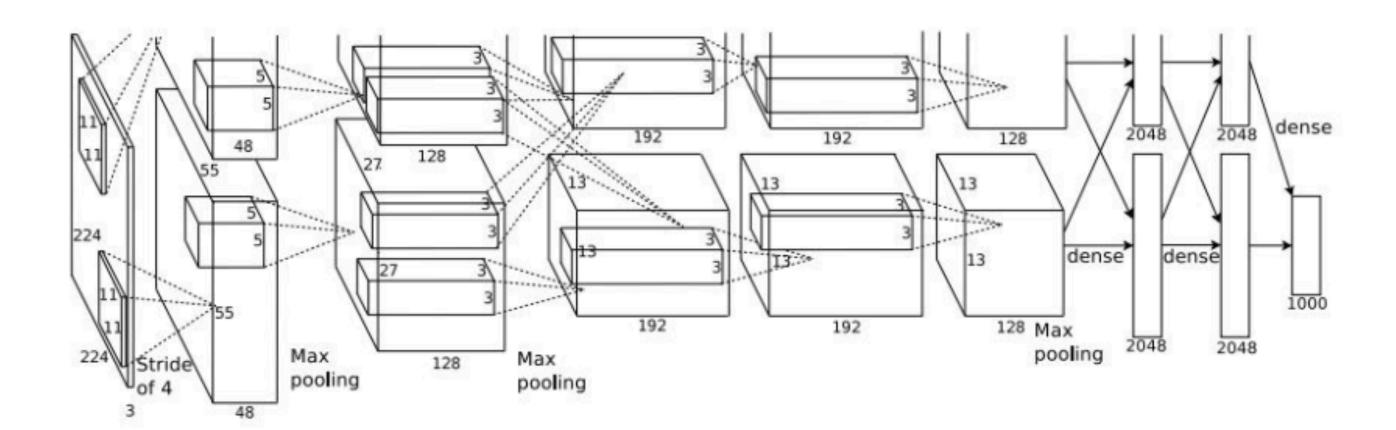
FC7

FC8

Input: 227 x 227 x 3 images

CONV1: 96 11 x 11 filters applied at stride 4

Output: 55 x 55 x 96 Parameters: 35K



[Krizhevsky et al., 2012]

Architecture:

CONV1

MAX POOL1

NORM1

CONV2

MAX POOL2

NORM2

CONV3

CONV4

CONV5

Max POOL3

FC6

FC7

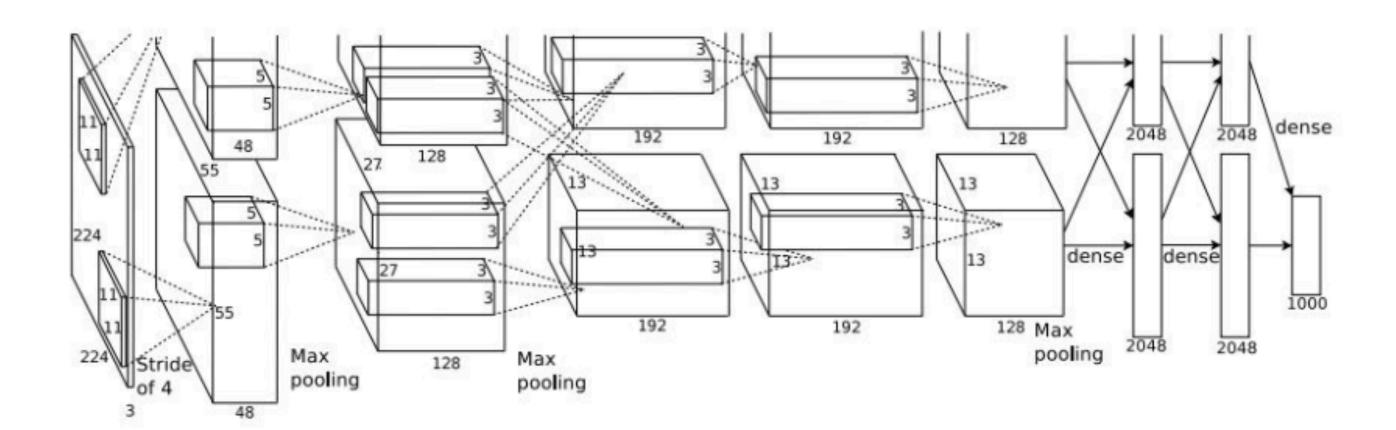
FC8

Input: 227 x 227 x 3 images

CONV1: 96 11 x 11 filters applied at stride 4

Output: 55 x 55 x 96 Parameters: 35K

MAX POOL1: 96 11 x 11 filters applied at stride 4



[Krizhevsky et al., 2012]

Architecture:

CONV1

MAX POOL1

NORM1

CONV2

MAX POOL2

NORM2

CONV3

CONV4

CONV5

Max POOL3

FC6

FC7

FC8

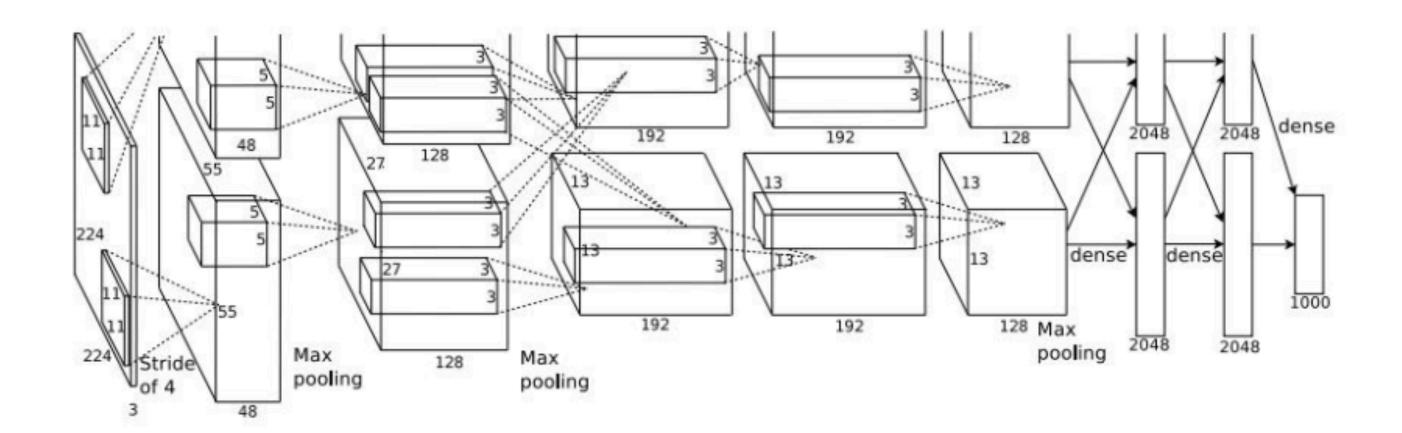
Input: 227 x 227 x 3 images

CONV1: 96 11 x 11 filters applied at stride 4

Output: 55 x 55 x 96 Parameters: 35K

MAX POOL1: 96 11 x 11 filters applied at stride 4

Output: 27 x 27 x 96



[Krizhevsky et al., 2012]

Architecture:

