
Lecture 4: Introduction to Deep Learning (continued)

Topics in AI (CPSC 532S):
Multimodal Learning with Vision, Language and Sound

Course Logistics

— Assignment 1 is due 11:59pm on Wednsday (tomorrow)

— Small bug in Assignment 1: Part 4

total_correct += (output > 0.5).eq(target).sum().item()
 # total_correct += output.argmax(dim=1).eq(target).sum().item()

— Assignment 2 will be out Thursday night

 (note, it will take computation time)

Course Logistics

— Assignment 1 is due 11:59pm on Wednsday (tomorrow)

— Small bug in Assignment 1: Part 4

total_correct += (output > 0.5).eq(target).sum().item()
 # total_correct += output.argmax(dim=1).eq(target).sum().item()

— Assignment 2 will be out Thursday night

 (note, it will take computation time)

Course Logistics

— Assignment 1 is due 11:59pm on Wednsday (tomorrow)

— Small bug in Assignment 1: Part 4

total_correct += (output > 0.5).eq(target).sum().item()
 # total_correct += output.argmax(dim=1).eq(target).sum().item()

— Assignment 2 will be out Thursday night

 (note, it will take computation time)

L2 Regularization: Learn a more (dense) distributed representation

L1 Regularization: Learn a sparse representation (few non-zero wight elements)

R(W) = ||W||2 =
X

i

X

j

W2
i,j

R(W) = ||W||1 =
X

i

X

j

|Wi,j |
(others regularizers are also possible)

x = [1, 1, 1, 1]

W1 = [1, 0, 0, 0]

W2 =


1

4
,
1

4
,
1

4
,
1

4

�

W1 · x = W2 · x

RL2(W1) = 1
RL2(W2) = 0.25
RL1(W1) = 1
RL1(W2) = 1

x = [1, 1, 1, 1]

W1 = [1, 0, 0, 0]

W2 =


1

4
,
1

4
,
1

4
,
1

4

�

W1 · x = W2 · x

RL2(W1) = 1
RL2(W2) = 0.25
RL1(W1) = 1
RL1(W2) = 1

Example:

x = [1, 1, 1, 1]

W1 = [1, 0, 0, 0]

W2 =


1

4
,
1

4
,
1

4
,
1

4

�

W1 · x = W2 · x

RL2(W1) = 1
RL2(W2) = 0.25
RL1(W1) = 1
RL1(W2) = 1

x = [1, 1, 1, 1]

W1 = [1, 0, 0, 0]

W2 =


1

4
,
1

4
,
1

4
,
1

4

�

W1 · xT = W2 · xT

RL2(W1) = 1
RL2(W2) = 0.25
RL1(W1) = 1
RL1(W2) = 1

two networks will have identical output

x = [1, 1, 1, 1]

W1 = [1, 0, 0, 0]

W2 =


1

4
,
1

4
,
1

4
,
1

4

�

W1 · x = W2 · x

RL2(W1) = 1
RL2(W2) = 0.25
RL1(W1) = 1
RL1(W2) = 1

L2 Regularizer:

L1 Regularizer:

Short Review … weight regularization

 BN layer parameters [Ioffe and Szegedy, NIPS 2015]

Normalize each mini-batch (using Batch Normalization layer) by
subtracting empirically computed mean and dividing by variance for every
dimension -> samples are approximately unit Gaussian

Benefit:

Improves learning (better gradients,
higher learning rate, less reliance on
initialization)

x̄(k) =
x(k) � E[x(k)]p

Var[x(k)]

y(k) = �(k)x̄(k) + �(k)

In practice, also learn how
to scale and offset:

Typically inserted before activation layer

Short Review … batch normalization

Standar Neural Network After Applying Dropout

Randomly set some neurons to zero in the forward pass, with probability
proportional to dropout rate (between 0 to 1)

[Srivastava et al, JMLR 2014]

* adopted from slides of CS231n at Stanford

Short Review … dropout

Deep Learning Terminology

• Network structure: number and types of layers, forms of activation functions,
dimensionality of each layer and connections (defines computational graph)

• Loss function: objective function being optimized (softmax, cross entropy, etc.)

• Parameters: trainable parameters of the network, including weights/biases of
linear/fc layers, parameters of the activation functions, etc.
• Hyper-parameters: parameters, including for optimization, that are not optimized

directly as part of training (e.g., learning rate, batch size, drop-out rate)

Google’s “Inception” network

generally kept fixed, requires some knowledge of the problem and NN to sensibly set

optimized using SGD or variants

requires knowledge of the nature of the problem

deeper = better

Deep Learning Terminology

• Network structure: number and types of layers, forms of activation functions,
dimensionality of each layer and connections (defines computational graph)

• Loss function: objective function being optimized (softmax, cross entropy, etc.)

