
Lecture 5: Convolutional Neural Networks (Part 2)

Topics in AI (CPSC 532S):
Multimodal Learning with Vision, Language and Sound

Logistics:
Assignment 2 will be out tonight
— Data is reusable
 get it on your Google Drive, will be used for Assignment 3 & 4
 you can reduce the dataset size (e.g., 1/2 or 1/4 of data)
— Piazza (make questions public)

Projects
— Some guidelines
— November 1 & 3 Project Proposals (two lectures week before the break)

Office Hours

Paper presentations
— List of papers will be made available in the next 1 week

Logistics:
Assignment 2 will be out tonight
— Data is reusable
 get it on your Google Drive, will be used for Assignment 3 & 4
 you can reduce the dataset size (e.g., 1/2 or 1/4 of data)
— Piazza (make questions public)

Projects
— Some guidelines
— November 1 & 3 Project Proposals (two lectures week before the break)

Office Hours

Paper presentations
— List of papers will be made available in the next 1 week

Logistics:
Assignment 2 will be out tonight
— Data is reusable
 get it on your Google Drive, will be used for Assignment 3 & 4
 you can reduce the dataset size (e.g., 1/2 or 1/4 of data)
— Piazza (make questions public)

Projects
— Some guidelines
— November 1 & 3 Project Proposals (two lectures week before the break)

Office Hours

Paper presentations
— List of papers will be made available in the next 1 week

Logistics:
Assignment 2 will be out tonight
— Data is reusable
 get it on your Google Drive, will be used for Assignment 3 & 4
 you can reduce the dataset size (e.g., 1/2 or 1/4 of data)
— Piazza (make questions public)

Projects
— Some guidelines
— November 1 & 3 Project Proposals (two lectures week before the break)

Office Hours

Paper presentations
— List of papers will be made available in the next 1 week

* slide from Marc’Aurelio Renzato

Last time: Convolutional Layer

Image Response Map

* slide from Marc’Aurelio Renzato

Last time: Convolutional Layer

Image Response Map

* slide from Marc’Aurelio Renzato

Last time: Convolutional Layer

Image Response Map

* slide from Marc’Aurelio Renzato

Last time: Convolutional Layer

Image Response Map

* slide from Marc’Aurelio Renzato

Last time: Convolutional Layer

Image Response Map

* slide from Marc’Aurelio Renzato

Last time: Convolutional Layer

Image Response Map

* slide from Marc’Aurelio Renzato

Last time: Convolutional Layer

Image Response Map

* slide from Marc’Aurelio Renzato

Last time: Convolutional Layer

Image Response Map

* slide from Marc’Aurelio Renzato

Last time: Convolutional Layer

Image Response Map

* slide from Marc’Aurelio Renzato

Last time: Convolutional Layer

Image Response Map

* slide from Marc’Aurelio Renzato

Last time: Convolutional Layer

Image Response Map

* slide from Marc’Aurelio Renzato

Last time: Convolutional Layer

Image Response Map

* slide from Marc’Aurelio Renzato

Last time: Convolutional Layer

Image Response Map

* slide from Marc’Aurelio Renzato

Last time: Convolutional Layer

Image Response Map

* slide from Marc’Aurelio Renzato

Last time: Convolutional Layer

Image Response Map

* slide from Marc’Aurelio Renzato

Last time: Convolutional Layer

Image Response Map

Last time: Convolutional Layer

32 width

3 depth

32 x 32 x 3 image

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

convolve (slide) over all
spatial locations

5 x 5 x 3 filter ()WTx+ b,where W,x 2 R75

28 width

1 depth

28 height

activation map

CONV,
ReLU
e.g. 6 5x5x3
filters

Last time: Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

28 width

6 depth

28 height

24 width

10 depth

24 height

CONV,
ReLU
e.g. 10 5x5x6
filters

CONV,
ReLU

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

What filters do networks learn?

[Zeiler and Fergus, 2013]

What filters do networks learn?