CONV1

MAX POOL1

NORM1

CONV2

MAX POOL2

NORM2

CONV3

CONV4

CONV5

Max POOL3

FC6

FC7

FC8

Input: 227 x 227 x 3 images

CONV1: 96 11 x 11 filters applied at stride 4

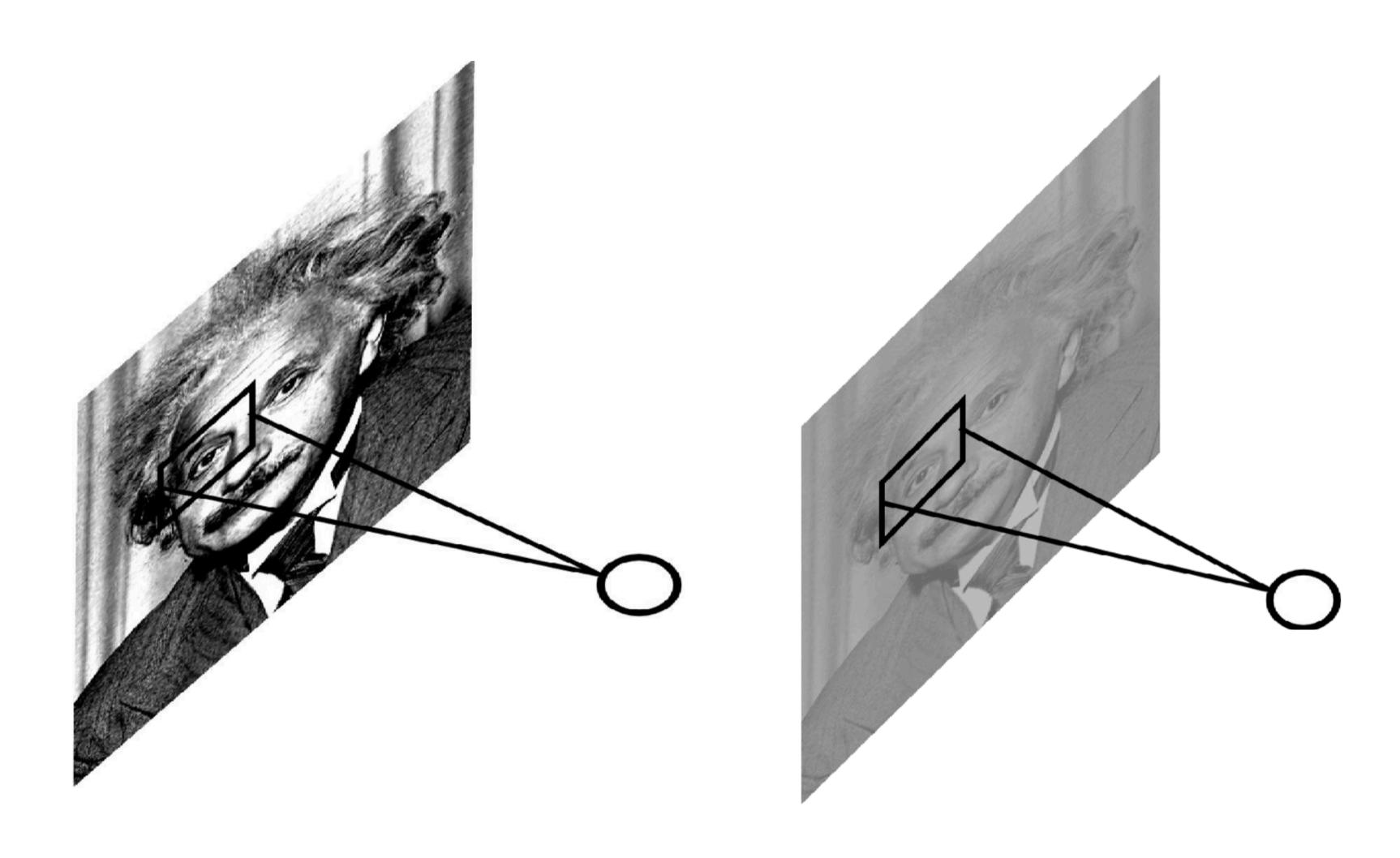
Output: 55 x 55 x 96 Parameters: 35K

MAX POOL1: 96 11 x 11 filters applied at stride 4

Output: 27 x 27 x 96 Parameters: 0

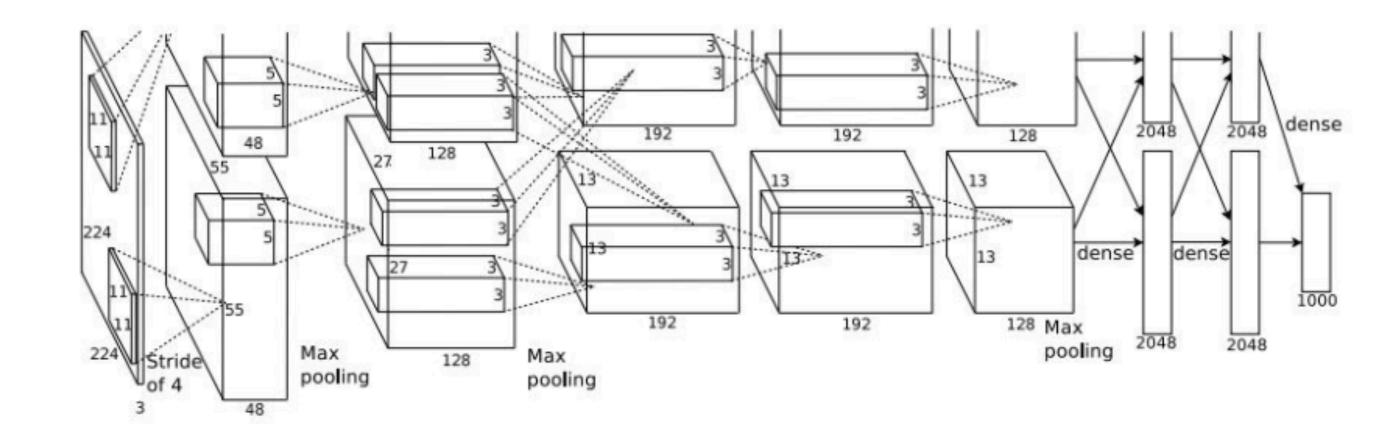
Local Contrast Normalization Layer

ensures response is the same in both case (details omitted, no longer popular)



