
Lecture 5: Convolutional Neural Networks (Part 2)

Topics in AI (CPSC 532S): 
Multimodal Learning with Vision, Language and Sound



Logistics:
Assignment 2 will be out tonight 
— Data is reusable  
         get it on your Google Drive, will be used for Assignment 3 & 4 
         you can reduce the dataset size (e.g., 1/2 or 1/4 of data) 
— Piazza (make questions public)

Projects 
— Some guidelines 
— November 1 & 3 Project Proposals (two lectures week before the break)

Office Hours

Paper presentations 
— List of papers will be made available in the next 1 week
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Last time: Convolutional Layer

32 width

3 depth

32 x 32 x 3 image 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

convolve (slide) over all 
spatial locations

5 x 5 x 3 filter (      )WTx+ b,where W,x 2 R75

28 width

1 depth

28 height

activation map



CONV, 
ReLU 
e.g. 6 5x5x3 
filters

Last time: Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

28 width

6 depth

28 height

24 width

10 depth

24 height

CONV, 
ReLU 
e.g. 10 5x5x6 
filters

CONV, 
ReLU

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



What filters do networks learn?

[ Zeiler and Fergus, 2013 ]
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Convolutional Layer: Closer Look at Spatial Dimensions

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

7 width

7 height

7 x 7 input image (spatially) 
3 x 3 filter
(applied with stride 3)

Does not fit! Cannot apply 3 x 3 
filter on 7 x 7 image with stride 3



Convolutional Layer: Closer Look at Spatial Dimensions

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

N width

N height

N x N input image (spatially) 
F x F filter

Output size:  (N-F) / stride + 1



Convolutional Layer: Closer Look at Spatial Dimensions

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

N width

N height

N x N input image (spatially) 
F x F filter

Output size:  (N-F) / stride + 1

Example:  N = 7, F = 3 

stride 1 => (7-3)/1+1 = 5 
stride 2 => (7-3)/2+1 = 3 
stride 3 => (7-3)/3+1 = 2.33



Convolutional Layer: Border padding 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

7 width
7 x 7 input image (spatially) 
3 x 3 filter 
(applied with stride 1) 

pad with 1 pixel border

0 0 0 0 0 0 0 0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
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Convolutional Layer: Border padding 

7 width
7 x 7 input image (spatially) 
3 x 3 filter 
(applied with stride 3) 

pad with 1 pixel border

0 0 0 0 0 0 0 0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 0 0 0

7 height



Convolutional Layer: Border padding 

7 width
7 x 7 input image (spatially) 
3 x 3 filter 
(applied with stride 3) 

pad with 1 pixel border

0 0 0 0 0 0 0 0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 0 0 0

7 height
Example:  N = 7, F = 3 

stride 1 => (9-3)/1+1 = 7 
stride 2 => (9-3)/2+1 = 4 
stride 3 => (9-3)/3+1 = 3
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CONV, 
ReLU 
e.g. 6 5x5x3 
filters

Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

28 width

6 depth

28 height

24 width

10 depth

24 height

CONV, 
ReLU 
e.g. 10 5x5x6 
filters

CONV, 
ReLU

With padding we can achieve no shrinking (32 -> 28 -> 24); shrinking quickly 
(which happens with larger filters) doesn’t work well in practice 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Convolutional Layer: 1x1 convolutions 

56 width

64 depth

56 x 56 x 64 image 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

32 filters of size, 1 x 1 x 64

56 height

56 x 56 x 32 image 

56 width

32 depth

56 height
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Accepts a volume of size: Wi ⇥Hi ⇥Di
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S
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Convolutional Layer Summary 

Accepts a volume of size: 
Requires hyperparameters: 
  — Number of filters:       (for typical networks                                          )  
  — Spatial extent of filters:     (for a typical networks                         )   
  — Stride of application:      (for a typical network                 )  
  — Zero padding:      (for a typical network                     )  
Produces a volume of size:   

Number of total learnable parameters:

Wi ⇥Hi ⇥Di

Wo ⇥Ho ⇥Do

K K 2 {32, 64, 128, 256, 512}

F 2 {1, 3, 5, ...}F

S 2 {1, 2}

P 2 {0, 1, 2}

S

P

Wo = (Wi � F + 2P )/S + 1 Ho = (Hi � F + 2P )/S + 1 Do = K

(F ⇥ F ⇥Di)⇥K +K



Convolutional Neural Networks

VGG-16 Network



CNNs: Reminder Fully Connected Layers

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Input Activation

3072 10
(32 x 32 x 3 image -> stretches to 3072 x 1)

