Topics in AI (CPSC 532S): Multimodal Learning with Vision, Language and Sound

Lecture 5: Convolutional Neural Networks (Part 2)

Logistics:

Assignment 2 will be out tonight

- Data is reusable
get it on your Google Drive, will be used for Assignment 3 \& 4 you can reduce the dataset size (e.g., $1 / 2$ or $1 / 4$ of data)
- Piazza (make questions public)

Logistics:

Assignment 2 will be out tonight

- Data is reusable
get it on your Google Drive, will be used for Assignment 3 \& 4 you can reduce the dataset size (e.g., $1 / 2$ or $1 / 4$ of data)
- Piazza (make questions public)

Office Hours

Logistics:

Assignment 2 will be out tonight

- Data is reusable
get it on your Google Drive, will be used for Assignment 3 \& 4
you can reduce the dataset size (e.g., $1 / 2$ or $1 / 4$ of data)
- Piazza (make questions public)

Office Hours

Projects

- Some guidelines
- November 1 \& 3 Project Proposals (two lectures week before the break)

Logistics:

Assignment 2 will be out tonight

- Data is reusable
get it on your Google Drive, will be used for Assignment 3 \& 4
you can reduce the dataset size (e.g., $1 / 2$ or $1 / 4$ of data)
- Piazza (make questions public)

Office Hours

Projects

- Some guidelines
- November 1 \& 3 Project Proposals (two lectures week before the break)

Paper presentations

- List of papers will be made available in the next 1 week

Last time: Convolutional Layer

Last time: Convolutional Layer

$32 \times 32 \times 3$ image

activation map

Last time: Convolutional Neural Network (ConvNet)

What filters do networks learn?

[Zeiler and Fergus, 2013]

What filters do networks learn?

[Zeiler and Fergus, 2013]

Convolutional Layer: Closer Look at Spatial Dimensions

$32 \times 32 \times 3$ image

activation map

Convolutional Layer: Closer Look at Spatial Dimensions

7×7 input image (spatially)
3×3 filter

Convolutional Layer: Closer Look at Spatial Dimensions

7 width

7×7 input image (spatially)
3×3 filter

Convolutional Layer: Closer Look at Spatial Dimensions

7 width

7×7 input image (spatially)
3×3 filter

7 height

Convolutional Layer: Closer Look at Spatial Dimensions

7 width

7×7 input image (spatially)
3×3 filter

7 height

Convolutional Layer: Closer Look at Spatial Dimensions

7 width

7×7 input image (spatially)
3×3 filter

7 height

Convolutional Layer: Closer Look at Spatial Dimensions

7 width

$$
\begin{aligned}
& 7 \times 7 \text { input image (spatially) } \\
& 3 \times 3 \text { filter }
\end{aligned}
$$

$$
=>5 \times 5 \text { output }
$$

7 height

Convolutional Layer: Closer Look at Spatial Dimensions

7 width

7×7 input image (spatially)
3×3 filter
(applied with stride 2)

7 height

Convolutional Layer: Closer Look at Spatial Dimensions

7 width

7×7 input image (spatially)
3×3 filter
(applied with stride 2)

7 height

Convolutional Layer: Closer Look at Spatial Dimensions

7 width

7×7 input image (spatially)
3×3 filter
(applied with stride 2)

7 height

Convolutional Layer: Closer Look at Spatial Dimensions

7 width

$$
\begin{aligned}
& 7 \times 7 \text { input image (spatially) } \\
& 3 \times 3 \text { filter } \\
& \text { (applied with stride 2) }
\end{aligned}
$$

$$
\text { => } 3 \times 3 \text { output }
$$

7 height

Convolutional Layer: Closer Look at Spatial Dimensions

7 width

7×7 input image (spatially)
3×3 filter
(applied with stride 3)

7 height

Convolutional Layer: Closer Look at Spatial Dimensions

7 width

7×7 input image (spatially)
3×3 filter
(applied with stride 3)

Does not fit! Cannot apply 3×3 filter on 7×7 image with stride 3

Convolutional Layer: Closer Look at Spatial Dimensions

\mathbf{N} width

$N \times N$ input image (spatially)
$F \times F$ filter

Output size: (N-F) / stride + 1
\mathbf{N} height

Convolutional Layer: Closer Look at Spatial Dimensions

\mathbf{N} width

$N \times N$ input image (spatially) $F \times F$ filter

Output size: (N-F) / stride + 1
\mathbf{N} height

```
Example: \(N=7, F=3\)
stride \(1=>(7-3) / 1+1=5\)
stride \(2=>(7-3) / 2+1=3\)
stride \(3=>(7-3) / 3+1=2.33\)
```


