

THE UNIVERSITY OF BRITISH COLUMBIA

Topics in AI (CPSC 532S): **Multimodal Learning with Vision, Language and Sound**

Lecture 5: Convolutional Neural Networks (Part 2)

Assignment 2 will be out tonight

Data is reusable
get it on your Google Drive, will be used for Assignment 3 & 4
you can reduce the dataset size (e.g., 1/2 or 1/4 of data)
Piazza (make questions public)

Assignment 2 will be out tonight
Data is reusable
get it on your Google Drive, will be used for Assignment 3 & 4
you can reduce the dataset size (e.g., 1/2 or 1/4 of data)
Piazza (make questions public)

Office Hours

Assignment 2 will be out tonight Data is reusable Piazza (make questions public)

Office Hours

Projects

- Some guidelines

get it on your Google Drive, will be used for Assignment 3 & 4 you **can** reduce the dataset size (e.g., 1/2 or 1/4 of data)

- November 1 & 3 **Project Proposals** (two lectures week before the break)

Assignment 2 will be out tonight Data is reusable Piazza (make questions public)

Office Hours

Projects

- Some guidelines

Paper presentations

List of papers will be made available in the next 1 week

get it on your Google Drive, will be used for Assignment 3 & 4 you **can** reduce the dataset size (e.g., 1/2 or 1/4 of data)

— November 1 & 3 **Project Proposals** (two lectures week before the break)

32 x 32 x 3 **image**

activation map

Last time: Convolutional Neural Network (ConvNet)

What filters do networks learn?

[Zeiler and Fergus, 2013]

What filters do networks learn?

[Zeiler and Fergus, 2013]

01

32 x 32 x 3 **image**

activation map

7 width

7 x 7 input image (spatially) 3 x 3 filter

7 height

7 width

7 x 7 input image (spatially) 3 x 3 filter

7 height

7 width

7 x 7 input image (spatially) 3 x 3 filter

7 height

7 width

7 x 7 input image (spatially) 3 x 3 filter

7 height

7 width

7 x 7 input image (spatially) 3 x 3 filter

7 height

7 width

7 x 7 input image (spatially) 3 x 3 filter

=> **5 x 5 output**

7 height

7 width

7 x 7 input image (spatially) 3 x 3 filter (applied with stride 2)

7 height

7 width

7 x 7 input image (spatially) 3 x 3 filter (applied with stride 2)

7 height

7 width

7 x 7 input image (spatially) 3 x 3 filter (applied with stride 2)

7 height

7 width

7 x 7 input image (spatially) 3 x 3 filter (applied with stride 2)

=> **3 x 3 output**

7 height

7 width

7 x 7 input image (spatially) 3 x 3 filter (applied with stride 3)

7 height

7 width

7 x 7 input image (spatially) 3 x 3 filter (applied with stride 3)

7 height

Does not fit! **Cannot apply** 3 x 3 filter on 7 x 7 image with stride 3

N width

N x N input image (spatially) F x F filter

Output size: (N-F) / stride + 1

N height

N width

N x N input image (spatially) F x F filter

Output size: (N-F) / stride + 1

N height

Example: N = 7, F = 3

stride $1 = \frac{(7-3)}{1+1} = 5$ stride 2 = (7-3)/2 + 1 = 3stride 3 = (7-3)/3 + 1 = 2.33

7 width

0	0	0	0	0	0	0	0	(
0								(
0								(
0								(
0								(
0								(
0								(
0								(
0	0	0	0	0	0	0	0	(

7 x 7 input image (spatially) 3 x 3 filter (applied with stride 1)

pad with 1 pixel border

7 height

7 width

0	0	0	0	0	0	0	0	(
0								(
0								(
0								(
0								(
0								(
0								(
0								(
0	0	0	0	0	0	0	0	(

7 x 7 input image (spatially) 3 x 3 filter (applied with stride 1)

pad with 1 pixel border

Output size: 7 × 7

7 height

7 width

0	0	0	0	0	0	0	0	(
0								(
0								(
0								(
0								(
0								(
0								(
0								(
0	0	0	0	0	0	0	0	(

7 x 7 input image (spatially)3 x 3 filter(applied with stride 3)

pad with 1 pixel border

7 height

7 width

0	0	0	0	0	0	0	0	(
0								(
0								(
0								(
0								(
0								(
0								(
0								(
0	0	0	0	0	0	0	0	(