[Zeiler and Fergus, 2013]

Convolutional Layer: Closer Look at Spatial Dimensions

32 width

3 depth

32 x 32 x 3 image

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

convolve (slide) over all
spatial locations

5 x 5 x 3 filter ()WTx+ b,where W,x 2 R75

28 width

1 depth

28 height

activation map

Convolutional Layer: Closer Look at Spatial Dimensions

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

7 width

7 height

7 x 7 input image (spatially)
3 x 3 filter

Convolutional Layer: Closer Look at Spatial Dimensions

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

7 width

7 height

7 x 7 input image (spatially)
3 x 3 filter

Convolutional Layer: Closer Look at Spatial Dimensions

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

7 width

7 height

7 x 7 input image (spatially)
3 x 3 filter

Convolutional Layer: Closer Look at Spatial Dimensions

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

7 width

7 height

7 x 7 input image (spatially)
3 x 3 filter

Convolutional Layer: Closer Look at Spatial Dimensions

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

7 width

7 height

7 x 7 input image (spatially)
3 x 3 filter

Convolutional Layer: Closer Look at Spatial Dimensions

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

7 width

7 height

7 x 7 input image (spatially)
3 x 3 filter

=> 5 x 5 output

Convolutional Layer: Closer Look at Spatial Dimensions

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

7 width

7 height

7 x 7 input image (spatially)
3 x 3 filter
(applied with stride 2)

Convolutional Layer: Closer Look at Spatial Dimensions

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

7 width

7 height

7 x 7 input image (spatially)
3 x 3 filter
(applied with stride 2)

Convolutional Layer: Closer Look at Spatial Dimensions

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

7 width

7 height

7 x 7 input image (spatially)
3 x 3 filter
(applied with stride 2)

Convolutional Layer: Closer Look at Spatial Dimensions

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

7 width

7 height

7 x 7 input image (spatially)
3 x 3 filter
(applied with stride 2)

=> 3 x 3 output

Convolutional Layer: Closer Look at Spatial Dimensions

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

7 width

7 height

7 x 7 input image (spatially)
3 x 3 filter
(applied with stride 3)

Convolutional Layer: Closer Look at Spatial Dimensions

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

7 width

7 height

7 x 7 input image (spatially)
3 x 3 filter
(applied with stride 3)

Does not fit! Cannot apply 3 x 3
filter on 7 x 7 image with stride 3

Convolutional Layer: Closer Look at Spatial Dimensions

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

N width

N height

N x N input image (spatially)
F x F filter

Output size: (N-F) / stride + 1

Convolutional Layer: Closer Look at Spatial Dimensions

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

N width

N height

N x N input image (spatially)
F x F filter

Output size: (N-F) / stride + 1

Example: N = 7, F = 3

stride 1 => (7-3)/1+1 = 5
stride 2 => (7-3)/2+1 = 3
stride 3 => (7-3)/3+1 = 2.33

Convolutional Layer: Border padding

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

7 width
7 x 7 input image (spatially)
3 x 3 filter
(applied with stride 1)

pad with 1 pixel border

0 0 0 0 0 0 0 0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 0 0 0

7 height

Convolutional Layer: Border padding

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

7 width
7 x 7 input image (spatially)
3 x 3 filter
(applied with stride 1)

pad with 1 pixel border

Output size: 7 x 7

0 0 0 0 0 0 0 0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 0 0 0

7 height

Convolutional Layer: Border padding

7 width
7 x 7 input image (spatially)
3 x 3 filter
(applied with stride 3)

pad with 1 pixel border

0 0 0 0 0 0 0 0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 0 0 0

7 height

Convolutional Layer: Border padding

7 width
7 x 7 input image (spatially)
3 x 3 filter
(applied with stride 3)

pad with 1 pixel border

0 0 0 0 0 0 0 0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 0 0 0

7 height
Example: N = 7, F = 3

stride 1 => (9-3)/1+1 = 7
stride 2 => (9-3)/2+1 = 4
stride 3 => (9-3)/3+1 = 3

CONV,
ReLU
e.g. 6 5x5x3
filters

Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

CONV,
ReLU
e.g. 6 5x5x3
filters

Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

28 width

6 depth

28 height

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

CONV,
ReLU
e.g. 6 5x5x3
filters

Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

28 width

6 depth

28 height

CONV,
ReLU
e.g. 10 5x5x6
filters

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

CONV,
ReLU
e.g. 6 5x5x3
filters

Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

28 width

6 depth

28 height

24 width

10 depth

24 height

CONV,
ReLU
e.g. 10 5x5x6
filters

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

CONV,
ReLU
e.g. 6 5x5x3
filters

Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

28 width

6 depth

28 height

24 width

10 depth

24 height

CONV,
ReLU
e.g. 10 5x5x6
filters

CONV,
ReLU

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

CONV,
ReLU
e.g. 6 5x5x3
filters

Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

28 width

6 depth

28 height

24 width

10 depth

24 height

CONV,
ReLU
e.g. 10 5x5x6
filters

CONV,
ReLU

With padding we can achieve no shrinking (32 -> 28 -> 24); shrinking quickly
(which happens with larger filters) doesn’t work well in practice