• Parameters: trainable parameters of the network, including weights/biases of
linear/fc layers, parameters of the activation functions, etc.
• Hyper-parameters: parameters, including for optimization, that are not optimized

directly as part of training (e.g., learning rate, batch size, drop-out rate)

Google’s “Inception” network

generally kept fixed, requires some knowledge of the problem and NN to sensibly set

optimized using SGD or variants

grid search

requires knowledge of the nature of the problem

deeper = better

Multivariate Regression
Input: feature vector Output: output vector x 2 Rn y 2 Rm

Neural Network (input + intermediate hidden layers)

Neural Network (output): linear layer

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; � 1  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)

with sigmoid activations:
with Tanh activations:
with ReLU activations:

Loss:

ŷ = g(x;W,b) = Wf(x;⇥) + b : Rk ! Rm

L(y, ŷ) = ||y � ŷ||2

Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): interpret sigmoid output as probability

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

p(y = 1) = f(x;⇥)

Loss: L(y, ŷ) =
⇢

�log[1� f(x;⇥)] y = 0
�log[f(x;⇥)] y = 1

can interpret the score as the log-odds of (a.k.a. the logits)y = 1

Binary Classification (Bernoulli)

Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): interpret sigmoid output as probability

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

Minimizing this loss is the same as maximizing log likelihood of data

p(y = 1) = f(x;⇥)

Loss: L(y, ŷ) =
⇢

�log[1� f(x;⇥)] y = 0
�log[f(x;⇥)] y = 1

Binary Classification (Bernoulli)

Input: feature vector Output: muticlass labelx 2 Rn

Multiclass Classification (e.g, ImageNet)
y 2 {0, 1}m

(one-hot encoding)

Input: feature vector Output: muticlass labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Multiclass Classification (e.g, ImageNet)
y 2 {0, 1}m

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)with ReLU activations:

(one-hot encoding)

f(x;⇥) : Rn ! Rm

Input: feature vector Output: muticlass labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Multiclass Classification (e.g, ImageNet)
y 2 {0, 1}m

p(yk = 1) =
exp [f(x;⇥)i]PC
j=1 exp [f(x;⇥)j]

Neural Network (output): softmax function, where probability of class k is:

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)with ReLU activations:

(one-hot encoding)

f(x;⇥) : Rn ! Rm

Input: feature vector Output: muticlass labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Multiclass Classification (e.g, ImageNet)
y 2 {0, 1}m

p(yk = 1) =
exp [f(x;⇥)i]PC
j=1 exp [f(x;⇥)j]

Neural Network (output): softmax function, where probability of class k is:

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)with ReLU activations:

(one-hot encoding)

f(x;⇥) : Rn ! Rm

convert score into probability

normalize to sum up to 1 across classes

Input: feature vector Output: muticlass labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Multiclass Classification (e.g, ImageNet)
y 2 {0, 1}m

p(yk = 1) =
exp [f(x;⇥)i]PC
j=1 exp [f(x;⇥)j]

Neural Network (output): softmax function, where probability of class k is:

L(y, ŷ) = H(y, ŷ) = �
X

i

yi log ŷi = � log ŷi

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)with ReLU activations:

(one-hot encoding)

f(x;⇥) : Rn ! Rm

Loss:

Input: feature vector Output: muticlass labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Multiclass Classification (e.g, ImageNet)
y 2 {0, 1}m

p(yk = 1) =
exp [f(x;⇥)i]PC
j=1 exp [f(x;⇥)j]

Neural Network (output): softmax function, where probability of class k is:

L(y, ŷ) = H(y, ŷ) = �
X

i

yi log ŷi = � log ŷi

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)with ReLU activations:

Special case for multi-class single label

(one-hot encoding)

f(x;⇥) : Rn ! Rm

Loss:

Neural Network Debugging

1. There is no way to write “unit tests” for NN training or inference

2. Visualize your data coming out of a data loader (and inference)
(a lot of mistakes can be made in the data loader itself)

3. Learning code (and sometimes inference code) is stochastic which makes it very hard to
debug. Until you are sure code is correct, fix all the random seeds

(Python, NumPy, PyTorch, and Dataloader classes all have separate seeds)

4. Train with a single example first (always!). You should be able to obtain 0 loss, i.e.,
overfit. If this is not the case, there is typically error in model definition.

5. Train with a single min-batch next. Your loss may not be 0 at this point, but you should
see convergence.

6. Use Tensorboard or Weights & Biases to keep track of experiments and visualize
training & validation/testing loss and accuracy curves as you are training.