^{*} images from Marc'Aurelio Renzato

AlexNet



Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

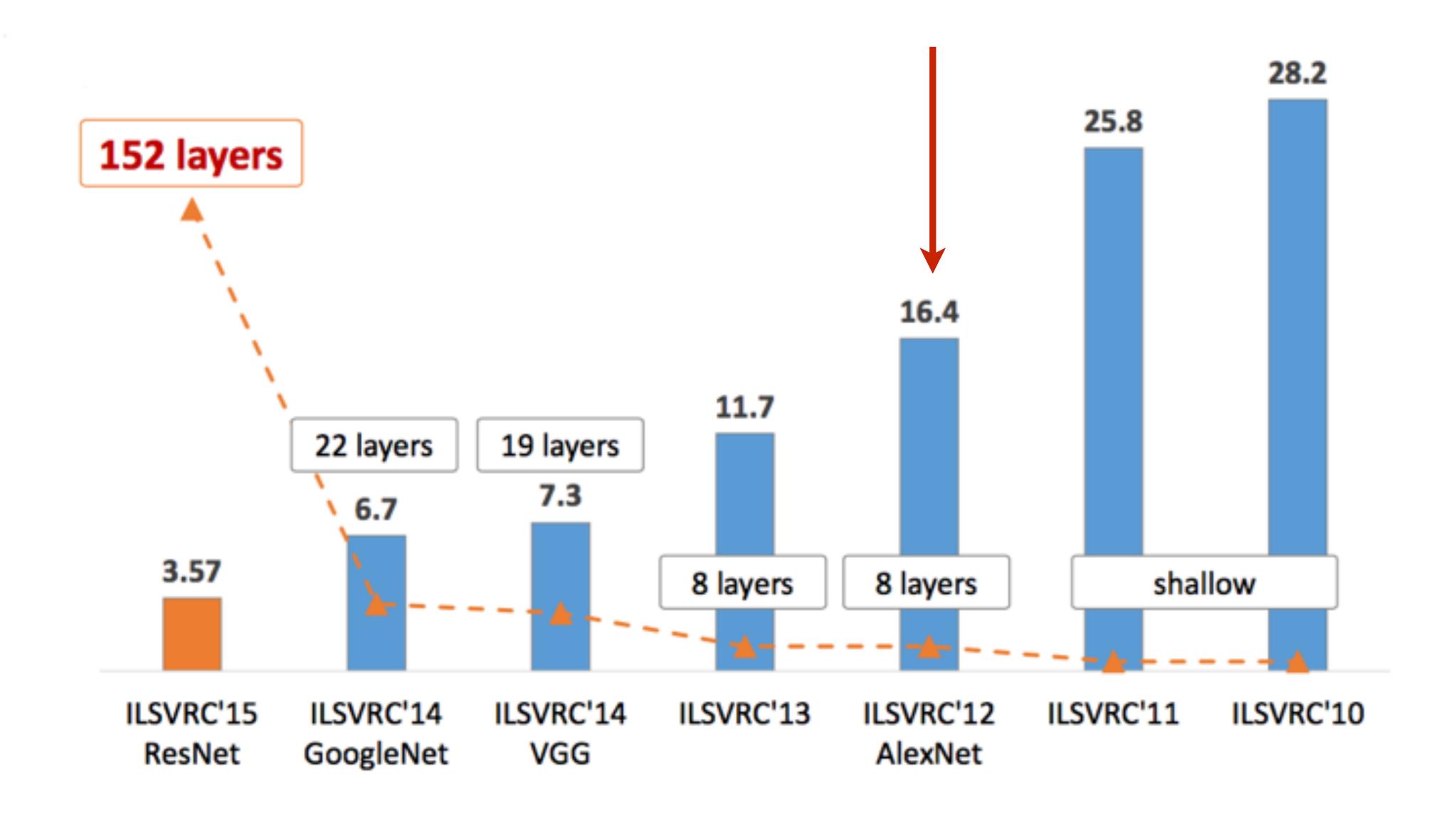
[Krizhevsky et al., 2012]

Details / Comments

- First use of ReLU
- Used contrast normalization layers
- Heavy data augmentation
- Dropout of 0.5
- Batch size of 128
- SGD Momentum (0.9)
- Learning rate (1e-2) reduced by 10 manually when validation accuracy plateaus
- L2 weight decay
- 7 CNN ensamble: 18.2% -> 15.4%

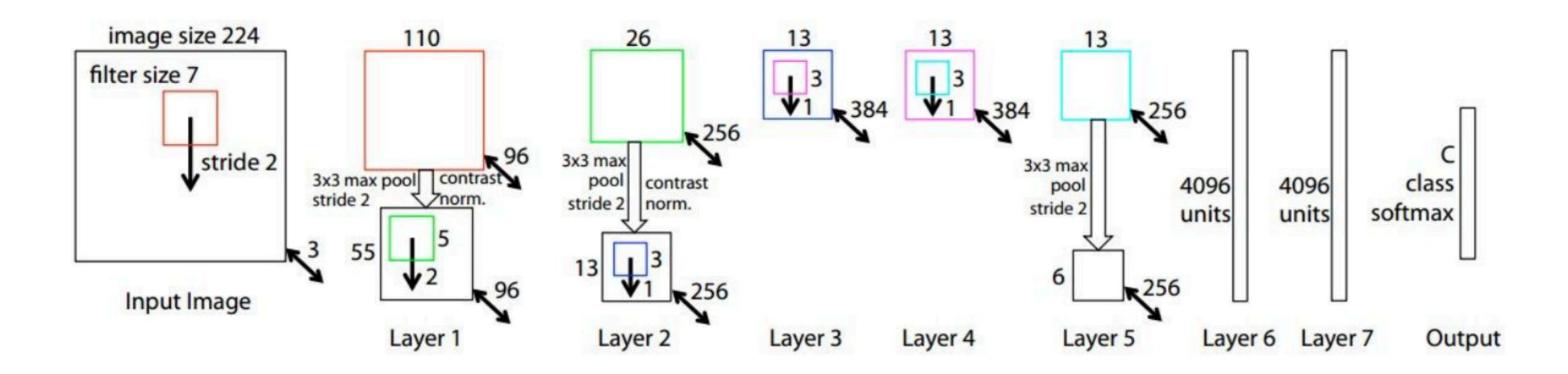
* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

ILSVRC winner 2012



ZF Net

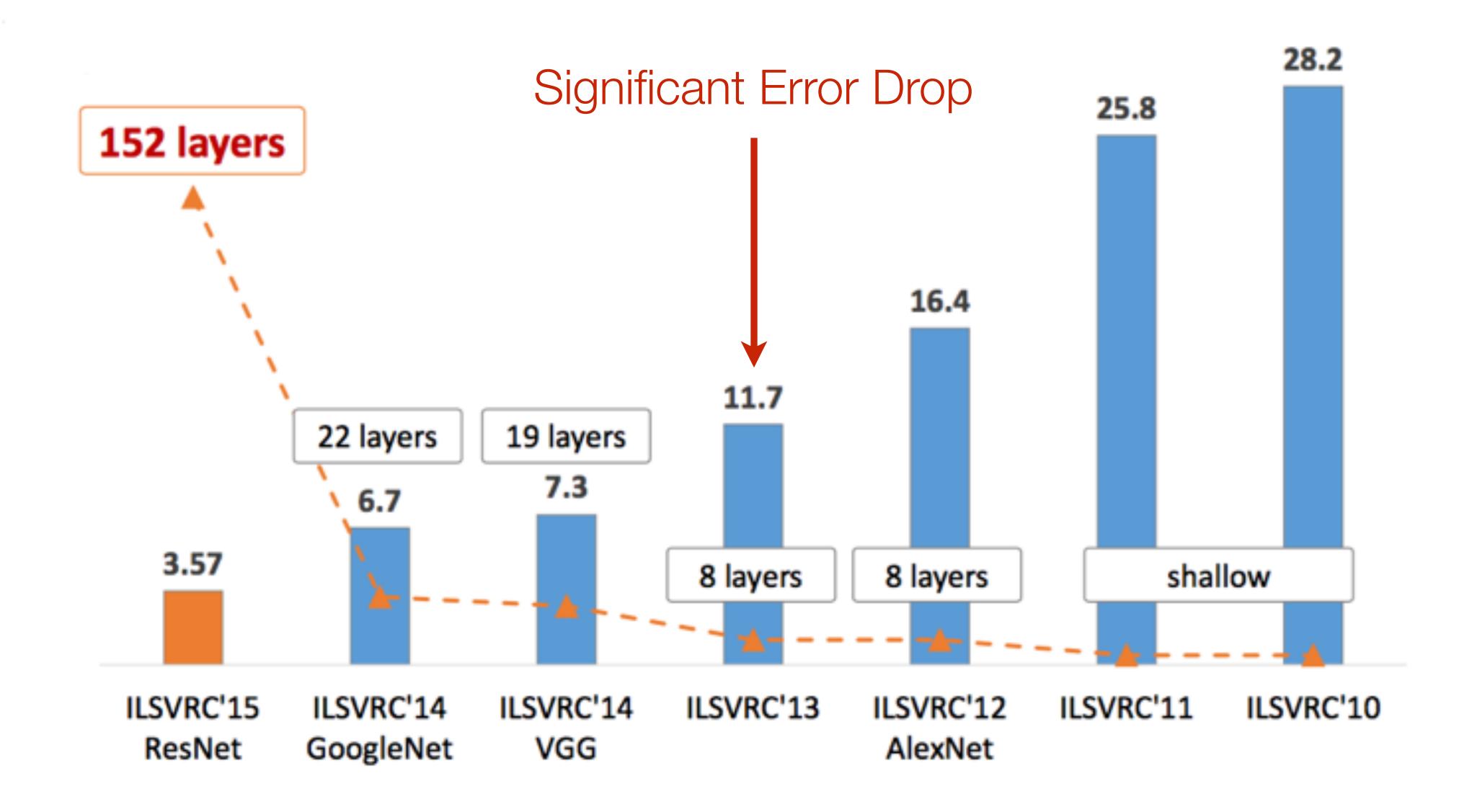
[Zeiler and Fergus, 2013]