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Convolutional Layer: 1x1 convolutions

56 width

64 depth

56 x 56 x 64 image

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

32 filters of size, 1 x 1 x 64

56 height

56 x 56 x 32 image

56 width

32 depth

56 height

Convolutional Layer Summary

Accepts a volume of size: Wi ⇥Hi ⇥Di

Convolutional Layer Summary

Accepts a volume of size:
Requires hyperparameters:
 — Number of filters: (for typical networks)
 — Spatial extent of filters: (for a typical networks)
 — Stride of application: (for a typical network)
 — Zero padding: (for a typical network)

Wi ⇥Hi ⇥Di

K K 2 {32, 64, 128, 256, 512}

F 2 {1, 3, 5, ...}F

S 2 {1, 2}

P 2 {0, 1, 2}

S

P

Convolutional Layer Summary

Accepts a volume of size:
Requires hyperparameters:
 — Number of filters: (for typical networks)
 — Spatial extent of filters: (for a typical networks)
 — Stride of application: (for a typical network)
 — Zero padding: (for a typical network)
Produces a volume of size:

Wi ⇥Hi ⇥Di

Wo ⇥Ho ⇥Do

K K 2 {32, 64, 128, 256, 512}

F 2 {1, 3, 5, ...}F

S 2 {1, 2}

P 2 {0, 1, 2}

S

P

Convolutional Layer Summary

Accepts a volume of size:
Requires hyperparameters:
 — Number of filters: (for typical networks)
 — Spatial extent of filters: (for a typical networks)
 — Stride of application: (for a typical network)
 — Zero padding: (for a typical network)
Produces a volume of size:

Wi ⇥Hi ⇥Di

Wo ⇥Ho ⇥Do

K K 2 {32, 64, 128, 256, 512}

F 2 {1, 3, 5, ...}F

S 2 {1, 2}

P 2 {0, 1, 2}

S

P

Wo = (Wi � F + 2P)/S + 1 Ho = (Hi � F + 2P)/S + 1 Do = K

Convolutional Layer Summary

Accepts a volume of size:
Requires hyperparameters:
 — Number of filters: (for typical networks)
 — Spatial extent of filters: (for a typical networks)
 — Stride of application: (for a typical network)
 — Zero padding: (for a typical network)
Produces a volume of size:

Number of total learnable parameters:

Wi ⇥Hi ⇥Di

Wo ⇥Ho ⇥Do

K K 2 {32, 64, 128, 256, 512}

F 2 {1, 3, 5, ...}F

S 2 {1, 2}

P 2 {0, 1, 2}

S

P

Wo = (Wi � F + 2P)/S + 1 Ho = (Hi � F + 2P)/S + 1 Do = K

(F ⇥ F ⇥Di)⇥K +K

Convolutional Neural Networks

VGG-16 Network

CNNs: Reminder Fully Connected Layers

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Input Activation

3072 10
(32 x 32 x 3 image -> stretches to 3072 x 1)

WTx+ b,where W 2 R10⇥3072

each neuron looks at the full
input volume

Convolutional Neural Networks

VGG-16 Network

WTx+ b,where W 2 R25,088⇥4,096

CNNs: Reminder Fully Connected Layers

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Input Activation

25,088 4,096
(7 x 7 x 512 image -> stretches to 25,088 x 1)

each neuron looks at the full
input volume

WTx+ b,where W 2 R25,088⇥4,096

CNNs: Reminder Fully Connected Layers

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Input Activation

25,088 4,096
(7 x 7 x 512 image -> stretches to 25,088 x 1)

each neuron looks at the full
input volume

102,760,448 parameters!

Convolutional Neural Networks

VGG-16 Network

Convolutional Neural Networks

VGG-16 Network

Invariance vs. Equivariance

Invariance: A mathematical object (or class of mathematical objects) remains
unchanged after transformations of certain types applied to the objects

Equivariance: Applying a transformation and then computing the function
produces the same result as computing the function and then applying a
transformation