Convolutional Layer: Border padding

7 width								
0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0	app							
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Convolutional Layer: Border padding

Output size: 7×7

Convolutional Layer: Border padding

7								
0	7	width						
0								0
0								0
0								0
0								0
0	app							
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Convolutional Layer: Border padding

7								
0	7×7 width							
0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0	papp							
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

$$
\begin{aligned}
& \text { Example: } N=7, F=3 \\
& \text { stride } 1 \Rightarrow(9-3) / 1+1=7 \\
& \text { stride } 2 \Rightarrow(9-3) / 2+1=4 \\
& \text { stride } 3 \Rightarrow(9-3) / 3+1=3
\end{aligned}
$$

Convolutional Neural Network (ConvNet)

Convolutional Neural Network (ConvNet)

With padding we can achieve no shrinking (32-> 28 -> 24); shrinking quickly (which happens with larger filters) doesn't work well in practice

Convolutional Layer: 1x1 convolutions

$56 \times 56 \times 64$ image
$56 \times 56 \times 32$ image

Convolutional Layer Summary

Accepts a volume of size: $W_{i} \times H_{i} \times D_{i}$

Convolutional Layer Summary

Accepts a volume of size: $W_{i} \times H_{i} \times D_{i}$
Requires hyperparameters:

- Number of filters: K (for typical networks $K \in\{32,64,128,256,512\}$)
- Spatial extent of filters: F (for a typical networks $F \in\{1,3,5, \ldots\}$)
- Stride of application: S (for a typical network $S \in\{1,2\}$)
- Zero padding: P (for a typical network $P \in\{0,1,2\}$)

Convolutional Layer Summary

Accepts a volume of size: $W_{i} \times H_{i} \times D_{i}$
Requires hyperparameters:

- Number of filters: K (for typical networks $K \in\{32,64,128,256,512\}$)
- Spatial extent of filters: F (for a typical networks $F \in\{1,3,5, \ldots\}$)
- Stride of application: S (for a typical network $S \in\{1,2\}$)
- Zero padding: P (for a typical network $P \in\{0,1,2\}$)

Produces a volume of size: $W_{o} \times H_{o} \times D_{o}$

Convolutional Layer Summary

Accepts a volume of size: $W_{i} \times H_{i} \times D_{i}$
Requires hyperparameters:

- Number of filters: K (for typical networks $K \in\{32,64,128,256,512\}$)
- Spatial extent of filters: F (for a typical networks $F \in\{1,3,5, \ldots\}$)
- Stride of application: S (for a typical network $S \in\{1,2\}$)
- Zero padding: P (for a typical network $P \in\{0,1,2\}$)

Produces a volume of size: $W_{o} \times H_{o} \times D_{o}$

$$
W_{o}=\left(W_{i}-F+2 P\right) / S+1 \quad H_{o}=\left(H_{i}-F+2 P\right) / S+1 \quad D_{o}=K
$$

Convolutional Layer Summary

Accepts a volume of size: $W_{i} \times H_{i} \times D_{i}$
Requires hyperparameters:

- Number of filters: K (for typical networks $K \in\{32,64,128,256,512\}$)
- Spatial extent of filters: F (for a typical networks $F \in\{1,3,5, \ldots\}$)
- Stride of application: S (for a typical network $S \in\{1,2\}$)
- Zero padding: P (for a typical network $P \in\{0,1,2\}$)

Produces a volume of size: $W_{o} \times H_{o} \times D_{o}$

$$
W_{o}=\left(W_{i}-F+2 P\right) / S+1 \quad H_{o}=\left(H_{i}-F+2 P\right) / S+1 \quad D_{o}=K
$$

Number of total learnable parameters: $\left(F \times F \times D_{i}\right) \times K+K$

Convolutional Neural Networks

CNNs: Reminder Fully Connected Layers

Convolutional Neural Networks

CNNs: Reminder Fully Connected Layers

CNNs: Reminder Fully Connected Layers

102,760,448 parameters!

Convolutional Neural Networks

Convolutional Neural Networks

Invariance vs. Equivariance

Invariance vs. Equivariance

Invariance: A mathematical object (or class of mathematical objects) remains unchanged after transformations of certain types applied to the objects

$$
f(x)=f(g(x))
$$

Invariance vs. Equivariance

Invariance: A mathematical object (or class of mathematical objects) remains unchanged after transformations of certain types applied to the objects

$$
f(x)=f(g(x))
$$

Equivariance: Applying a transformation and then computing the function produces the same result as computing the function and then applying a transformation

$$
g(f(x))=f(g(x))
$$

Revisit Layers we Learned About

Fully Connected:

Revisit Layers we Learned About

Fully Connected:

- Not invariant to any transformations
- Not equivariant to any transformations

Revisit Layers we Learned About

Fully Connected:

- Not invariant to any transformations
- Not equivariant to any transformations

Convolutional:

Revisit Layers we Learned About

Fully Connected:

- Not invariant to any transformations
- Not equivariant to any transformations

Convolutional:

- Not invariant to any transformations
- Convolution is translation equivariant

Note: convolution can "learn" not to be equivariant when padding is used.