7 x 7 input image (spatially)3 x 3 filter(applied with **stride 3**)

pad with 1 pixel border

7 height

Example: N = 7, F = 3

stride 1 => (9-3)/1+1 = 7stride 2 => (9-3)/2+1 = 4stride 3 => (9-3)/3+1 = 3

3 depth

3 depth

28 height

3 depth

28 width

3 depth

3 depth

With padding we can achieve no shrinking (32 -> 28 -> 24); shrinking quickly (which happens with larger filters) doesn't work well in practice

Convolutional Layer: 1x1 convolutions

56 x 56 x 64 **image**

Accepts a volume of size: $W_i \times H_i \times D_i$

- Accepts a volume of size: $W_i \times H_i \times D_i$ Requires hyperparameters:

 - Number of filters: K (for typical networks $K \in \{32, 64, 128, 256, 512\}$) - Spatial extent of filters: F (for a typical networks $F \in \{1, 3, 5, ...\}$) - Stride of application: S (for a typical network $S \in \{1, 2\}$) - Zero padding: P (for a typical network $P \in \{0, 1, 2\}$)

- Accepts a volume of size: $W_i \times H_i \times D_i$ Requires hyperparameters:

 - Number of filters: K (for typical networks $K \in \{32, 64, 128, 256, 512\}$) - Spatial extent of filters: F (for a typical networks $F \in \{1, 3, 5, ...\}$) - Stride of application: S (for a typical network $S \in \{1, 2\}$) - Zero padding: P (for a typical network $P \in \{0, 1, 2\}$)
- Produces a volume of size: $W_o \times H_o \times D_o$

- Accepts a volume of size: $W_i \times H_i \times D_i$ Requires hyperparameters:

 - Number of filters: K (for typical networks $K \in \{32, 64, 128, 256, 512\}$) - Spatial extent of filters: F (for a typical networks $F \in \{1, 3, 5, ...\}$) - Stride of application: S (for a typical network $S \in \{1, 2\}$) - Zero padding: P (for a typical network $P \in \{0, 1, 2\}$)
- Produces a volume of size: $W_o \times H_o \times D_o$
 - $W_o = (W_i F + 2P)/S + 1$ $H_o = (H_i F + 2P)/S + 1$

 $D_{o} = K$

- Accepts a volume of size: $W_i \times H_i \times D_i$ Requires hyperparameters:

 - Number of filters: K (for typical networks $K \in \{32, 64, 128, 256, 512\}$) - Spatial extent of filters: F (for a typical networks $F \in \{1, 3, 5, ...\}$) - Stride of application: S (for a typical network $S \in \{1, 2\}$) - Zero padding: P (for a typical network $P \in \{0, 1, 2\}$)
- Produces a volume of size: $W_o \times H_o \times D_o$

$$W_o = (W_i - F + 2P)/S + 1$$

Number of total learnable parameters: $(F \times F \times D_i) \times K + K$

- $H_o = (H_i F + 2P)/S + 1$ $D_0 = K$

Convolutional Neural Networks

VGG-16 Network

CNNs: Reminder Fully Connected Layers

Input

3072

(32 x 32 x 3 image -> stretches to 3072 x 1)

Convolutional Neural Networks

VGG-16 Network

CNNs: Reminder Fully Connected Layers

Input

25,088

(7 x 7 x 512 image -> stretches to 25,088 x 1)

each neuron looks at the full input volume

Activation

4,096

CNNs: Reminder Fully Connected Layers

(7 x 7 x 512 image -> stretches to 25,088 x 1)

102,760,448 parameters!

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Activation

4,096

Convolutional Neural Networks

VGG-16 Network

Convolutional Neural Networks

VGG-16 Network

Invariance vs. Equivariance

Invariance vs. Equivariance

unchanged after transformations of certain types applied to the objects

Invariance: A mathematical object (or class of mathematical objects) remains

f(x) = f(g(x))

Invariance vs. Equivariance

unchanged after transformations of certain types applied to the objects

produces the same result as computing the function and then applying a transformation

- **Invariance:** A mathematical object (or class of mathematical objects) remains
 - f(x) = f(q(x))

- **Equivariance:** Applying a transformation and then computing the function
 - g(f(x)) = f(g(x))

Fully Connected:

Fully Connected:

- Not invariant to any transformations
- Not equivariant to any transformations

Fully Connected:

- Not invariant to any transformations
- Not equivariant to any transformations

Convolutional:

Fully Connected:

- Not invariant to any transformations
- Not equivariant to any transformations

Convolutional:

- Not invariant to any transformations
- Convolution is translation equivariant

Note: convolution can "learn" not to be equivariant when padding is used.