<latexit sha1_base64="nHC0x+FeiGhxpX+c8V42rCd82YE=">AAAB+nicbZDLSsNAFIZPvNZ6S3XpZrAI6aYkIupGKLjRXQV7gTaUyXSSDp1cmJmoJRZ8ETcuFHHrk7jzbZy0XWjrDwMf/zmHc+b3Es6ksu1vY2l5ZXVtvbBR3Nza3tk1S3tNGaeC0AaJeSzaHpaUs4g2FFOcthNBcehx2vKGl3m9dUeFZHF0q0YJdUMcRMxnBCtt9cxSYPnWQ6WCLpBvBTn1zLJdtSdCi+DMoFyrPEGues/86vZjkoY0UoRjKTuOnSg3w0Ixwum42E0lTTAZ4oB2NEY4pNLNJqeP0ZF2+siPhX6RQhP390SGQylHoac7Q6wGcr6Wm//VOqnyz92MRUmqaESmi/yUIxWjPAfUZ4ISxUcaMBFM34rIAAtMlE6rqENw5r+8CM3jqnNaPbnRaVzDVAU4gEOwwIEzqMEV1KEBBO7hGV7hzXg0Xox342PaumTMZvbhj4zPH9y8kpU=</latexit>

g(f(x)) = f(g(x))

<latexit sha1_base64="hnLWgNdIznaSvUBW3+qIyyG2kzo=">AAAB9XicbZDLSsNAFIZP6q3WW9Slm8EitJuSiKgboeBGdxXsBdpYJtNJO3QyCTMTtYSCj+HGhSJufRd3vo2Ttgtt/WHg4z/ncM78fsyZ0o7zbeWWlldW1/LrhY3Nre0de3evoaJEElonEY9ky8eKciZoXTPNaSuWFIc+p01/eJnVm/dUKhaJWz2KqRfivmABI1gb6y4oPZbRBQpKfQPlrl10Ks5EaBHcGRSr5SfIVOvaX51eRJKQCk04VqrtOrH2Uiw1I5yOC51E0RiTIe7TtkGBQ6q8dHL1GB0Zp4eCSJonNJq4vydSHCo1Cn3TGWI9UPO1zPyv1k50cO6lTMSJpoJMFwUJRzpCWQSoxyQlmo8MYCKZuRWRAZaYaBNUwYTgzn95ERrHFfe0cnJj0riGqfJwAIdQAhfOoApXUIM6EJDwDK/wZj1YL9a79TFtzVmzmX34I+vzB9M6kY4=</latexit>

f(x) = f(g(x))

Invariance vs. Equivariance

Invariance: A mathematical object (or class of mathematical objects) remains
unchanged after transformations of certain types applied to the objects

Equivariance: Applying a transformation and then computing the function
produces the same result as computing the function and then applying a
transformation

<latexit sha1_base64="nHC0x+FeiGhxpX+c8V42rCd82YE=">AAAB+nicbZDLSsNAFIZPvNZ6S3XpZrAI6aYkIupGKLjRXQV7gTaUyXSSDp1cmJmoJRZ8ETcuFHHrk7jzbZy0XWjrDwMf/zmHc+b3Es6ksu1vY2l5ZXVtvbBR3Nza3tk1S3tNGaeC0AaJeSzaHpaUs4g2FFOcthNBcehx2vKGl3m9dUeFZHF0q0YJdUMcRMxnBCtt9cxSYPnWQ6WCLpBvBTn1zLJdtSdCi+DMoFyrPEGues/86vZjkoY0UoRjKTuOnSg3w0Ixwum42E0lTTAZ4oB2NEY4pNLNJqeP0ZF2+siPhX6RQhP390SGQylHoac7Q6wGcr6Wm//VOqnyz92MRUmqaESmi/yUIxWjPAfUZ4ISxUcaMBFM34rIAAtMlE6rqENw5r+8CM3jqnNaPbnRaVzDVAU4gEOwwIEzqMEV1KEBBO7hGV7hzXg0Xox342PaumTMZvbhj4zPH9y8kpU=</latexit>

g(f(x)) = f(g(x))

<latexit sha1_base64="hnLWgNdIznaSvUBW3+qIyyG2kzo=">AAAB9XicbZDLSsNAFIZP6q3WW9Slm8EitJuSiKgboeBGdxXsBdpYJtNJO3QyCTMTtYSCj+HGhSJufRd3vo2Ttgtt/WHg4z/ncM78fsyZ0o7zbeWWlldW1/LrhY3Nre0de3evoaJEElonEY9ky8eKciZoXTPNaSuWFIc+p01/eJnVm/dUKhaJWz2KqRfivmABI1gb6y4oPZbRBQpKfQPlrl10Ks5EaBHcGRSr5SfIVOvaX51eRJKQCk04VqrtOrH2Uiw1I5yOC51E0RiTIe7TtkGBQ6q8dHL1GB0Zp4eCSJonNJq4vydSHCo1Cn3TGWI9UPO1zPyv1k50cO6lTMSJpoJMFwUJRzpCWQSoxyQlmo8MYCKZuRWRAZaYaBNUwYTgzn95ERrHFfe0cnJj0riGqfJwAIdQAhfOoApXUIM6EJDwDK/wZj1YL9a79TFtzVmzmX34I+vzB9M6kY4=</latexit>

f(x) = f(g(x))