Revisit Layers we Learned About

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Weight

0	0	0		
1	0	0		
0	0	0		
Kernel				Bias
:---:				
1				

Revisit Layers we Learned About

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Weight

0	1	0		
0	0	0		
0	0	0		
Kernel				Bias
:---:				
1				

Pooling Layer

Let us assume the filter is an "eye" detector

Pooling Layer

Let us assume the filter is an "eye" detector

Pooling Layer

- Makes representation smaller, more manageable and spatially invariant
- Operates over each activation map independently

Pooling Layer

- Makes representation smaller, more manageable and spatially invariant
- Operates over each activation map independently

How many parameters?

Pooling Layer

- Makes representation smaller, more manageable and spatially invariant
- Operates over each activation map independently

Pooling Layer

- Makes representation smaller, more manageable and spatially invariant
- Operates over each activation map independently

Pooling Layer

- Makes representation smaller, more manageable and spatially invariant
- Operates over each activation map independently

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Max Pooling

Average Pooling

Pooling Layer Receptive Field

If convolutional filters have size $K x K$ and stride 1, and pooling layer has pools of size PxP, then each unit in the pooling layer depends upon a patch (at the input of the preceding conv, layer) of size: $\mathbf{(P + K - 1) \mathbf { x } (\mathbf { P } + \mathbf { K } \mathbf { - 1 })}$

Pooling Layer Receptive Field

If convolutional filters have size $K x K$ and stride 1, and pooling layer has pools of size PxP, then each unit in the pooling layer depends upon a patch (at the input of the preceding conv, layer) of size: $\mathbf{(P + K - 1) \mathbf { x } (\mathbf { P } + \mathbf { K } - \mathbf { 1 })}$

Pooling Layer Summary

Accepts a volume of size: $W_{i} \times H_{i} \times D_{i}$
Requires hyperparameters:

- Spatial extent of filters: K
- Stride of application: F

Produces a volume of size: $W_{o} \times H_{o} \times D_{o}$

$$
W_{o}=W_{i} / F \quad H_{o}=H_{i} / F \quad D_{o}=D_{i}
$$

Number of total learnable parameters: 0
(you can do padding, but it's a bit trickier)

Convolutional Neural Networks

Improving Single Model

Regularization

- L2, L1
- Dropout / Inverted Dropout
- Data augmentation

Improving Single Model

Regularization

- L2, L1
- Dropout / Inverted Dropout
- Data augmentation

L2 Regularization: Learn a more (dense) distributed representation

$$
R(\mathbf{W})=\|\mathbf{W}\|_{2}=\sum_{i} \sum_{j} \mathbf{W}_{i, j}^{2}
$$

L1 Regularization: Learn a sparse representation (few non-zero wight elements)

$$
R(\mathbf{W})=\|\mathbf{W}\|_{1}=\sum_{i} \sum_{j}\left|\mathbf{W}_{i, j}\right|
$$

Improving Single Model

Regularization

- L2, L1
- Dropout / Inverted Dropout
- Data augmentation

Dropout

L2 Regularization: Learn a more (dense) distributed representation

$$
R(\mathbf{W})=\|\mathbf{W}\|_{2}=\sum_{i} \sum_{j} \mathbf{W}_{i, j}^{2}
$$

L1 Regularization: Learn a sparse representation (few non-zero wight elements)

$$
R(\mathbf{W})=\|\mathbf{W}\|_{1}=\sum_{i} \sum_{j}\left|\mathbf{W}_{i, j}\right|
$$

Regularization: Data Augmentation

Regularization: Data Augmentation

Regularization: Data Augmentation

Horizontal flips Random crops \& scales Color Jitter

Regularization: Data Augmentation

Horizontal flips

Random crops \& scales
Color Jitter

Regularization: Data Augmentation

Random crops \& scales

Training: sample random crops and scales e.g., ResNet:

1. Pick random L in range $[256,480$]
2. Resize training image, short size $=L$
3. Sample random 224×224 patch

Testing: average a fix set of crops e.g., ResNet:

1. Resize image to 5 scales $(224,256,384,480,640)$
2. For each image use 10224×224 crops: 4 corners + center, + flips

Regularization: Data Augmentation

Horizontal flips

Random perturbations in contrast and brightness

Random crops \& scales

Color Jitter

Regularization: Stochastic Depth

Effectively "dropout" but for layers

Stochastically with some probability turn off some layer (for each batch)