AlexNet with small modifications:

- CONV1 (11 x 11 stride 4) to (7 x 7 stride 2)
- CONV3 # of filters 384 -> 512
- CONV4 # of filters 384 -> 1024
- CONV5 # of filters 256 -> 512

ILSVRC winner 2012



Softmax

Trend:

- -smaller filters (3 x 3)
- —deeper network (16 or 19 vs. 8 in AlexNet)

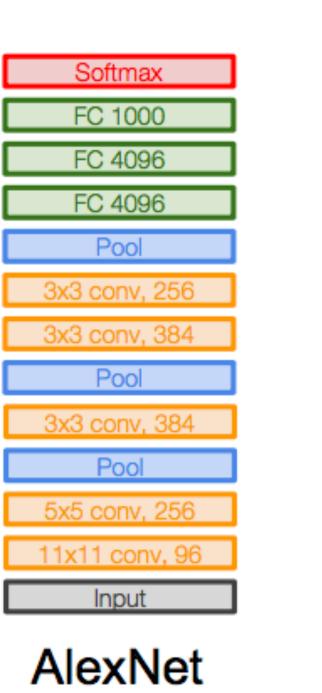
	Continux
	FC 1000
Softmax	FC 4096
FC 1000	FC 4096
FC 4096	Pool
FC 4096	3x3 conv, 512
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	Pool
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
Pool	Pool
3x3 conv, 256	3x3 conv, 256
3x3 conv, 256	3x3 conv, 256
Pool	Pool
3x3 conv, 128	3x3 conv, 128
3x3 conv, 128	3x3 conv, 128
Pool	Pool
3x3 conv, 64	3x3 conv, 64
3x3 conv, 64	3x3 conv, 64
Input	Input
VGG16	VGG19

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Trend:

- -smaller filters (3 x 3)
- —deeper network (16 or 19 vs. 8 in AlexNet)

Why?



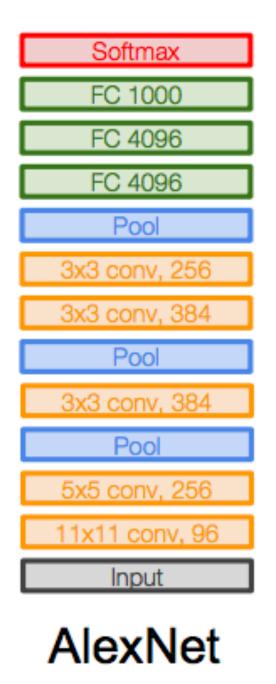


Trend:

- -smaller filters (3 x 3)
- —deeper network (16 or 19 vs. 8 in AlexNet)

Why?

- receptive field of a 3 layer ConvNet with filter size = 3x3 is the same as 1 layer ConvNet with filter 7x7 (at stride 1)
- deeper = more non-linearity (so richer filters)
- fewer parameters



	Softmax
	FC 1000
Softmax	FC 4096
FC 1000	FC 4096
FC 4096	Pool
FC 4096	3x3 conv, 512
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	Pool
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
Pool	Pool
3x3 conv, 256	3x3 conv, 256
3x3 conv, 256	3x3 conv, 256
Pool	Pool
3x3 conv, 128	3x3 conv, 128
3x3 conv, 128	3x3 conv, 128
Pool	Pool
3x3 conv, 64	3x3 conv, 64
3x3 conv, 64	3x3 conv, 64
Input	Input
VGG16	VGG19

VGG Net

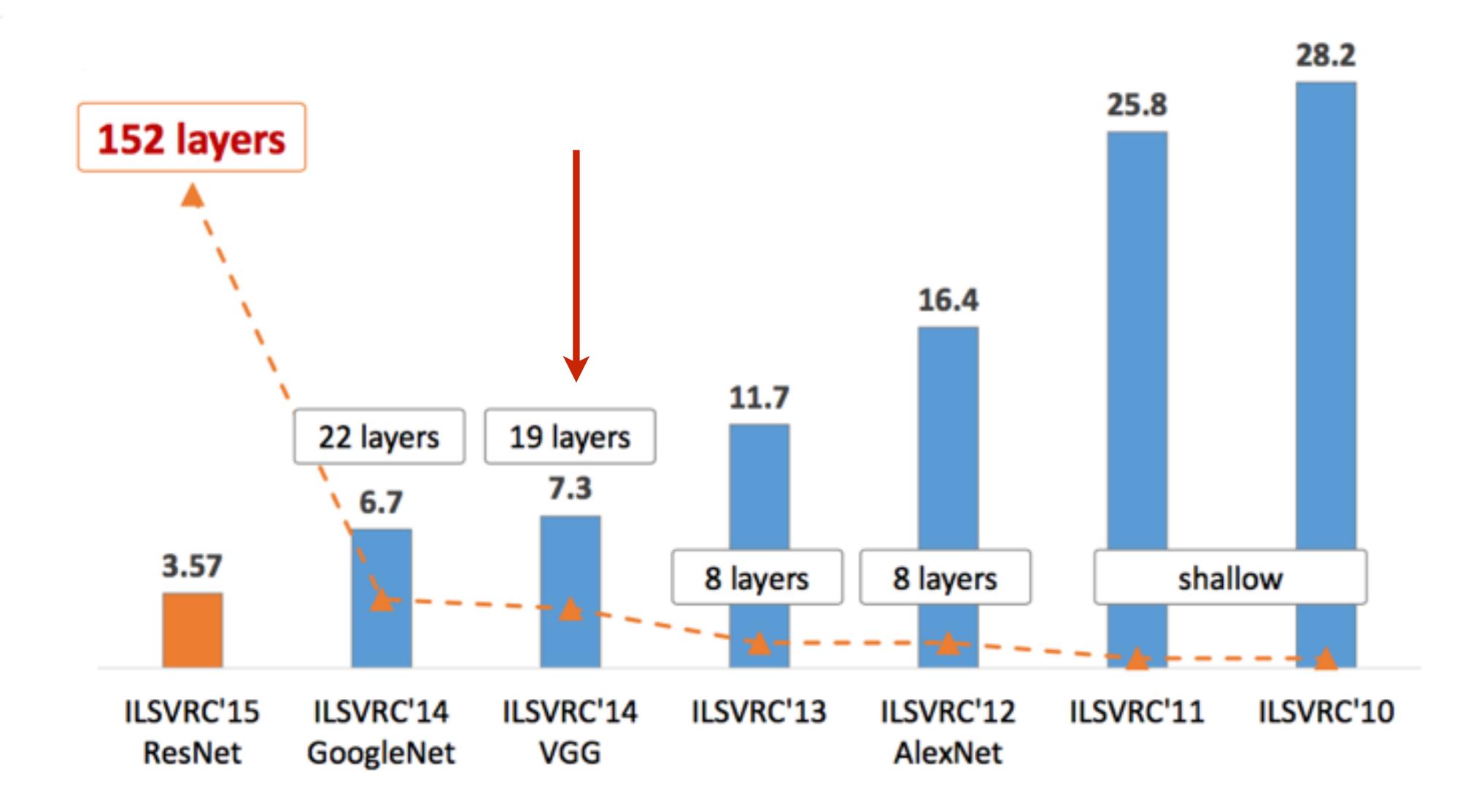
TOTAL params: 138M parameters

```
(not counting biases)
INPUT: [224x224x3]
                    memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000
TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
```