WTx+ b,where W 2 R10⇥3072

each neuron looks at the full 
input volume
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CNNs: Reminder Fully Connected Layers

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Input Activation

25,088 4,096
(7 x 7 x 512 image -> stretches to 25,088 x 1)

each neuron looks at the full 
input volume



WTx+ b,where W 2 R25,088⇥4,096

CNNs: Reminder Fully Connected Layers

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Input Activation

25,088 4,096
(7 x 7 x 512 image -> stretches to 25,088 x 1)

each neuron looks at the full 
input volume

102,760,448 parameters!
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Invariance vs. Equivariance 

Invariance: A mathematical object (or class of mathematical objects)  remains 
unchanged after transformations of certain types applied to the objects 

Equivariance: Applying a transformation and then computing the function 
produces the same result as computing the function and then applying a 
transformation 

<latexit sha1_base64="nHC0x+FeiGhxpX+c8V42rCd82YE=">AAAB+nicbZDLSsNAFIZPvNZ6S3XpZrAI6aYkIupGKLjRXQV7gTaUyXSSDp1cmJmoJRZ8ETcuFHHrk7jzbZy0XWjrDwMf/zmHc+b3Es6ksu1vY2l5ZXVtvbBR3Nza3tk1S3tNGaeC0AaJeSzaHpaUs4g2FFOcthNBcehx2vKGl3m9dUeFZHF0q0YJdUMcRMxnBCtt9cxSYPnWQ6WCLpBvBTn1zLJdtSdCi+DMoFyrPEGues/86vZjkoY0UoRjKTuOnSg3w0Ixwum42E0lTTAZ4oB2NEY4pNLNJqeP0ZF2+siPhX6RQhP390SGQylHoac7Q6wGcr6Wm//VOqnyz92MRUmqaESmi/yUIxWjPAfUZ4ISxUcaMBFM34rIAAtMlE6rqENw5r+8CM3jqnNaPbnRaVzDVAU4gEOwwIEzqMEV1KEBBO7hGV7hzXg0Xox342PaumTMZvbhj4zPH9y8kpU=</latexit>

g(f(x)) = f(g(x))
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Revisit Layers we Learned About

Fully Connected: 

— Not invariant to any transformations 

— Not equivariant to any transformations 

Convolutional: 

— Not invariant to any transformations 

— Convolution is translation equivariant 

Note: convolution can “learn” not to be equivariant when padding is used.
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Pooling Layer 
Let us assume the filter is an “eye” detector  

How can we make detection spatially invariant 
(insensitive to position of the eye in the image)

* slide from Marc’Aurelio Renzato 



Pooling Layer 
Let us assume the filter is an “eye” detector  

How can we make detection spatially invariant 
(insensitive to position of the eye in the image)

By “pooling” (e.g., taking a max) response 
over a spatial locations we gain robustness 
to position variations

* slide from Marc’Aurelio Renzato 



Pooling Layer
• Makes representation smaller, more manageable and spatially invariant 
• Operates over each activation map independently 
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How many parameters?

None!
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Pooling Layer
• Makes representation smaller, more manageable and spatially invariant 
• Operates over each activation map independently 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

How do we implement that 
in a computation graph?



Max Pooling

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

6 8

3 4
max pool with 2 x 2 filter 

and stride of 2

activation map 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Average Pooling

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

3.25 5.25

2 2
avg pool with 2 x 2 filter 

and stride of 2

activation map 



Pooling Layer Receptive Field

* slide from Marc’Aurelio Renzato 

If convolutional filters have size KxK and stride 1, and pooling layer has pools of 
size PxP, then each unit in the pooling layer depends upon a patch (at the input of 
the preceding conv. layer) of size: (P+K-1)x(P+K-1)



Pooling Layer Receptive Field
If convolutional filters have size KxK and stride 1, and pooling layer has pools of 
size PxP, then each unit in the pooling layer depends upon a patch (at the input of 
the preceding conv. layer) of size: (P+K-1)x(P+K-1)

* slide from Marc’Aurelio Renzato 



Pooling Layer Summary 

Accepts a volume of size: 
Requires hyperparameters: 
  — Spatial extent of filters:      
  — Stride of application:       
Produces a volume of size:   