Invariance vs. Equivariance

Invariance: A mathematical object (or class of mathematical objects) remains
unchanged after transformations of certain types applied to the objects

Equivariance: Applying a transformation and then computing the function
produces the same result as computing the function and then applying a
transformation

<latexit sha1_base64="nHC0x+FeiGhxpX+c8V42rCd82YE=">AAAB+nicbZDLSsNAFIZPvNZ6S3XpZrAI6aYkIupGKLjRXQV7gTaUyXSSDp1cmJmoJRZ8ETcuFHHrk7jzbZy0XWjrDwMf/zmHc+b3Es6ksu1vY2l5ZXVtvbBR3Nza3tk1S3tNGaeC0AaJeSzaHpaUs4g2FFOcthNBcehx2vKGl3m9dUeFZHF0q0YJdUMcRMxnBCtt9cxSYPnWQ6WCLpBvBTn1zLJdtSdCi+DMoFyrPEGues/86vZjkoY0UoRjKTuOnSg3w0Ixwum42E0lTTAZ4oB2NEY4pNLNJqeP0ZF2+siPhX6RQhP390SGQylHoac7Q6wGcr6Wm//VOqnyz92MRUmqaESmi/yUIxWjPAfUZ4ISxUcaMBFM34rIAAtMlE6rqENw5r+8CM3jqnNaPbnRaVzDVAU4gEOwwIEzqMEV1KEBBO7hGV7hzXg0Xox342PaumTMZvbhj4zPH9y8kpU=</latexit>

g(f(x)) = f(g(x))

<latexit sha1_base64="hnLWgNdIznaSvUBW3+qIyyG2kzo=">AAAB9XicbZDLSsNAFIZP6q3WW9Slm8EitJuSiKgboeBGdxXsBdpYJtNJO3QyCTMTtYSCj+HGhSJufRd3vo2Ttgtt/WHg4z/ncM78fsyZ0o7zbeWWlldW1/LrhY3Nre0de3evoaJEElonEY9ky8eKciZoXTPNaSuWFIc+p01/eJnVm/dUKhaJWz2KqRfivmABI1gb6y4oPZbRBQpKfQPlrl10Ks5EaBHcGRSr5SfIVOvaX51eRJKQCk04VqrtOrH2Uiw1I5yOC51E0RiTIe7TtkGBQ6q8dHL1GB0Zp4eCSJonNJq4vydSHCo1Cn3TGWI9UPO1zPyv1k50cO6lTMSJpoJMFwUJRzpCWQSoxyQlmo8MYCKZuRWRAZaYaBNUwYTgzn95ERrHFfe0cnJj0riGqfJwAIdQAhfOoApXUIM6EJDwDK/wZj1YL9a79TFtzVmzmX34I+vzB9M6kY4=</latexit>

f(x) = f(g(x))

Revisit Layers we Learned About

Fully Connected:

— Not invariant to any transformations

— Not equivariant to any transformations

Convolutional:

— Not invariant to any transformations

— Convolution is translation equivariant

Note: convolution can “learn” not to be equivariant when padding is used.

Revisit Layers we Learned About

Fully Connected:

— Not invariant to any transformations

— Not equivariant to any transformations

Convolutional:

— Not invariant to any transformations

— Convolution is translation equivariant

Note: convolution can “learn” not to be equivariant when padding is used.

Revisit Layers we Learned About

Fully Connected:

— Not invariant to any transformations

— Not equivariant to any transformations

Convolutional:

— Not invariant to any transformations

— Convolution is translation equivariant

Note: convolution can “learn” not to be equivariant when padding is used.

Revisit Layers we Learned About

Fully Connected:

— Not invariant to any transformations

— Not equivariant to any transformations

Convolutional:

— Not invariant to any transformations

— Convolution is translation equivariant

Note: convolution can “learn” not to be equivariant when padding is used.