0	0	0	0	0	0	0	0	(
0								(
0								(
0								(
0								(
0								(
0								(
0								(
0	0	0	0	0	0	0	0	(

Weight 0 0 0 1 0 0 0 0 0

Kernel

0	0	0	0	0	0	0	0	(
0								(
0								(
0								(
0								(
0								(
0								(
0								(
0	0	0	0	0	0	0	0	(

Weight 0 1 0 0 0 0 0 0 0 0 0 0

Kernel

Let us assume the filter is an "eye" detector

How can we make detection spatially invariant (insensitive to position of the eye in the image)

* slide from Marc'Aurelio Renzato

Let us assume the filter is an "eye" detector

How can we make detection spatially invariant (insensitive to position of the eye in the image)

> By "pooling" (e.g., taking a max) response over a spatial locations we gain robustness to position variations

* slide from Marc'Aurelio Renzato

- Makes representation smaller, more manageable and spatially invariant Operates over each activation map independently

- Makes representation smaller, more manageable and spatially invariant Operates over each activation map independently

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

How many **parameters**?

- Makes representation smaller, more manageable and spatially invariant Operates over each activation map independently

- Makes representation smaller, more manageable and spatially invariant Operates over each activation map independently

- Makes representation smaller, more manageable and spatially invariant
- Operates over each activation map independently

How do we implement that in a **computation graph**?

Max **Pooling**

activation map

max pool with 2 x 2 filter and stride of 2

6 8 3 4

Average **Pooling**

activation map

avg pool with 2 x 2 filter and stride of 2

3.25 5.25 2 2

Pooling Layer Receptive Field

If convolutional filters have size KxK and stride 1, and pooling layer has pools of size PxP, then each unit in the pooling layer depends upon a patch (at the input of the preceding conv. layer) of size: **(P+K-1)x(P+K-1)**

* slide from Marc'Aurelio Renzato

Pooling Layer Receptive Field

If convolutional filters have size KxK and stride 1, and pooling layer has pools of size PxP, then each unit in the pooling layer depends upon a patch (at the input of the preceding conv. layer) of size: **(P+K-1)x(P+K-1)**

* slide from Marc'Aurelio Renzato

Pooling Layer Summary

Accepts a volume of size: $W_i \times H_i \times D_i$ Requires hyperparameters: - Spatial extent of filters: K- Stride of application: FProduces a volume of size: $W_o \times H_o \times D_o$ $W_o = W_i/F$ $H_o = H_i/F$

Number of total learnable parameters: 0

(you can do padding, but it's a bit trickier)

 $D_o = D_i$

Convolutional Neural Networks

VGG-16 Network

Improving Single Model

Regularization

- L2, L1
- Dropout / Inverted Dropout
- Data augmentation

Improving Single Model

Regularization

- L2, L1
- Dropout / Inverted Dropout
- Data augmentation

L2 Regularization: Learn a more (dense) distributed representation

$R(\mathbf{W}) = ||\mathbf{W}|$

L1 Regularization: Learn a sparse representation

$$R(\mathbf{W}) = ||\mathbf{W}||_1 = \sum_i \sum_j |\mathbf{W}_{i,j}|$$

$$||_2 = \sum_i \sum_j \mathbf{W}_{i,j}^2$$
n (few non-zero wight elements)

Improving Single Model

Regularization

- L2, L1
- Dropout / Inverted Dropout
- Data augmentation

L2 Regularization: Learn a more (dense) distributed representation

$R(\mathbf{W}) = ||\mathbf{W}|$

L1 Regularization: Learn a sparse representation

$$R(\mathbf{W}) = ||\mathbf{W}|$$

$$||_{2} = \sum_{i} \sum_{j} \mathbf{W}_{i,j}^{2}$$

n (few non-zero wight elements)

$$|_1 = \sum_{i} \sum_{j} |\mathbf{W}_{i,j}|$$

Transform image

Horizontal flips

Random crops & scales

Color Jitter

Horizontal flips

Random crops & scales

Color Jitter

Horizontal flips

Training: sample random crops and scales e.g., ResNet:

- 1. Pick random L in range [256, 480]
- 2. Resize training image, short size = L
- 3. Sample random 224x224 patch

Testing: average a fix set of crops e.g., ResNet:

1. Resize image to 5 scales (224, 256, 384, 480, 640) 2. For each image use 10 224x224 crops: 4 corners + center, + flips

Random crops & scales

Color Jitter

Horizontal flips

Random perturbations in contrast and brightness

Random crops & scales

Color Jitter

Regularization: Stochastic Depth

Effectively "dropout" but for layers

some layer (for each batch)

Huang et al., ECCV 2016]

Common "Wisdom": You need a lot of data to train a CNN

Common "Wisdom": You need a lot of data to train a CNN

Solution: Transfer learning — taking a model trained on the task that has lots of data and adopting it to the task that may not

Common "Wisdom": You need a lot of data to train a CNN

This strategy is PERVASIVE.

Solution: Transfer learning — taking a model trained on the task that has lots of data and adopting it to the task that may not

Train on ImageNet

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
00117-912
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

[Yosinski et al., NIPS 2014] [Donahue et al., ICML 2014] [Razavian et al., CVPR Workshop 2014]

Train on ImageNet

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

Why on **ImageNet**?

[Yosinski et al., NIPS 2014] [Donahue et al., ICML 2014] [Razavian et al., CVPR Workshop 2014]

Train on **ImageNet**

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

Why on **ImageNet**?

- Convenience, lots of **data**

[Yosinski et al., NIPS 2014] Donahue et al., ICML 2014 [Razavian et al., CVPR Workshop 2014]

- We know how to train these well

Train on **ImageNet**

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

- Why on **ImageNet**?
 - Convenience, lots of **data**
 - We know how to train these well

[Yosinski et al., NIPS 2014] Donahue et al., ICML 2014 Razavian et al., CVPR Workshop 2014

However, for some tasks we would need to start with something else (e.g., videos for optical flow)

Train on ImageNet

Small dataset with C classes

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

[Yosinski et al., NIPS 2014] [Donahue et al., ICML 2014] [Razavian et al., CVPR Workshop 2014]

Train on ImageNet

Small dataset with C classes

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

[Yosinski et al., NIPS 2014] [Donahue et al., ICML 2014] [Razavian et al., CVPR Workshop 2014]

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

Train on **ImageNet**

Small dataset with C classes

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

[Yosinski et al., NIPS 2014] [Donahue et al., ICML 2014] [Razavian et al., CVPR Workshop 2014]

Re-initialize

and train

Train on **ImageNet**

Small dataset with C classes

FC-1000	
FC-4096	
FC-4096	
MaxPool	
Conv-512	
Conv-512	
MaxPool	
Conv-512	
Conv-512	
MaxPool	
Conv-256	
Conv-256	
MaxPool	
Conv-128	
Conv-128	
MaxPool	
Conv-64	
Conv-64	
Image	

[Yosinski et al., NIPS 2014] [Donahue et al., ICML 2014] [Razavian et al., CVPR Workshop 2014]

Train on **ImageNet**

Re-initialize

and train

FC-1000	
FC-4096	
FC-4096	
MaxPool	
Conv-512	
Conv-512	
MaxPool	
Conv-512	
Conv-512	
MaxPool	
Conv-256	
Conv-256	
MaxPool	
Conv-128	
Conv-128	
MaxPool	
Conv-64	
Conv-64	
Image	

[Yosinski et al., NIPS 2014] Donahue et al., ICML 2014 [Razavian et al., CVPR Workshop 2014]

Small dataset with C classes

Lower levels of the CNN are at task independent anyways

Re-initialize

and train

Train on **ImageNet**

Small dataset with C classes

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

[Yosinski et al., NIPS 2014] [Donahue et al., ICML 2014] [Razavian et al., CVPR Workshop 2014]