Number of total learnable parameters: 0

Wi ⇥Hi ⇥Di

Wo ⇥Ho ⇥Do

K

F

Do = Di
<latexit sha1_base64="9KCAYl6f2ROktTSTJMk4HE3KVQc=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJ4qrtS1ItQEERvFeyHtMuSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL0w408Z1v52l5ZXVtfXCRnFza3tnt7S339RxqghtkJjHqh1iTTmTtGGY4bSdKIpFyGkrHF5P/NYTVZrF8sGMEuoL3JcsYgQbKz22gviqFbDTm6BUdivuFGiReDkpQ456UPrq9mKSCioN4Vjrjucmxs+wMoxwOi52U00TTIa4TzuWSiyo9rPpwWN0bJUeimJlSxo0VX9PZFhoPRKh7RTYDPS8NxH/8zqpiS79jMkkNVSS2aIo5cjEaPI96jFFieEjSzBRzN6KyAArTIzNqGhD8OZfXiTNs4p3XqneV8u1uzyOAhzCEZyABxdQg1uoQwMICHiGV3hzlPPivDsfs9YlJ585gD9wPn8A5nOP2g==</latexit>

Wo = Wi/F
<latexit sha1_base64="8XydGFGp8mDVq+1twOVYsfuslCs=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKe5KUC9CQJB4i2AekizL7GQ2GTI7s8zMCmHJV3jxoIhXP8ebf+PkcdDEgoaiqpvurjDhTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKllqghtEMmlaodYU84EbRhmOG0niuI45LQVDm8mfuuJKs2keDCjhPox7gsWMYKNlR5rgbyuBezsNiiW3LI7BVom3pyUYI56UPzq9iRJYyoM4Vjrjucmxs+wMoxwOi50U00TTIa4TzuWChxT7WfTg8foxCo9FEllSxg0VX9PZDjWehSHtjPGZqAXvYn4n9dJTXTlZ0wkqaGCzBZFKUdGosn3qMcUJYaPLMFEMXsrIgOsMDE2o4INwVt8eZk0z8veRblyXylV7+Zx5OEIjuEUPLiEKtSgDg0gEMMzvMKbo5wX5935mLXmnPnMIfyB8/kDuEePvA==</latexit>

Ho = Hi/F

(you can do padding, but it’s a bit trickier)



Convolutional Neural Networks

VGG-16 Network
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- Dropout / Inverted Dropout  
- Data augmentation



Improving Single Model

Regularization 
- L2, L1 
- Dropout / Inverted Dropout  
- Data augmentation

L2 Regularization: Learn a more (dense) distributed representation 

L1 Regularization: Learn a sparse representation (few non-zero wight elements)

R(W) = ||W||2 =
X
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Improving Single Model

Regularization 
- L2, L1 
- Dropout / Inverted Dropout  
- Data augmentation

L2 Regularization: Learn a more (dense) distributed representation 

L1 Regularization: Learn a sparse representation (few non-zero wight elements)

R(W) = ||W||2 =
X

i

X

j

W2
i,j

R(W) = ||W||1 =
X

i

X

j

|Wi,j |

Dropout



Regularization: Data Augmentation

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

Load image 
and label

CNN Compute 
Loss

cat
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Regularization: Data Augmentation

21
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…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

catLoad image 
and label

CNN Compute 
Loss

Transform 
image

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Regularization: Data Augmentation

Horizontal flips Random crops & scales Color Jitter
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Regularization: Data Augmentation

Horizontal flips Random crops & scales Color Jitter

Training: sample random crops and scales  
e.g., ResNet: 

1.  Pick random L in range [256, 480] 
2.  Resize training image, short size = L 
3.  Sample random 224x224 patch 

Testing: average a fix set of crops 
e.g., ResNet:  

1.  Resize image to 5 scales (224, 256, 384, 480, 640) 
2.  For each image use 10 224x224 crops: 4 corners + center, + flips

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Regularization: Data Augmentation

Horizontal flips Random crops & scales Color Jitter

Random perturbations in 
contrast and brightness 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Regularization: Stochastic Depth

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[ Huang et al., ECCV 2016 ]

Effectively “dropout” but for layers

Stochastically with some probability turn off 
some layer (for each batch)

Effectively trains a collection of neural networks 



Transfer Learning with CNNs

Common “Wisdom”: You need a lot of data to train a CNN 
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Transfer Learning with CNNs

Common “Wisdom”: You need a lot of data to train a CNN 

Solution: Transfer learning — taking a model trained on the task that has 
lots of data and adopting it to the task that may not 

This strategy is PERVASIVE. 