Softmax FC 1000 fc8 FC 4096 fc7 FC 4096 fc6 Pool conv5-3 3x3 conv, 512 conv5-2 3x3 conv, 512 conv5-1 3x3 conv, 512 Pool conv4-3 3x3 conv, 512 conv4-2 3x3 conv, 512 conv4-1 3x3 conv, 512 Pool 3x3 conv, 256 conv3-2 conv3-1 3x3 conv, 256 Pool 3x3 conv, 128 conv2-2 3x3 conv, 128 conv2-1 Pool 3x3 conv, 64 conv1-2 3x3 conv, 64 conv1-1 Input

VGG16

ILSVRC winner 2012

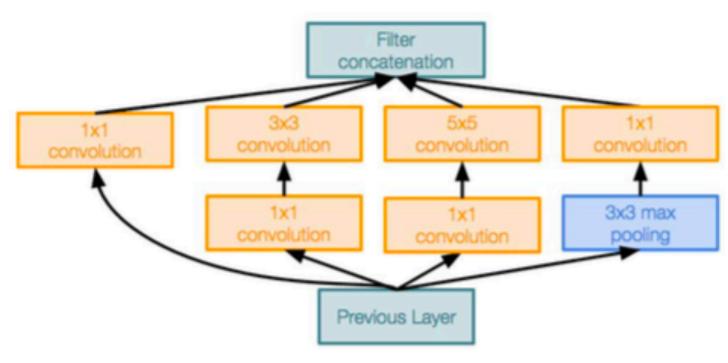


even deeper network with computational efficiency

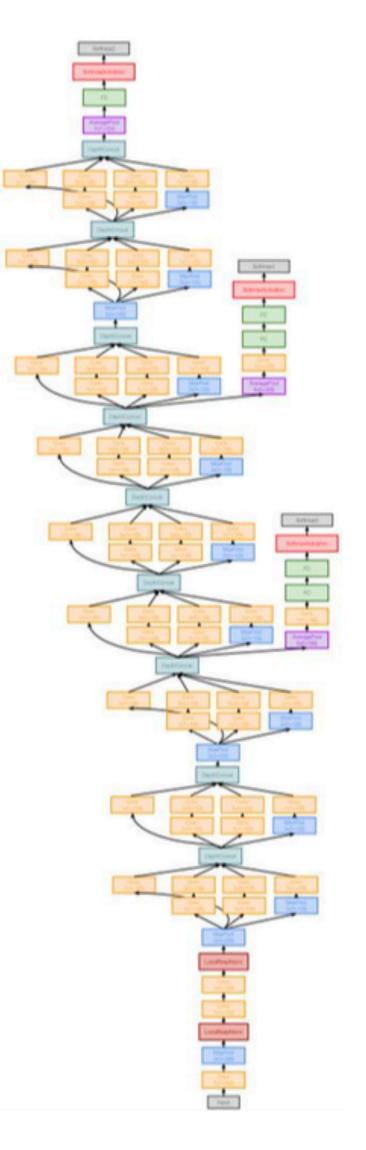
- 22 layers
- Efficient "Inception" module
- No FC layers
- Only 5 million parameters!

(12x less than AlexNet!)

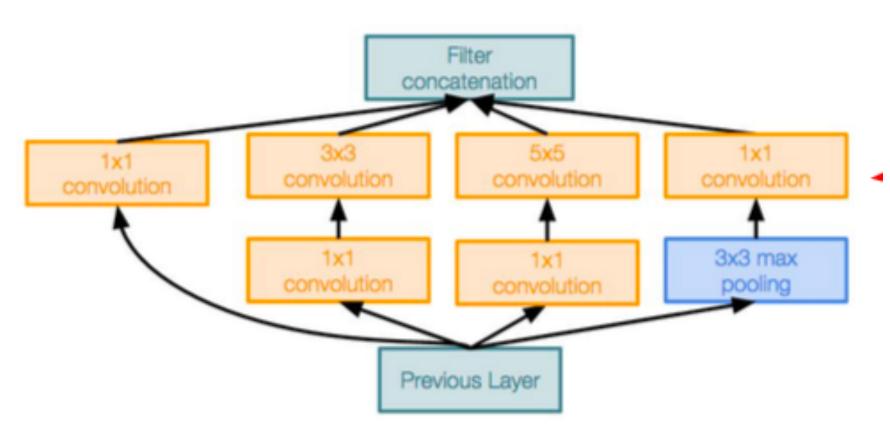
- Better performance (@6.7 top 5 error)



Inception module



Idea: design good local topology ("network within network") and then stack these modules



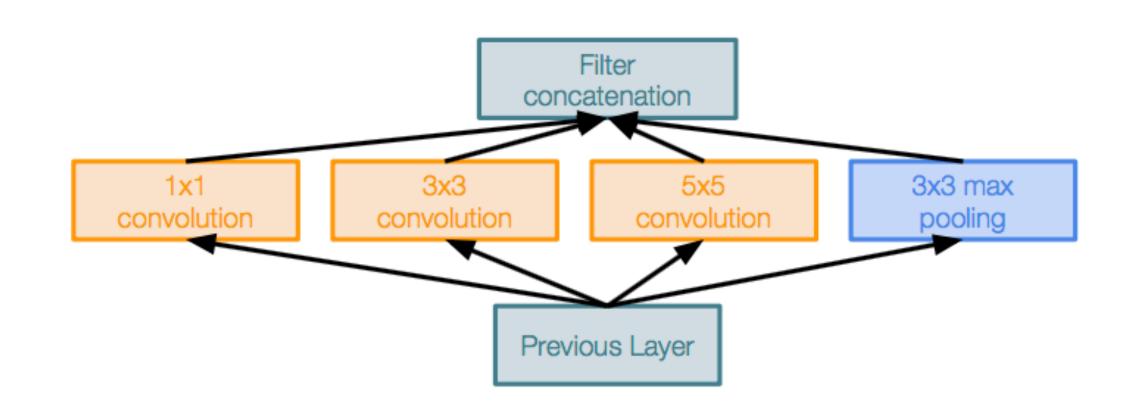
Inception module

Idea: design good local topology ("network within network") and then stack these modules

Apply parallel filter operations on the input from previous layer

- Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)
- Pooling operation (3x3)

Concatenate all filter outputs together at output depth-wise



Naive Inception module

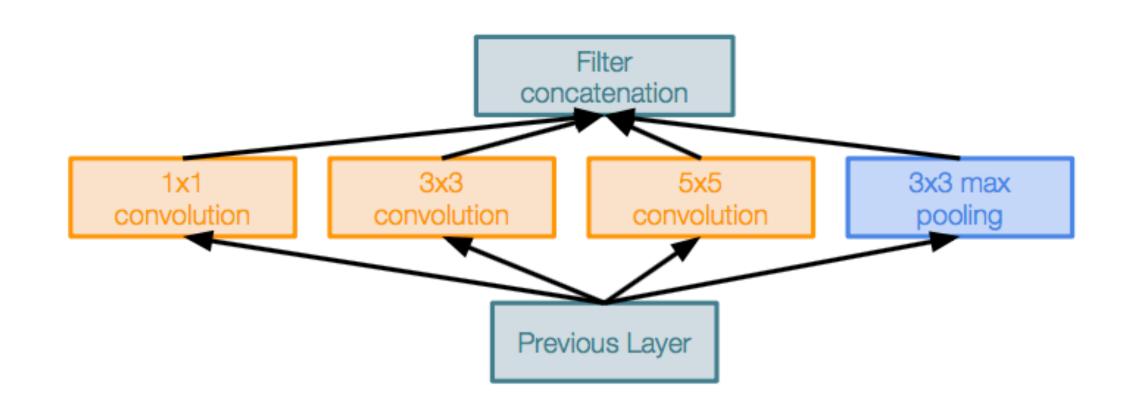
Idea: design good local topology ("network within network") and then stack these modules

Apply parallel filter operations on the input from previous layer

- Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)
- Pooling operation (3x3)

Concatenate all filter outputs together at output depth-wise

What's the problem?