0 0 0 0 0 0 0 0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 0 0 0

0 0 0
1 0 0
0 0 0

Revisit Layers we Learned About

Weight

Kernel

Bias

1

0 0 0 0 0 0 0 0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 0 0 0

0 1 0
0 0 0
0 0 0

Revisit Layers we Learned About

Weight

Kernel

Bias

1

Pooling Layer
Let us assume the filter is an “eye” detector

How can we make detection spatially invariant
(insensitive to position of the eye in the image)

* slide from Marc’Aurelio Renzato

Pooling Layer
Let us assume the filter is an “eye” detector

How can we make detection spatially invariant
(insensitive to position of the eye in the image)

By “pooling” (e.g., taking a max) response
over a spatial locations we gain robustness
to position variations

* slide from Marc’Aurelio Renzato

Pooling Layer
• Makes representation smaller, more manageable and spatially invariant
• Operates over each activation map independently

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Pooling Layer
• Makes representation smaller, more manageable and spatially invariant
• Operates over each activation map independently

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

How many parameters?

Pooling Layer
• Makes representation smaller, more manageable and spatially invariant
• Operates over each activation map independently

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

How many parameters?

None!

Pooling Layer
• Makes representation smaller, more manageable and spatially invariant
• Operates over each activation map independently

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Pooling Layer
• Makes representation smaller, more manageable and spatially invariant
• Operates over each activation map independently

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

How do we implement that
in a computation graph?

Max Pooling

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

6 8

3 4
max pool with 2 x 2 filter

and stride of 2

activation map

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Average Pooling

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

3.25 5.25

2 2
avg pool with 2 x 2 filter

and stride of 2

activation map

Pooling Layer Receptive Field

* slide from Marc’Aurelio Renzato

If convolutional filters have size KxK and stride 1, and pooling layer has pools of
size PxP, then each unit in the pooling layer depends upon a patch (at the input of
the preceding conv. layer) of size: (P+K-1)x(P+K-1)

Pooling Layer Receptive Field
If convolutional filters have size KxK and stride 1, and pooling layer has pools of
size PxP, then each unit in the pooling layer depends upon a patch (at the input of
the preceding conv. layer) of size: (P+K-1)x(P+K-1)

* slide from Marc’Aurelio Renzato

Pooling Layer Summary

Accepts a volume of size:
Requires hyperparameters:
 — Spatial extent of filters:
 — Stride of application:
Produces a volume of size:

Number of total learnable parameters: 0

Wi ⇥Hi ⇥Di

Wo ⇥Ho ⇥Do

K

F

Do = Di
<latexit sha1_base64="9KCAYl6f2ROktTSTJMk4HE3KVQc=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJ4qrtS1ItQEERvFeyHtMuSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL0w408Z1v52l5ZXVtfXCRnFza3tnt7S339RxqghtkJjHqh1iTTmTtGGY4bSdKIpFyGkrHF5P/NYTVZrF8sGMEuoL3JcsYgQbKz22gviqFbDTm6BUdivuFGiReDkpQ456UPrq9mKSCioN4Vjrjucmxs+wMoxwOi52U00TTIa4TzuWSiyo9rPpwWN0bJUeimJlSxo0VX9PZFhoPRKh7RTYDPS8NxH/8zqpiS79jMkkNVSS2aIo5cjEaPI96jFFieEjSzBRzN6KyAArTIzNqGhD8OZfXiTNs4p3XqneV8u1uzyOAhzCEZyABxdQg1uoQwMICHiGV3hzlPPivDsfs9YlJ585gD9wPn8A5nOP2g==</latexit>

Wo = Wi/F
<latexit sha1_base64="8XydGFGp8mDVq+1twOVYsfuslCs=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKe5KUC9CQJB4i2AekizL7GQ2GTI7s8zMCmHJV3jxoIhXP8ebf+PkcdDEgoaiqpvurjDhTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKllqghtEMmlaodYU84EbRhmOG0niuI45LQVDm8mfuuJKs2keDCjhPox7gsWMYKNlR5rgbyuBezsNiiW3LI7BVom3pyUYI56UPzq9iRJYyoM4Vjrjucmxs+wMoxwOi50U00TTIa4TzuWChxT7WfTg8foxCo9FEllSxg0VX9PZDjWehSHtjPGZqAXvYn4n9dJTXTlZ0wkqaGCzBZFKUdGosn3qMcUJYaPLMFEMXsrIgOsMDE2o4INwVt8eZk0z8veRblyXylV7+Zx5OEIjuEUPLiEKtSgDg0gEMMzvMKbo5wX5935mLXmnPnMIfyB8/kDuEePvA==</latexit>

Ho = Hi/F

(you can do padding, but it’s a bit trickier)