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Transfer Learning with CNNs
Train on ImageNet
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[ Donahue et al., ICML 2014 ]
[ Razavian et al., CVPR Workshop 2014 ]

[ Yosinski et al., NIPS 2014 ]
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Transfer Learning with CNNs
Train on ImageNet

Why on ImageNet?
- Convenience, lots of data 
- We know how to train these well

However, for some tasks we would need to start 
with something else (e.g., videos for optical flow)

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[ Donahue et al., ICML 2014 ]
[ Razavian et al., CVPR Workshop 2014 ]

[ Yosinski et al., NIPS 2014 ]
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Transfer Learning with CNNs
Train on ImageNet

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Small dataset with C classes

Freeze 
these 
layers

Re-initialize 
and train

Lower levels of the CNN are at 
task independent anyways

[ Donahue et al., ICML 2014 ]
[ Razavian et al., CVPR Workshop 2014 ]

[ Yosinski et al., NIPS 2014 ]
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Transfer Learning with CNNs
Train on ImageNet

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Small dataset with C classes

Freeze 
these 
layers

Re-initialize 
and train

[ Donahue et al., ICML 2014 ]
[ Razavian et al., CVPR Workshop 2014 ]

[ Yosinski et al., NIPS 2014 ]

Larger dataset

Freeze 
these 
layers

Re-initialize 
and train



Transfer Learning with CNNs

[ Yosinski et al., NIPS 2014 ]

Dataset A: 500 classes

Layers fine-tuned
Layers fixed



Transfer Learning with CNNs

[ Yosinski et al., NIPS 2014 ]

Dataset A: 500 classes
Dataset B: (different) 500 classes

Layers fine-tuned
Layers fixed

Layers fine-tuned
Layers fixed
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Model Ensemble

Training: Train multiple independent models 

Test: Average their results 

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Alternative: Multiple snapshots of the single model during training! 

~ 2% improved performance in practice

Improvement: Instead of using the actual parameter vector, keep a moving 
average of the parameter vector and use that at test time (Polyak averaging)



CPU vs. GPU (Why do we need Azure?)

Data from https://github.com/jcjohnson/cnn-benchmarks

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

https://github.com/jcjohnson/cnn-benchmarks


Frameworks: Super quick overview

1. Easily build computational graphs 

2. Easily compute gradients in computational graphs 

3. Run it all efficiently on a GPU (weap cuDNN, cuBLAS, etc.) 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Frameworks: Super quick overview

Core DNN Frameworks

Caffe 
(UC Berkeley)

Caffe 2 
(Facebook)

Torch 
(NYU/Facebook)

PyTorch 
(Facebook)

Theano 
(U Montreal)

TensorFlow 
(Google)

Puddle 
(Baidu)

CNTK 
(Microsoft)

MXNet 
(Amazon)
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Frameworks: Super quick overview

Core DNN Frameworks

Caffe 
(UC Berkeley)

Caffe 2 
(Facebook)

Torch 
(NYU/Facebook)

PyTorch 
(Facebook)

Theano 
(U Montreal)

TensorFlow 
(Google)

Puddle 
(Baidu)

CNTK 
(Microsoft)

MXNet 
(Amazon)

Wrapper Libraries

Keras 
TFLearn 
TensorLayer 
tf.layers 
TF-Slim 
tf.contrib.learn 
Pretty Tensor

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Frameworks: PyTorch vs. TensorFlow (v1)

Dynamic vs. Static computational graphs



Dynamic vs. Static computational graphs

With static graphs, framework 
can optimize the graph for you 
before it runs! 

Original Graph
Optimized Graph

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Frameworks: PyTorch vs. TensorFlow (v1)



Dynamic vs. Static computational graphs

Graph building and execution is 
intertwined. Graph can be 
different for every sample. 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Frameworks: PyTorch vs. TensorFlow (v1)



PyTorch: Three levels of abstraction

Tensor: Imperative ndarray, but runs on GPU 

Variable: Node in a computational graph; stores data and gradients 

Module: A neural network layer; may store state or learnable weights

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford