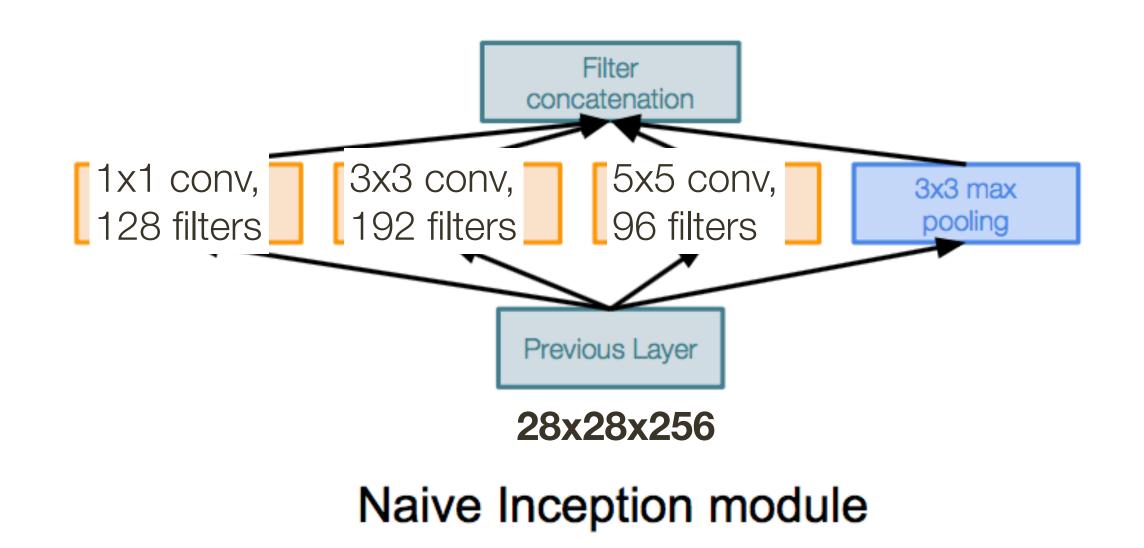
Naive Inception module

Idea: design good local topology ("network within network") and then stack these modules

Apply parallel filter operations on the input from previous layer

- Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)
- Pooling operation (3x3)

Concatenate all filter outputs together at output depth-wise



28x28x256

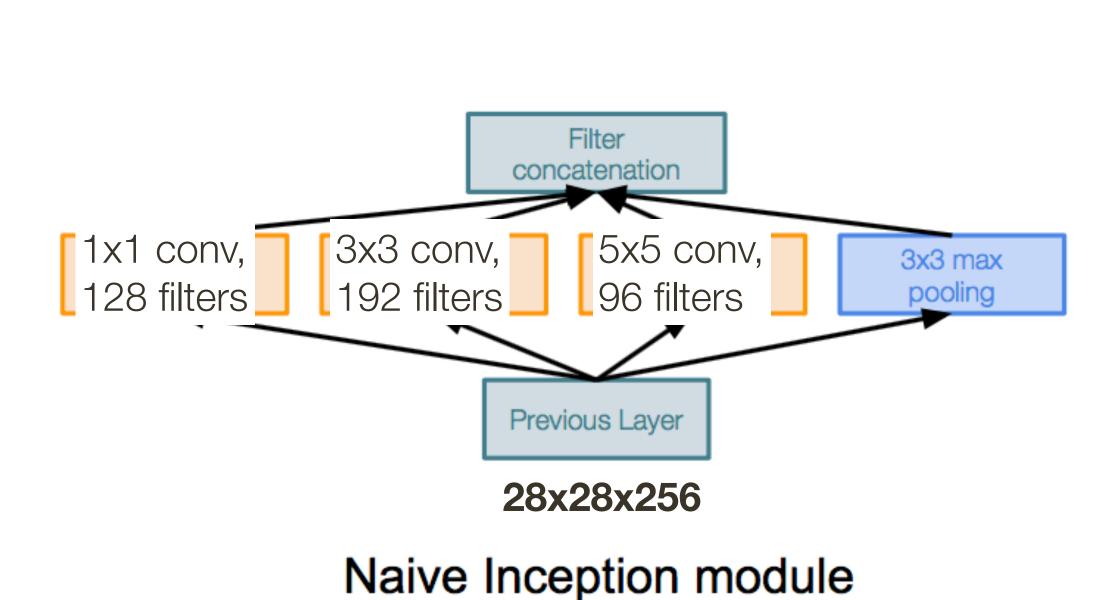
GoogleLeNet: Inception Module

Idea: design good local topology ("network within network") and then stack these modules

Apply parallel filter operations on the input from previous layer

- Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)
- Pooling operation (3x3)

Concatenate all filter outputs together at output depth-wise



28x28x96

28x28x192

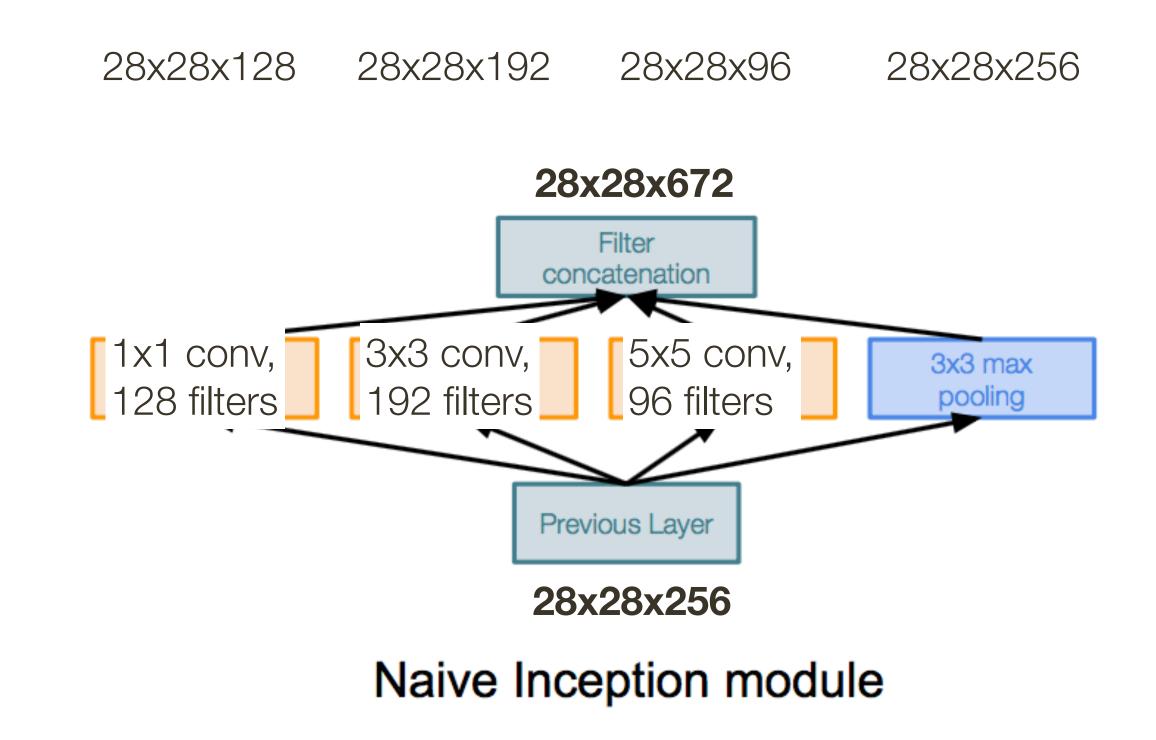
28x28x128

Idea: design good local topology ("network within network") and then stack these modules