Neural Network Debugging

1. There is no way to write “unit tests” for NN training or inference

2. Visualize your data coming out of a data loader (and inference)
(a lot of mistakes can be made in the data loader itself)

3. Learning code (and sometimes inference code) is stochastic which makes it very hard to
debug. Until you are sure code is correct, fix all the random seeds

(Python, NumPy, PyTorch, and Dataloader classes all have separate seeds)

4. Train with a single example first (always!). You should be able to obtain 0 loss, i.e.,
overfit. If this is not the case, there is typically error in model definition.

5. Train with a single min-batch next. Your loss may not be 0 at this point, but you should
see convergence.

6. Use Tensorboard or Weights & Biases to keep track of experiments and visualize
training & validation/testing loss and accuracy curves as you are training.

Neural Network Debugging

1. There is no way to write “unit tests” for NN training or inference

2. Visualize your data coming out of a data loader (and inference)
(a lot of mistakes can be made in the data loader itself)

3. Learning code (and sometimes inference code) is stochastic which makes it very hard to
debug. Until you are sure code is correct, fix all the random seeds

(Python, NumPy, PyTorch, and Dataloader classes all have separate seeds)

4. Train with a single example first (always!). You should be able to obtain 0 loss, i.e.,
overfit. If this is not the case, there is typically error in model definition.

5. Train with a single min-batch next. Your loss may not be 0 at this point, but you should
see convergence.

6. Use Tensorboard or Weights & Biases to keep track of experiments and visualize
training & validation/testing loss and accuracy curves as you are training.

Neural Network Debugging

1. There is no way to write “unit tests” for NN training or inference

2. Visualize your data coming out of a data loader (and inference)
(a lot of mistakes can be made in the data loader itself)

3. Learning code (and sometimes inference code) is stochastic which makes it very hard to
debug. Until you are sure code is correct, fix all the random seeds

(Python, NumPy, PyTorch, and Dataloader classes all have separate seeds)

4. Train with a single example first (always!). You should be able to obtain 0 loss, i.e.,
overfit. If this is not the case, there is typically error in model definition.

5. Train with a single min-batch next. Your loss may not be 0 at this point, but you should
see convergence.

6. Use Tensorboard or Weights & Biases to keep track of experiments and visualize
training & validation/testing loss and accuracy curves as you are training.

Neural Network Debugging

1. There is no way to write “unit tests” for NN training or inference

2. Visualize your data coming out of a data loader (and inference)
(a lot of mistakes can be made in the data loader itself)

3. Learning code (and sometimes inference code) is stochastic which makes it very hard to
debug. Until you are sure code is correct, fix all the random seeds.

(Python, NumPy, PyTorch, and Dataloader classes all have separate seeds)

4. Train with a single example first (always!). You should be able to obtain 0 loss, i.e.,
overfit. If this is not the case, there is typically error in model definition.

5. Train with a single min-batch next. Your loss may not be 0 at this point, but you should
see convergence.

6. Use Tensorboard or Weights & Biases to keep track of experiments and visualize
training & validation/testing loss and accuracy curves as you are training.

Neural Network Debugging

1. There is no way to write “unit tests” for NN training or inference

2. Visualize your data coming out of a data loader (and inference)
(a lot of mistakes can be made in the data loader itself)

3. Learning code (and sometimes inference code) is stochastic which makes it very hard to
debug. Until you are sure code is correct, fix all the random seeds

(Python, NumPy, PyTorch, and Dataloader classes all have separate seeds)

4. Train with a single example first (always!). You should be able to obtain 0 loss, i.e.,
overfit. If this is not the case, there is typically error in model definition.

5. Train with a single min-batch next. Your loss may not be 0 at this point, but you should
see convergence.

6. Use Tensorboard or Weights & Biases to keep track of experiments and visualize
training & validation/testing loss and accuracy curves as you are training.

Neural Network Debugging

1. There is no way to write “unit tests” for NN training or inference

2. Visualize your data coming out of a data loader (and inference)
(a lot of mistakes can be made in the data loader itself)

3. Learning code (and sometimes inference code) is stochastic which makes it very hard to
debug. Until you are sure code is correct, fix all the random seeds

(Python, NumPy, PyTorch, and Dataloader classes all have separate seeds)

4. Train with a single example first (always!). You should be able to obtain 0 loss, i.e.,
overfit. If this is not the case, there is typically error in model definition.

5. Train with a single min-batch next. Your loss may not be 0 at this point, but you should
see convergence.

6. Use Tensorboard or Weights & Biases to keep track of experiments and visualize
training & validation/testing loss and accuracy curves as you are training.

Monitoring Learning: Visualizing the (training) loss

* slide from Li, Karpathy, Johnson’s CS231n at Stanford

Monitoring Learning: Visualizing the (training) loss

Big gap = overfitting

Solution: increase regularization

No gap = undercutting

Solution: increase model capacity

Small gap = ideal

* slide from Li, Karpathy, Johnson’s CS231n at Stanford