Convolutional Neural Networks

VGG-16 Network

Improving Single Model

Regularization
- L2, L1
- Dropout / Inverted Dropout
- Data augmentation

Improving Single Model

Regularization
- L2, L1
- Dropout / Inverted Dropout
- Data augmentation

L2 Regularization: Learn a more (dense) distributed representation

L1 Regularization: Learn a sparse representation (few non-zero wight elements)

R(W) = ||W||2 =
X

i

X

j

W2
i,j

R(W) = ||W||1 =
X

i

X

j

|Wi,j |

Improving Single Model

Regularization
- L2, L1
- Dropout / Inverted Dropout
- Data augmentation

L2 Regularization: Learn a more (dense) distributed representation

L1 Regularization: Learn a sparse representation (few non-zero wight elements)

R(W) = ||W||2 =
X

i

X

j

W2
i,j

R(W) = ||W||1 =
X

i

X

j

|Wi,j |

Dropout

Regularization: Data Augmentation

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

Load image
and label

CNN Compute
Loss

cat

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Regularization: Data Augmentation

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

catLoad image
and label

CNN Compute
Loss

Transform
image

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Regularization: Data Augmentation

Horizontal flips Random crops & scales Color Jitter

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Regularization: Data Augmentation

Horizontal flips Random crops & scales Color Jitter

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Regularization: Data Augmentation

Horizontal flips Random crops & scales Color Jitter

Training: sample random crops and scales
e.g., ResNet:

1. Pick random L in range [256, 480]
2. Resize training image, short size = L
3. Sample random 224x224 patch

Testing: average a fix set of crops
e.g., ResNet:

1. Resize image to 5 scales (224, 256, 384, 480, 640)
2. For each image use 10 224x224 crops: 4 corners + center, + flips

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Regularization: Data Augmentation

Horizontal flips Random crops & scales Color Jitter

Random perturbations in
contrast and brightness

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Regularization: Stochastic Depth

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[Huang et al., ECCV 2016]

Effectively “dropout” but for layers

Stochastically with some probability turn off
some layer (for each batch)

Effectively trains a collection of neural networks

Transfer Learning with CNNs

Common “Wisdom”: You need a lot of data to train a CNN

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Transfer Learning with CNNs

Common “Wisdom”: You need a lot of data to train a CNN

Solution: Transfer learning — taking a model trained on the task that has
lots of data and adopting it to the task that may not

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Transfer Learning with CNNs

Common “Wisdom”: You need a lot of data to train a CNN

Solution: Transfer learning — taking a model trained on the task that has
lots of data and adopting it to the task that may not

This strategy is PERVASIVE.

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Transfer Learning with CNNs
Train on ImageNet

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[Donahue et al., ICML 2014]
[Razavian et al., CVPR Workshop 2014]

[Yosinski et al., NIPS 2014]

Transfer Learning with CNNs
Train on ImageNet

Why on ImageNet?

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[Donahue et al., ICML 2014]
[Razavian et al., CVPR Workshop 2014]

[Yosinski et al., NIPS 2014]

Transfer Learning with CNNs
Train on ImageNet

Why on ImageNet?
- Convenience, lots of data
- We know how to train these well

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[Donahue et al., ICML 2014]
[Razavian et al., CVPR Workshop 2014]

[Yosinski et al., NIPS 2014]

Transfer Learning with CNNs
Train on ImageNet

Why on ImageNet?
- Convenience, lots of data
- We know how to train these well

However, for some tasks we would need to start
with something else (e.g., videos for optical flow)

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[Donahue et al., ICML 2014]
[Razavian et al., CVPR Workshop 2014]

[Yosinski et al., NIPS 2014]

Transfer Learning with CNNs
Train on ImageNet

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Small dataset with C classes

[Donahue et al., ICML 2014]
[Razavian et al., CVPR Workshop 2014]

[Yosinski et al., NIPS 2014]

Transfer Learning with CNNs
Train on ImageNet

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Small dataset with C classes

[Donahue et al., ICML 2014]
[Razavian et al., CVPR Workshop 2014]

[Yosinski et al., NIPS 2014]

Transfer Learning with CNNs
Train on ImageNet

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Small dataset with C classes

Freeze
these
layers

[Donahue et al., ICML 2014]
[Razavian et al., CVPR Workshop 2014]

[Yosinski et al., NIPS 2014]

Transfer Learning with CNNs
Train on ImageNet

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Small dataset with C classes