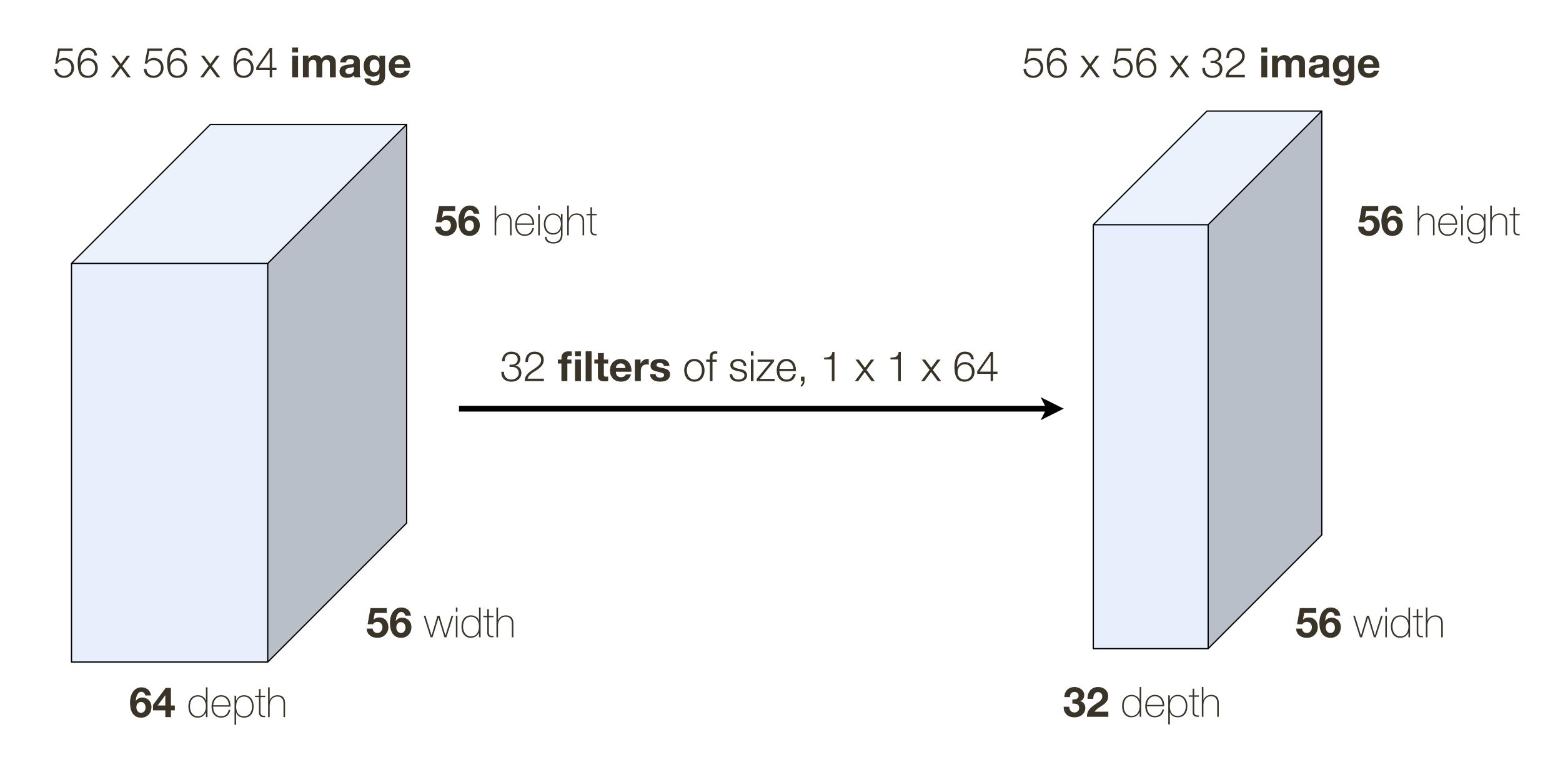
Apply parallel filter operations on the input from previous layer

- Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)
- Pooling operation (3x3)

Concatenate all filter outputs together at output depth-wise



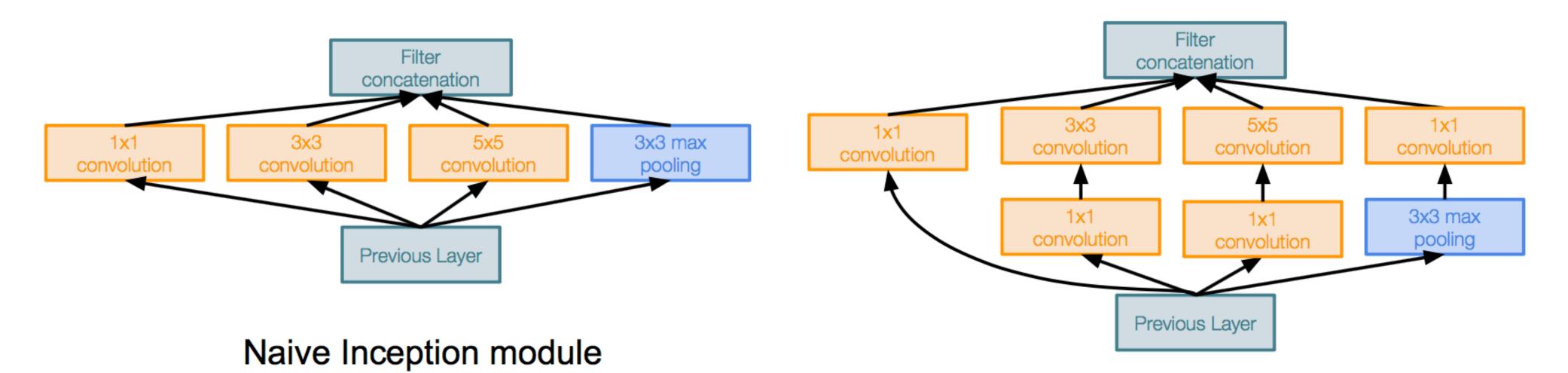
Convolutional Layer: 1x1 convolutions



^{*} slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Idea: design good local topology ("network within network") and then stack these modules

1x1 "bottleneck" layers



Inception module with dimension reduction

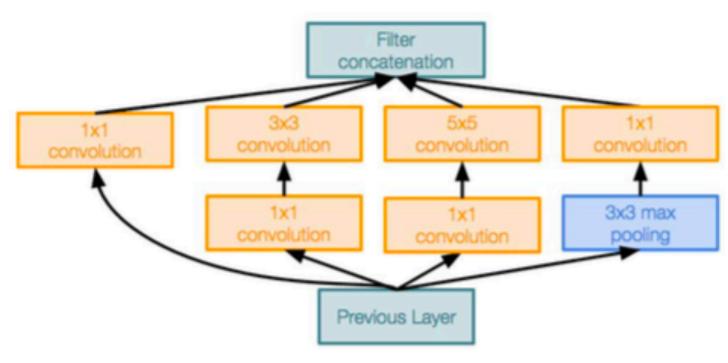
saves approximately 60% of computations

even deeper network with computational efficiency

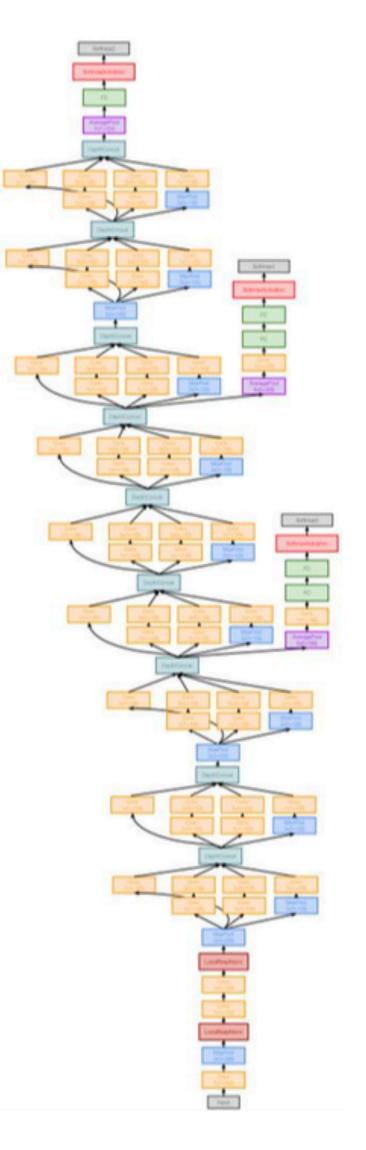
- 22 layers
- Efficient "Inception" module
- No FC layers
- Only 5 million parameters!

(12x less than AlexNet!)

- Better performance (@6.7 top 5 error)



Inception module

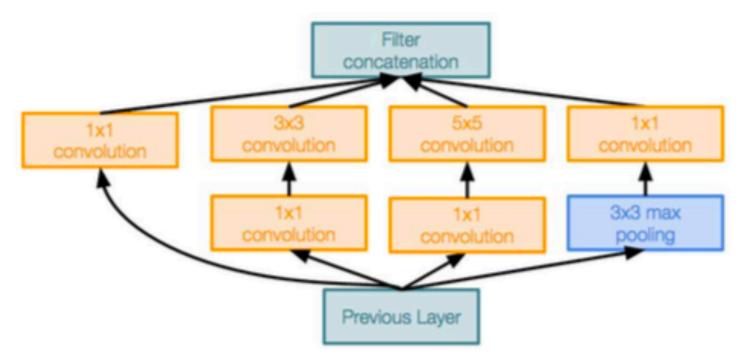


even deeper network with computational efficiency

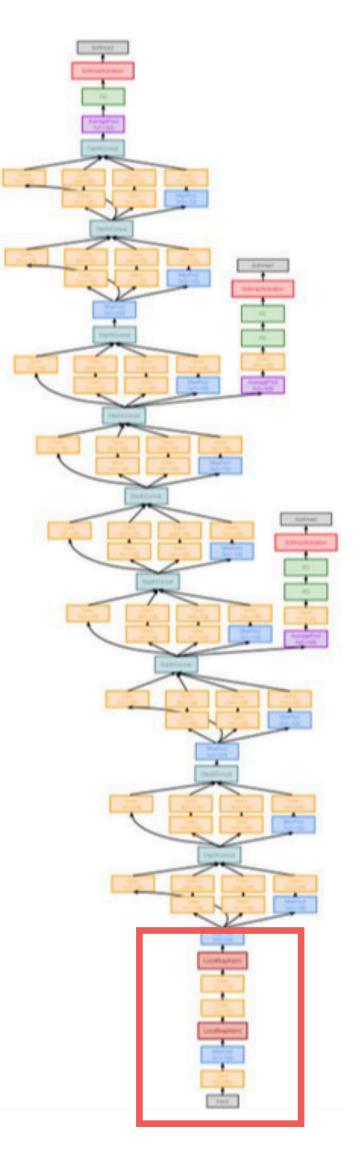
- 22 layers
- Efficient "Inception" module
- No FC layers
- Only 5 million parameters!

(12x less than AlexNet!)

— Better performance (@6.7 top 5 error)



Inception module

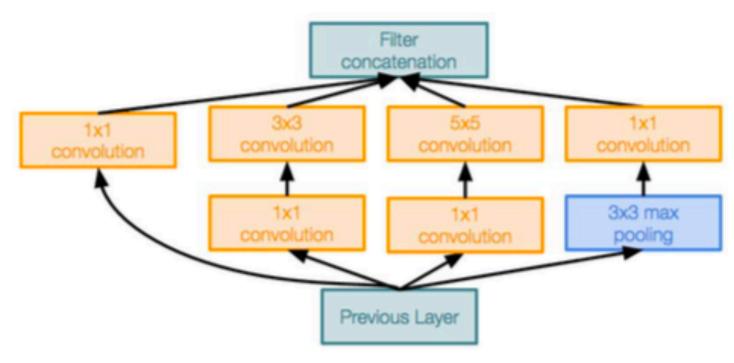


even deeper network with computational efficiency

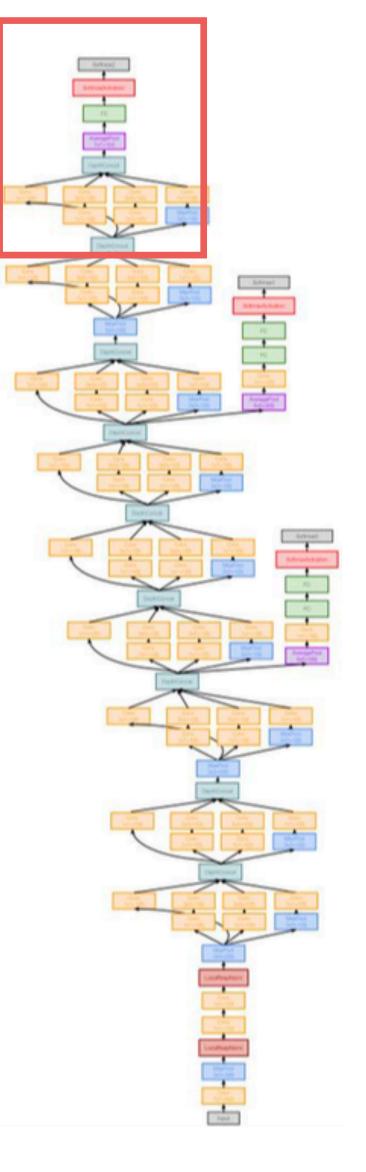
- 22 layers
- Efficient "Inception" module
- No FC layers
- Only 5 million parameters!

(12x less than AlexNet!)

- Better performance (@6.7 top 5 error)



Inception module

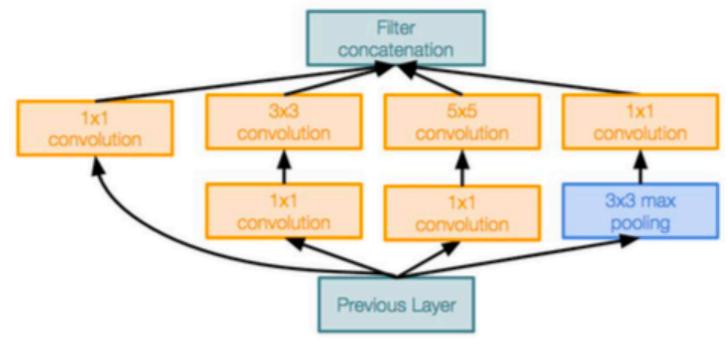


even deeper network with computational efficiency

- 22 layers
- Efficient "Inception" module
- No FC layers
- Only 5 million parameters!

(12x less than AlexNet!)

- Better performance (@6.7 top 5 error)



Inception module