Larger dataset

Train on **ImageNet**

Small dataset with C classes

Re-initialize

and train

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

[Yosinski et al., NIPS 2014] [Donahue et al., ICML 2014] [Razavian et al., CVPR Workshop 2014]

Larger dataset

FC-1000 FC-1000 FC-4096 FC-4096 FC-4096 FC-4096 MaxPool MaxPool Conv-512 Conv-512 Conv-512 Conv-512 MaxPool MaxPool Conv-512 Conv-512 Conv-512 Conv-512 MaxPool MaxPool Freeze Conv-256 Conv-256 Conv-256 these Conv-256 MaxPool MaxPool layers Conv-128 Conv-128 Conv-128 Conv-128 MaxPool MaxPool Conv-64 Conv-64 Conv-64 Conv-64 Image Image

Train on **ImageNet**

Small dataset with C classes

Image

Re-initialize

and train

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

[Yosinski et al., NIPS 2014] [Donahue et al., ICML 2014] [Razavian et al., CVPR Workshop 2014]

FC-1000 FC-1000 FC-4096 FC-4096 FC-4096 FC-4096 MaxPool MaxPool Conv-512 Conv-512 Conv-512 Conv-512 MaxPool MaxPool Conv-512 Conv-512 Conv-512 Conv-512 MaxPool MaxPool Freeze Conv-256 Conv-256 Conv-256 these Conv-256 MaxPool MaxPool layers Conv-128 Conv-128 Conv-128 Conv-128 MaxPool MaxPool Conv-64 Conv-64 Conv-64 Conv-64 Image

Larger dataset

Freeze these layers

Re-initialize

and train

Train on **ImageNet**

Small dataset with C classes

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

[Yosinski et al., NIPS 2014] [Donahue et al., ICML 2014] [Razavian et al., CVPR Workshop 2014]

Larger dataset

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Freeze these layers

Transfer Learning with CNNs **Dataset A**: 500 classes

Layers fixed

Layers fixed

Layers fixed

Training: Train multiple independent models **Test:** Average their results

Training: Train multiple independent models **Test:** Average their results

~ 2% improved performance in practice

Training: Train multiple independent models **Test:** Average their results

~ 2% improved performance in practice

Alternative: Multiple snapshots of the single model during training!

Training: Train multiple independent models **Test:** Average their results

~ 2% improved performance in practice

Alternative: Multiple snapshots of the single model during training!

- **Improvement:** Instead of using the actual parameter vector, keep a moving average of the parameter vector and use that at test time (Polyak averaging)

CPU vs. GPU (Why do we need Azure?)

Data from https://github.com/jcjohnson/cnn-benchmarks

Frameworks: Super quick overview

1. Easily **build computational graphs**

2. Easily **compute gradients** in computational graphs

3. Run it all efficiently on a GPU (weap cuDNN, cuBLAS, etc.)

Frameworks: Super quick overview

Core DNN Frameworks

Caffe (UC Berkeley)

Caffe 2 (Facebook)

(Baidu)

Torch (NYU/Facebook)

PyTorch (Facebook)

CNTK (Microsoft)

Theano (U Montreal) **TensorFlow** (Google)

Puddle

MXNet (Amazon)

Frameworks: Super quick overview

Core DNN Frameworks

Caffe (UC Berkeley) Caffe 2 (Facebook)

(Baidu)

Torch (NYU/Facebook)

PyTorch (Facebook)

Theano (U Montreal) **TensorFlow** (Google)

Puddle

CNTK (Microsoft)

MXNet (Amazon)

Wrapper Libraries

Keras TFLearn TensorLayer tf.layers **TF-Slim** tf.contrib.learn Pretty Tensor

Frameworks: PyTorch vs. TensorFlow (v1)

Dynamic vs. Static computational graphs

Frameworks: PyTorch vs. TensorFlow (v1)

Dynamic vs. **Static** computational graphs

With static graphs, framework can optimize the graph for you before it runs!

Frameworks: PyTorch vs. TensorFlow (v1)

Dynamic vs. Static computational graphs

Graph building and execution is intertwined. Graph can be different for every sample.

PyTorch: Three levels of abstraction

Tensor: Imperative ndarray, but runs on GPU

Variable: Node in a computational graph; stores data and gradients

Module: A neural network layer; may store state or learnable weights