Freeze
these
layers

Re-initialize
and train

[Donahue et al., ICML 2014]
[Razavian et al., CVPR Workshop 2014]

[Yosinski et al., NIPS 2014]

Transfer Learning with CNNs
Train on ImageNet

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Small dataset with C classes

Freeze
these
layers

Re-initialize
and train

Lower levels of the CNN are at
task independent anyways

[Donahue et al., ICML 2014]
[Razavian et al., CVPR Workshop 2014]

[Yosinski et al., NIPS 2014]

Transfer Learning with CNNs
Train on ImageNet

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Small dataset with C classes

Freeze
these
layers

Re-initialize
and train

[Donahue et al., ICML 2014]
[Razavian et al., CVPR Workshop 2014]

[Yosinski et al., NIPS 2014]

Larger dataset

Transfer Learning with CNNs
Train on ImageNet

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Small dataset with C classes

Freeze
these
layers

Re-initialize
and train

[Donahue et al., ICML 2014]
[Razavian et al., CVPR Workshop 2014]

[Yosinski et al., NIPS 2014]

Larger dataset

Transfer Learning with CNNs
Train on ImageNet

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Small dataset with C classes

Freeze
these
layers

Re-initialize
and train

[Donahue et al., ICML 2014]
[Razavian et al., CVPR Workshop 2014]

[Yosinski et al., NIPS 2014]

Larger dataset

Freeze
these
layers

Transfer Learning with CNNs
Train on ImageNet

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Small dataset with C classes

Freeze
these
layers

Re-initialize
and train

[Donahue et al., ICML 2014]
[Razavian et al., CVPR Workshop 2014]

[Yosinski et al., NIPS 2014]

Larger dataset

Freeze
these
layers

Re-initialize
and train

Transfer Learning with CNNs

[Yosinski et al., NIPS 2014]

Dataset A: 500 classes

Layers fine-tuned
Layers fixed

Transfer Learning with CNNs

[Yosinski et al., NIPS 2014]

Dataset A: 500 classes
Dataset B: (different) 500 classes

Layers fine-tuned
Layers fixed

Layers fine-tuned
Layers fixed

Model Ensemble

Training: Train multiple independent models

Test: Average their results

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Model Ensemble

Training: Train multiple independent models

Test: Average their results

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

~ 2% improved performance in practice

Model Ensemble

Training: Train multiple independent models

Test: Average their results

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Alternative: Multiple snapshots of the single model during training!

~ 2% improved performance in practice

Model Ensemble

Training: Train multiple independent models

Test: Average their results

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Alternative: Multiple snapshots of the single model during training!

~ 2% improved performance in practice

Improvement: Instead of using the actual parameter vector, keep a moving
average of the parameter vector and use that at test time (Polyak averaging)

CPU vs. GPU (Why do we need Azure?)

Data from https://github.com/jcjohnson/cnn-benchmarks

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

https://github.com/jcjohnson/cnn-benchmarks

Frameworks: Super quick overview

1. Easily build computational graphs

2. Easily compute gradients in computational graphs

3. Run it all efficiently on a GPU (weap cuDNN, cuBLAS, etc.)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Frameworks: Super quick overview

Core DNN Frameworks

Caffe
(UC Berkeley)

Caffe 2
(Facebook)

Torch
(NYU/Facebook)

PyTorch
(Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Puddle
(Baidu)

CNTK
(Microsoft)

MXNet
(Amazon)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Frameworks: Super quick overview

Core DNN Frameworks

Caffe
(UC Berkeley)

Caffe 2
(Facebook)

Torch
(NYU/Facebook)

PyTorch
(Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Puddle
(Baidu)

CNTK
(Microsoft)

MXNet
(Amazon)

Wrapper Libraries

Keras
TFLearn
TensorLayer
tf.layers
TF-Slim
tf.contrib.learn
Pretty Tensor

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Frameworks: PyTorch vs. TensorFlow (v1)

Dynamic vs. Static computational graphs

Dynamic vs. Static computational graphs

With static graphs, framework
can optimize the graph for you
before it runs!

Original Graph
Optimized Graph

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Frameworks: PyTorch vs. TensorFlow (v1)

Dynamic vs. Static computational graphs

Graph building and execution is
intertwined. Graph can be
different for every sample.

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Frameworks: PyTorch vs. TensorFlow (v1)

PyTorch: Three levels of abstraction

Tensor: Imperative ndarray, but runs on GPU

Variable: Node in a computational graph; stores data and gradients

Module: A neural network layer; may store state or learnable weights

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