Effectively trains a collection of neural networks

Transfer Learning with CNNs

Common "Wisdom": You need a lot of data to train a CNN

Transfer Learning with CNNs

Common "Wisdom": You need a lot of data to train a CNN

Solution: Transfer learning - taking a model trained on the task that has lots of data and adopting it to the task that may not

Transfer Learning with CNNs

Common "Wisdom": You need a lot of data to train a CNN

Solution: Transfer learning - taking a model trained on the task that has lots of data and adopting it to the task that may not

Transfer Learning with CNNs

Train on ImageNet

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

Transfer Learning with CNNs

Train on ImageNet

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image

Why on ImageNet?

Transfer Learning with CNNs

Train on ImageNet

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image

Why on ImageNet?

- Convenience, lots of data
- We know how to train these well

Transfer Learning with CNNs

Train on ImageNet

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

Why on ImageNet?

- Convenience, lots of data
- We know how to train these well

However, for some tasks we would need to start with something else (e.g., videos for optical flow)

Transfer Learning with CNNs

Train on ImageNet
Small dataset with C classes

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image

Transfer Learning with CNNs

Train on ImageNet

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

Small dataset with C classes

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

Transfer Learning with CNNs

Train on ImageNet

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

Small dataset with C classes

Transfer Learning with CNNs

Train on ImageNet
Small dataset with C classes

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image

Transfer Learning with CNNs

Train on ImageNet
Small dataset with C classes

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image

Lower levels of the CNN are at task independent anyways

Transfer Learning with CNNs

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

Transfer Learning with CNNs

Train on ImageNet

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

Small dataset with C classes

Larger dataset

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

Transfer Learning with CNNs

Train on ImageNet

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

Small dataset with C classes

Larger dataset

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Transfer Learning with CNNs

Train on ImageNet

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

Transfer Learning with CNNs

Dataset A: 500 classes

Layers fine-tuned

Transfer Learning with CNNs

Dataset A: 500 classes
Dataset B: (different) 500 classes

Model Ensemble

Training: Train multiple independent models
Test: Average their results

Model Ensemble

Training: Train multiple independent models
Test: Average their results
~ 2\% improved performance in practice

Model Ensemble

Training: Train multiple independent models
Test: Average their results
$\sim 2 \%$ improved performance in practice

Alternative: Multiple snapshots of the single model during training!

Model Ensemble

Training: Train multiple independent models
Test: Average their results
2% improved performance in practice

Alternative: Multiple snapshots of the single model during training!

Improvement: Instead of using the actual parameter vector, keep a moving average of the parameter vector and use that at test time (Polyak averaging)

CPU vs. GPU (Why do we need Azure?)

[^0]
Frameworks: Super quick overview

1. Easily build computational graphs
2. Easily compute gradients in computational graphs
3. Run it all efficiently on a GPU (weap cuDNN, cuBLAS, etc.)

Frameworks: Super quick overview

Core DNN Frameworks		
Caffe (UC Berkeley)	Caffe 2 (Facebook)	Puddle (Baidu)
Torch (NYU/Facebook)	PyTorch (Facebook)	CNTK (Microsoft)
Theano (U Montreal)	TensorFlow (Google)	MXNet (Amazon)

Frameworks: Super quick overview

Core DNN Frameworks		
Caffe (UC Berkeley)	Caffe 2 (Facebook)	Puddle (Baidu)
Torch (NYU/Facebook)	PyTorch (Facebook)	CNTK (Microsoft)
Theano (U Montreal)	TensorFlow (Google)	MXNet (Amazon)

Wrapper Libraries

Keras
TFLearn
TensorLayer tf.layers
TF-Slim
tf.contrib.learn
Pretty Tensor

Frameworks: PyTorch vs. TensorFlow (v1)

Dynamic vs. Static computational graphs

Frameworks: PyTorch vs. TensorFlow (v1)

Dynamic vs. Static computational graphs

Original Graph
With static graphs, framework can optimize the graph for you before it runs!

Conv
ReLU
Conv
ReLU
Conv
ReLU

Optimized Graph
Conv+ReLU
Conv+ReLU
Conv+ReLU

Frameworks: PyTorch vs. TensorFlow (v1)

Dynamic vs. Static computational graphs

Graph building and execution is intertwined. Graph can be different for every sample.

PyTorch: Three levels of abstraction

Tensor: Imperative ndarray, but runs on GPU

Variable: Node in a computational graph; stores data and gradients

Module: A neural network layer; may store state or learnable weights

[^0]: Data from https://github.com/iciohnson/cnn-benchmarks

