Topics in AI (CPSC 532S): Multimodal Learning with Vision, Language and Sound

Lecture 3: Introduction to Deep Learning (continued)

Course Logistics

- Course Registrations: 3 seats are now available
- Assignment 1 ... any questions?
- My Office Hours - Friday @ 12:30-1:30pm (hybrid)

Short Review ...

- Introduced the basic building block of Neural Networks (MLP/FC) layer

Input Layer

$$
a(x)=\operatorname{sigmoid}(x)=\frac{1}{1+e^{-x}}
$$

Sigmoid Activation

Short Review ...

- Introduced the basic building block of Neural Networks (MLP/FC) layer
- How do we stack these layers up to make a Deep NN

Input Laye

Short Review ...

- Introduced the basic building block of Neural Networks (MLP/FC) layer
- How do we stack these layers up to make a Deep NN

Input Layer

Note: output layer often does not contain activation, or has "activation" function of a different form, to account for the specific output we want to produce.

Short Review ...

- Introduced the basic building block of Neural Networks (MLP/FC) layer
- How do we stack these layers up to make a Deep NN
- Basic NN operations (implemented using computational graph)

Short Review ...

- Introduced the basic building block of Neural Networks (MLP/FC) layer
- How do we stack these layers up to make a Deep NN
- Basic NN operations (implemented using computational graph)

Prediction / Inference
Function evaluation
(a.k.a. ForwardProp)

Short Review ...

- Introduced the basic building block of Neural Networks (MLP/FC) layer
- How do we stack these layers up to make a Deep NN
- Basic NN operations (implemented using computational graph)

Prediction / Inference
Function evaluation
(a.k.a. ForwardProp)

Parameter Learnings
(Stochastic) Gradient Descent (needs derivatives)

Short Review ...

- Introduced the basic building block of Neural Networks (MLP/FC) layer
- How do we stack these layers up to make a Deep NN
- Basic NN operations (implemented using computational graph)

Prediction / Inference
Function evaluation
(a.k.a. ForwardProp)

Parameter Learnings

(Stochastic) Gradient Descent (needs derivatives)

- Numerical differentiation (not accurate)
- Symbolic differential (intractable)
- AutoDiff Forward (computationally expensive)
- AutoDiff Backward / BackProp

Backpropagation Practical Issues

Backpropagation Practical Issues

$$
\mathbf{y}=f(\mathbf{W}, \mathbf{b}, \mathbf{x})=\operatorname{sigmoid}(\mathbf{W} \cdot \mathbf{x}+\mathbf{b})
$$

Jacobian of Sigmoid layer

$$
\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2048}
$$

Element-wise sigmoid layer:

Jacobian of Sigmoid layer

$$
\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2048}
$$

Element-wise sigmoid layer:

What is the dimension of Jacobian?

Jacobian of Sigmoid layer

$$
\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2048}
$$

Element-wise sigmoid layer:

What is the dimension of Jacobian?
What does it look like?

Jacobian of Sigmoid layer

$$
\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2048}
$$

Element-wise sigmoid layer:

What is the dimension of Jacobian?
What does it look like?

If we are working with a mini batch of 100 inputs-output pairs, technically Jacobian is a matrix 204,800 $\times 204,800$

Jacobian of Sigmoid layer

In practice this can be made a LOT more efficient

- Gradients can be sparse, so can be stored efficiently
- Computations per samples (e.g., in a mini-batch) are independent => can be done in parallel and simply accumulated.

Jacobian of Sigmoid layer

In practice this can be made a LOT more efficient

- Gradients can be sparse, so can be stored efficiently
- Computations per samples (e.g., in a mini-batch) are independent => can be done in parallel and simply accumulated.

What is the dimension of Jacobian?

If we are working with a mini batch of 100 inputs-output pairs, technically Jacobian is a matrix 204,800 $\times 204,800$

Jacobian of Sigmoid layer

In practice this can be made a LOT more efficient

- Gradients can be sparse, so can be stored efficiently
- Computations per samples (e.g., in a mini-batch) are independent => can be done in parallel and simply accumulated.

What is the dimension of Jacobian?
What does it look like?
If we are working with a mini batch of 100 inputs-output pairs, technically Jacobian is a matrix 204,800 $\times 204,800$

Short Review ...

Prediction / Inference

Parameter Learnings

Short Review ...

- Introduced the basic building block of Neural Networks (MLP/FC) layer
- How do we stack these layers up to make a Deep NN
- Basic NN operations (implemented using computational graph)

Prediction / Inference
Function evaluation
(a.k.a. ForwardProp)

Parameter Learnings

(Stochastic) Gradient Descent (needs derivatives)

- Numerical differentiation (not accurate)
- Symbolic differential (intractable)
- AutoDiff Forward (computationally expensive)
- AutoDiff Backward / BackProp
- Different activation functions and saturation problem

Activation Function: Sigmoid

$$
a(x)=\operatorname{sigmoid}(x)=\frac{1}{1+e^{-x}}
$$

Pros:

- Squishes everything in the range $[0,1]$
- Can be interpreted as "probability"
- Has well defined gradient everywhere

Cons:

Sigmoid Activation

- Saturated neurons "kill" the gradients
- Non-zero centered
- Could be expensive to compute

Activation Function: Sigmoid

Sigmoid Gate

$$
a(x)=\operatorname{sigmoid}(x)=\frac{1}{1+e^{-x}}
$$

Cons:

- Saturated neurons "kill" the gradients
- Non-zero centered
- Could be expensive to compute

Activation Function: Sigmoid

$$
a(x)=\operatorname{sigmoid}(x)=\frac{1}{1+e^{-x}}
$$

Cons:

- Saturated neurons "kill" the gradients
- Non-zero centered

Sigmoid Activation

- Could be expensive to compute

Activation Function: Sigmoid

$$
a(x)=\operatorname{sigmoid}(x)=\frac{1}{1+e^{-x}}
$$

Cons:

- Saturated neurons "kill" the gradients
- Non-zero centered

Sigmoid Activation

- Could be expensive to compute

Activation Function: Sigmoid

$$
a(x)=\operatorname{sigmoid}(x)=\frac{1}{1+e^{-x}}
$$

Cons:

- Saturated neurons "kill" the gradients
- Non-zero centered

Sigmoid Activation

- Could be expensive to compute

Activation Function: Sigmoid

Cons:

- Saturated neurons "kill" the gradients
- Non-zero centered
$a(x)=\operatorname{sigmoid}(x)=\frac{1}{1+e^{-x}}$

Sigmoid Activation

- Could be expensive to compute

Activation Function: Sigmoid

Activation Function: Tanh

$$
\begin{aligned}
& a(x)=\tanh (x)=2 \cdot \operatorname{sigmoid}(2 x)-1 \\
& a(x)=\tanh (x)=\frac{2}{1+e^{-2 x}}-1
\end{aligned}
$$

Pros:

- Squishes everything in the range [-1,1]
- Centered around zero
- Has well defined gradient everywhere

Cons:

- Saturated neurons "kill" the gradients
- Could be expensive to compute

Tanh Activation

Why zero-centering may be good?

Consider a (regression) problem where the predictions can be positive and negative (e.g., cash flow -> you can be loosing money or making money)

Sifts and scales

All pre- and post-activations are $>=0$ output range

Input Layer

Why zero-centering may be good?

Consider a (regression) problem where the predictions can be positive and negative (e.g., cash flow -> you can be loosing money or making money)

```
                                    Sifts and scales
    All pre- and post-activations are >=0
    output range
Input Layer
```


Note: output layer often does not contain activation, or has "activation" function of a different form, to account for the specific output we want to produce.

Why zero-centering may be good?

Consider a (regression) problem where the predictions can be positive and negative (e.g., cash flow -> you can be loosing money or making money)

Why zero-centering may be good?

Consider a (regression) problem where the predictions can be positive and negative (e.g., cash flow $->$ you can be loosing money or making money)

Note: output layer often does not contain activation, or has "activation" function of a different form, to account for the specific output we want to produce.

Activation Function: Rectified Linear Unit (ReLU)

Pros:

$$
\begin{aligned}
& a(x)=\max (0, x) \\
& a^{\prime}(x)= \begin{cases}1 & \text { if } x \geq 0 \\
0 & \text { if } x<0\end{cases}
\end{aligned}
$$

- Does not saturate (for x > 0)
- Computationally very efficient
- Converges faster in practice (e.g. 6 times faster)

Cons:

- Not zero centered

ReLU Activation

Activation Function: Rectified Linear Unit (ReLU)

$$
\begin{aligned}
& a(x)=\max (0, x) \\
& a^{\prime}(x)= \begin{cases}1 & \text { if } x \geq 0 \\
0 & \text { if } x<0\end{cases}
\end{aligned}
$$

Question: What do ReLU layers accomplish?

ReLU Activation

Activation Function: Rectified Linear Unit (ReLU)

$$
\begin{aligned}
& a(x)=\max (0, x) \\
& a^{\prime}(x)= \begin{cases}1 & \text { if } x \geq 0 \\
0 & \text { if } x<0\end{cases}
\end{aligned}
$$

Question: What do ReLU layers accomplish?

Answer: Locally linear tiling, function is locally linear

ReLU Activation

Activation Function: Rectified Linear Unit (ReLU)

ReLU sparcifies activations and derivatives

$$
\begin{aligned}
& a(x)=\max (0, x) \\
& a^{\prime}(x)= \begin{cases}1 & \text { if } x \geq 0 \\
0 & \text { if } x<0\end{cases}
\end{aligned}
$$

ReLU Activation

Activation Function: Rectified Linear Unit (ReLU)

ReLU sparcifies activations and derivatives

$$
\begin{aligned}
& a(x)=\max (0, x) \\
& a^{\prime}(x)= \begin{cases}1 & \text { if } x \geq 0 \\
0 & \text { if } x<0\end{cases}
\end{aligned}
$$

ReLU Activation

Activation Function: Rectified Linear Unit (ReLU)

ReLU sparcifies activations and derivatives

$$
\begin{aligned}
& a(x)=\max (0, x) \\
& a^{\prime}(x)= \begin{cases}1 & \text { if } x \geq 0 \\
0 & \text { if } x<0\end{cases}
\end{aligned}
$$

ReLU Activation
$10 \%-20 \%$ of neurons end up being "dead" in most standard networks

Activation Function: Rectified Linear Unit (ReLU)

ReLU sparcifies activations and derivatives

$$
\begin{aligned}
& a(x)=\max (0, x) \\
& a^{\prime}(x)= \begin{cases}1 & \text { if } x \geq 0 \\
0 & \text { if } x<0\end{cases}
\end{aligned}
$$

ReLU Activation

Trick: initialize bias for neurons with ReLU activation to small positive value (0.01)

Initialization

Many tricks for initializations exist. I will not really cover this.

You will partly see why soon ...

Activation Function: Leaky / Parametrized ReLU

Leaky: alpha is fixed to a small value (e.g., 0.01)

$$
a(x)= \begin{cases}x & \text { if } x \geq 0 \\ \alpha x & \text { if } x<0\end{cases}
$$

Parametrized: alpha is optimized as part of the network (BackProp through)

Pros:

- Does not saturate
- Computationally very efficient
- Converges faster in practice (e.g. 6x)

Leaky / Parametrized ReLU Activation

Computational Graph: 1-layer with PReLU

Activation Function: S-shaped ReLU

$$
a(x)= \begin{cases}\beta_{r}+\alpha_{r}\left(x-\beta_{r}\right), & x \geq \beta_{r} \\ x, & \beta_{r} \geq x \geq \beta_{l} \\ \beta_{l}+\alpha_{l}\left(x-\beta_{l}\right), & x \leq \beta_{l}\end{cases}
$$

Pros:

- Motivated by neuroscience principles, mainly Webner-Fechner law and Stevens law
- Does not saturate
- Relatively efficient

(a) Webner-Fechner law

(b) Stevens law

Activation Function: S-shaped ReLU

$$
a(x)= \begin{cases}\beta_{r}+\alpha_{r}\left(x-\beta_{r}\right), & x \geq \beta_{r} \\ x, & \beta_{r} \geq x \geq \beta_{l} \\ \beta_{l}+\alpha_{l}\left(x-\beta_{l}\right), & x \leq \beta_{l}\end{cases}
$$

(a) Webner-Fechner law

(b) Stevens law

Activation Function: S-shaped ReLU

Why are inputs all positive?

$$
a(x)= \begin{cases}\beta_{r}+\alpha_{r}\left(x-\beta_{r}\right), & x \geq \beta_{r} \\ x, & \beta_{r} \geq x \geq \beta_{l} \\ \beta_{l}+\alpha_{l}\left(x-\beta_{l}\right), & x \leq \beta_{l}\end{cases}
$$

(a) Webner-Fechner law

(b) Stevens law

Activation Function: S-shaped ReLU

Why are inputs all positive?

$$
a(x)= \begin{cases}\beta_{r}+\alpha_{r}\left(x-\beta_{r}\right), & x \geq \beta_{r} \\ x, & \beta_{r} \geq x \geq \beta_{l} \\ \beta_{l}+\alpha_{l}\left(x-\beta_{l}\right), & x \leq \beta_{l}\end{cases}
$$

(a) Webner-Fechner law

(b) Stevens law

Activation Function: S-shaped ReLU

$$
a(x)= \begin{cases}\beta_{r}+\alpha_{r}\left(x-\beta_{r}\right), & x \geq \beta_{r} \\ x, & \beta_{r} \geq x \geq \beta_{l} \\ \beta_{l}+\alpha_{l}\left(x-\beta_{l}\right), & x \leq \beta_{l}\end{cases}
$$

Pros:

- Motivated by neuroscience principles, mainly Webner-Fechner law and Stevens law
- Does not saturate
- Relatively efficient

(a) Webner-Fechner law

(b) Stevens law

Activation Functions: Review

$$
a(x)=\operatorname{sigmoid}(x)=\frac{1}{1+e^{-x}}
$$

Sigmoid

Tanh

$$
a(x)= \begin{cases}x & \text { if } x \geq 0 \\ \alpha x & \text { if } x<0\end{cases}
$$

Leaky / Parametrized ReLU

Activation Functions: Review

Sigmoid
$\sigma(x)=\frac{1}{1+e^{-x}}$

tanh

$\tanh (x)$

ReLU

$\max (0, x)$

Leaky ReLU
 $\max (0.1 x, x)$

Maxout

$\max \left(w_{1}^{T} x+b_{1}, w_{2}^{T} x+b_{2}\right)$

ELU

$\begin{cases}x & x \geq 0 \\ \alpha\left(e^{x}-1\right) & x<0\end{cases}$

Activation Functions: Review

Good "default" choice

ReLU

$\max (0, x)$

Regularization: L2 or L1 on the weights

L2 Regularization: Learn a more (dense) distributed representation

$$
R(\mathbf{W})=\|\mathbf{W}\|_{2}=\sum_{i} \sum_{j} \mathbf{W}_{i, j}^{2}
$$

L1 Regularization: Learn a sparse representation (few non-zero wight elements)

$$
R(\mathbf{W})=\|\mathbf{W}\|_{1}=\sum_{i} \sum_{j}\left|\mathbf{W}_{i, j}\right|
$$

(others regularizers are also possible)

Regularization: L2 or L1 on the weights

L2 Regularization: Learn a more (dense) distributed representation

$$
R(\mathbf{W})=\|\mathbf{W}\|_{2}=\sum_{i} \sum_{j} \mathbf{W}_{i, j}^{2}
$$

L1 Regularization: Learn a sparse representation (few non-zero wight elements)

$$
R(\mathbf{W})=\|\mathbf{W}\|_{1}=\sum_{i} \sum_{j}\left|\mathbf{W}_{i, j}\right|
$$

(others regularizers are also possible)

Example:

$$
\begin{aligned}
& \mathbf{x}=[1,1,1,1] \\
& \mathbf{W}_{1}=[1,0,0,0] \\
& \mathbf{W}_{2}=\left[\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right]
\end{aligned}
$$

Regularization: L2 or L1 on the weights

L2 Regularization: Learn a more (dense) distributed representation

$$
R(\mathbf{W})=\|\mathbf{W}\|_{2}=\sum_{i} \sum_{j} \mathbf{W}_{i, j}^{2}
$$

L1 Regularization: Learn a sparse representation (few non-zero wight elements)

$$
R(\mathbf{W})=\|\mathbf{W}\|_{1}=\sum_{i} \sum_{j}\left|\mathbf{W}_{i, j}\right|
$$

(others regularizers are also possible)

Example:

$$
\begin{aligned}
& \mathbf{x}=[1,1,1,1] \\
& \mathbf{W}_{1}=[1,0,0,0] \\
& \mathbf{W}_{2}=\left[\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right]
\end{aligned}
$$

$$
\mathbf{W}_{1} \cdot \mathbf{x}^{T}=\mathbf{W}_{2} \cdot \mathbf{x}^{T}
$$

Regularization: L2 or L1 on the weights

L2 Regularization: Learn a more (dense) distributed representation

$$
R(\mathbf{W})=\|\mathbf{W}\|_{2}=\sum_{i} \sum_{j} \mathbf{W}_{i, j}^{2}
$$

L1 Regularization: Learn a sparse representation (few non-zero wight elements)

$$
R(\mathbf{W})=\|\mathbf{W}\|_{1}=\sum_{i} \sum_{j}\left|\mathbf{W}_{i, j}\right|
$$

(others regularizers are also possible)

Example:

$$
\begin{aligned}
& \mathbf{x}=[1,1,1,1] \\
& \mathbf{W}_{1}=[1,0,0,0] \\
& \mathbf{W}_{2}=\left[\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right]
\end{aligned}
$$

L2 Regularizer:

$$
\begin{aligned}
& R_{L 2}\left(\mathbf{W}_{1}\right)=1 \\
& R_{L 2}\left(\mathbf{W}_{2}\right)=0.25
\end{aligned}
$$

$$
\mathbf{W}_{1} \cdot \mathbf{x}^{T}=\mathbf{W}_{2} \cdot \mathbf{x}^{T}
$$

two networks will have identical output

L1 Regularizer:

$$
\begin{aligned}
& R_{L 1}\left(\mathbf{W}_{1}\right)=1 \longleftarrow \\
& R_{L 1}\left(\mathbf{W}_{2}\right)=1 \longleftarrow
\end{aligned}
$$

Computational Graph: 1-layer with PReLU + Regularizer

Remember ... Initialization

Many tricks for initializations exist. I will not really cover this.

Regularization: Batch Normalization

Normalize each mini-batch (using Batch Normalization layer) by subtracting empirically computed mean and dividing by variance for every dimension -> samples are approximately unit Gaussian

$$
\bar{x}^{(k)}=\frac{x^{(k)}-\mathbb{E}\left[x^{(k)}\right]}{\sqrt{\operatorname{Var}\left[x^{(k)}\right]}}
$$

Benefit:

Improves learning (better gradients, higher learning rate)

Regularization: Batch Normalization

Normalize each mini-batch (using Batch Normalization layer) by subtracting empirically computed mean and dividing by variance for every dimension -> samples are approximately unit Gaussian

$$
\bar{x}^{(k)}=\frac{x^{(k)}-\mathbb{E}\left[x^{(k)}\right]}{\sqrt{\operatorname{Var}\left[x^{(k)}\right]}}
$$

Benefit:

Improves learning (better gradients, higher learning rate)

Why?

Activation Function: Sigmoid

Cons:

- Saturated neurons "kill" the gradients
- Non-zero centered
$a(x)=\operatorname{sigmoid}(x)=\frac{1}{1+e^{-x}}$

Sigmoid Activation

- Could be expensive to compute

Regularization: Batch Normalization

Normalize each mini-batch (using Batch Normalization layer) by subtracting empirically computed mean and dividing by variance for every dimension -> samples are approximately unit Gaussian

$$
\bar{x}^{(k)}=\frac{x^{(k)}-\mathbb{E}\left[x^{(k)}\right]}{\sqrt{\operatorname{Var}\left[x^{(k)}\right]}}
$$

Benefit:

Improves learning (better gradients, higher learning rate)

Typically inserted before activation layer

Regularization: Batch Normalization

Normalize each mini-batch (using Batch Normalization layer) by subtracting empirically computed mean and dividing by variance for every dimension -> samples are approximately unit Gaussian

$$
\bar{x}^{(k)}=\frac{x^{(k)}-\mathbb{E}\left[x^{(k)}\right]}{\sqrt{\operatorname{Var}\left[x^{(k)}\right]}}
$$

Benefit:

Improves learning (better gradients, higher learning rate)

Typically inserted before activation layer
What happens at inference time?

Regularization: Batch Normalization

Normalize each mini-batch (using Batch Normalization layer) by subtracting empirically computed mean and dividing by variance for every dimension -> samples are approximately unit Gaussian

$$
\bar{x}^{(k)}=\frac{x^{(k)}-\mathbb{E}\left[x^{(k)}\right]}{\sqrt{\operatorname{Var}\left[x^{(k)}\right]}}
$$

In practice, also learn how to scale and offset:

$$
\begin{aligned}
y^{(k)}= & \gamma^{(k)} \bar{x}^{(k)}+\beta^{(k)} \\
& \text { BN layer parameters }
\end{aligned}
$$

Benefit:

Improves learning (better gradients, higher learning rate, less reliance on initialization)

Typically inserted before activation layer

Regularization: Batch Normalization

Consider what happens at runtime, when you are only passing a single sample

$$
\bar{x}^{(k)}=\frac{x^{(k)}-\mathbb{E}\left[x^{(k)}\right]}{\sqrt{\operatorname{Var}\left[x^{(k)}\right]}}
$$

In practice, also learn how to scale and offset:

$$
y^{(k)}=\gamma^{(k)} \bar{x}^{(k)}+\beta^{(k)}
$$

BN layer parameters

Regularization: Dropout

Randomly set some neurons to zero in the forward pass, with probability proportional to dropout rate (between 0 to 1)

Standar Neural Network

[Srivastava et al, JMLR 2014]

Regularization: Dropout

Randomly set some neurons to zero in the forward pass, with probability proportional to dropout rate (between 0 to 1)

Regularization: Dropout

Randomly set some neurons to zero in the forward pass, with probability proportional to dropout rate (between 0 to 1)

Why is this a good idea?

After Applying Dropout

Regularization: Dropout

Randomly set some neurons to zero in the forward pass, with probability proportional to dropout rate (between 0 to 1)

After Applying Dropout

Why is this a good idea?

Dropout is training an ensemble of models that share parameters

Each binary mask (generated in the forward pass) is one model that is trained on (approximately) one data point
[Srivastava et al, JMLR 2014]

Regularization: Dropout (at test time)

Randomly set some neurons to zero in the forward pass, with probability proportional to dropout rate (between 0 to 1)

At test time, integrate out all the models in the ensemble

Monte Carlo approximation: many forward passes with different masks and average all predictions

After Applying Dropout
[Srivastava et al, JMLR 2014]

Regularization: Dropout (at test time)

Randomly set some neurons to zero in the forward pass, with probability proportional to dropout rate (between 0 to 1)

At test time, integrate out all the models in the ensemble

Monte Carlo approximation: many forward passes with different masks and average all predictions

Equivalent to forward pass with all connections on and scaling of the outputs by dropout rate

Regularization: Dropout (at test time)

Consider a single neuron

Regularization: Dropout (at test time)

At test time we want to compute expectation over input to activation function with respect to exponential number of masks

$$
\mathbb{E}_{\mathbf{m}}[h]=\mathbb{E}_{\mathbf{m}}[(\mathbf{W} \cdot \mathbf{x}) \odot \mathbf{m}]
$$

Consider a single neuron

Regularization: Dropout (at test time)

At test time we want to compute expectation over input to activation function with respect to exponential number of masks

$$
\mathbb{E}_{\mathbf{m}}[h]=\mathbb{E}_{\mathbf{m}}[(\mathbf{W} \cdot \mathbf{x}) \odot \mathbf{m}]
$$

Consider a single neuron

consider dropout rate of $p=0.5$

$$
\begin{aligned}
\mathbb{E}_{\mathbf{m}}[h] & =\mathbb{E}_{\left(m_{1}, m_{2}\right)}\left[w_{1} x_{1} m_{1}+w_{2} x_{2} m_{2}\right] \\
& =\frac{1}{4}\left(w_{1} x_{1}+w_{2} x_{2}\right)+\frac{1}{4}\left(w_{1} x_{1}\right) \frac{1}{4}\left(w_{2} x_{2}\right)+\frac{1}{4}(0) \\
& =\frac{1}{2}\left(w_{1} x_{1}+w_{2} x_{2}\right)
\end{aligned}
$$

Regularization: Dropout (without change in forward pass)

Randomly set some neurons to zero in the forward pass, with probability proportional to dropout rate (between 0 to 1)

1. Compute output of the linear/fc layer $\mathbf{o}_{i}=\mathbf{W}_{i} \cdot \mathbf{x}+\mathbf{b}_{i}$
2. Compute a mask with probability proportional to dropout rate $\mathbf{m}_{i}=\operatorname{rand}\left(1,\left|\mathbf{o}_{i}\right|\right)<$ dropout rate
3. Apply the mask to zero out certain outputs

$$
\mathbf{o}_{i}=\mathbf{o}_{i} \odot \mathbf{m}_{i} / \text { dropout rate }
$$

Standar Neural Network

After Applying Dropout

Deep Learning Terminology

- Network structure: number and types of layers, forms of activation functions, dimensionality of each layer and connections (defines computational graph)

Deep Learning Terminology

- Network structure: number and types of layers, forms of activation functions, dimensionality of each layer and connections (defines computational graph)

Deep Learning Terminology

- Network structure: number and types of layers, forms of activation functions, dimensionality of each layer and connections (defines computational graph)

Deep Learning Terminology

- Network structure: number and types of layers, forms of activation functions, dimensionality of each layer and connections (defines computational graph)
generally kept fixed, requires some knowledge of the problem and NN to sensibly set
- Loss function: objective function being optimized (softmax, cross entropy, etc.)

Deep Learning Terminology

- Network structure: number and types of layers, forms of activation functions, dimensionality of each layer and connections (defines computational graph)
generally kept fixed, requires some knowledge of the problem and NN to sensibly set
- Loss function: objective function being optimized (softmax, cross entropy, etc.)

Deep Learning Terminology

- Network structure: number and types of layers, forms of activation functions, dimensionality of each layer and connections (defines computational graph)
generally kept fixed, requires some knowledge of the problem and NN to sensibly set
- Loss function: objective function being optimized (softmax, cross entropy, etc.) requires knowledge of the nature of the problem
- Parameters: trainable parameters of the network, including weights/biases of linear/fc layers, parameters of the activation functions, etc.

Deep Learning Terminology

- Network structure: number and types of layers, forms of activation functions, dimensionality of each layer and connections (defines computational graph)
generally kept fixed, requires some knowledge of the problem and NN to sensibly set
- Loss function: objective function being optimized (softmax, cross entropy, etc.)
requires knowledge of the nature of the problem
- Parameters: trainable parameters of the network, including weights/biases of linear/fc layers, parameters of the activation functions, etc. optimized using SGD or variants

Deep Learning Terminology

- Network structure: number and types of layers, forms of activation functions, dimensionality of each layer and connections (defines computational graph)
generally kept fixed, requires some knowledge of the problem and NN to sensibly set
deeper $=$ better
- Loss function: objective function being optimized (softmax, cross entropy, etc.)
requires knowledge of the nature of the problem
- Parameters: trainable parameters of the network, including weights/biases of linear/fc layers, parameters of the activation functions, etc. optimized using SGD or variants
- Hyper-parameters: parameters, including for optimization, that are not optimized directly as part of training (e.g., learning rate, batch size, drop-out rate)

Deep Learning Terminology

- Network structure: number and types of layers, forms of activation functions, dimensionality of each layer and connections (defines computational graph)
generally kept fixed, requires some knowledge of the problem and NN to sensibly set
deeper $=$ better
- Loss function: objective function being optimized (softmax, cross entropy, etc.)

```
requires knowledge of the nature of the problem
```

- Parameters: trainable parameters of the network, including weights/biases of linear/fc layers, parameters of the activation functions, etc. optimized using SGD or variants
- Hyper-parameters: parameters, including for optimization, that are not optimized directly as part of training (e.g., learning rate, batch size, drop-out rate) grid search

Loss Functions ...

This is where all the fun is ... we will only look a most common ones

Multivariate Regression

Input: feature vector $\mathbf{x} \in \mathbb{R}^{n}$
Output: output vector $\mathbf{y} \in \mathbb{R}^{m}$

Multivariate Regression

Input: feature vector $\mathbf{x} \in \mathbb{R}^{n}$
Output: output vector $\mathbf{y} \in \mathbb{R}^{m}$
Neural Network (input + intermediate hidden layers) $f(\mathbf{x} ; \Theta): \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$
with sigmoid activations: $\mathbf{0} \leq f(\mathbf{x} ; \Theta) \leq \mathbf{1}$
with Tanh activations: $-\mathbf{1} \leq f(\mathbf{x} ; \Theta) \leq \mathbf{1}$
with ReLU activations: $\quad \mathbf{0} \leq f(\mathbf{x} ; \Theta)$

Multivariate Regression

Input: feature vector $\mathrm{x} \in \mathbb{R}^{n}$
Output: output vector $\mathbf{y} \in \mathbb{R}^{m}$
Neural Network (input + intermediate hidden layers) $f(\mathbf{x} ; \Theta): \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$
with sigmoid activations: $\mathbf{0} \leq f(\mathbf{x} ; \Theta) \leq \mathbf{1}$
with Tanh activations: $-\mathbf{1} \leq f(\mathbf{x} ; \Theta) \leq \mathbf{1}$
with ReLU activations: $\quad \mathbf{0} \leq f(\mathbf{x} ; \Theta)$
Neural Network (output): linear layer

$$
\hat{\mathbf{y}}=g(\mathbf{x} ; \mathbf{W}, \mathbf{b})=\mathbf{W} f(\mathbf{x} ; \Theta)+\mathbf{b}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{m}
$$

Multivariate Regression

Input: feature vector $\mathrm{x} \in \mathbb{R}^{n}$ Output: output vector $\mathbf{y} \in \mathbb{R}^{m}$

Neural Network (input + intermediate hidden layers) $f(\mathbf{x} ; \Theta): \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$
with sigmoid activations: $\mathbf{0} \leq f(\mathbf{x} ; \Theta) \leq \mathbf{1}$
with Tanh activations: $-\mathbf{1} \leq f(\mathbf{x} ; \Theta) \leq \mathbf{1}$
with ReLU activations: $\quad \mathbf{0} \leq f(\mathbf{x} ; \Theta)$
Neural Network (output): linear layer

$$
\hat{\mathbf{y}}=g(\mathbf{x} ; \mathbf{W}, \mathbf{b})=\mathbf{W} f(\mathbf{x} ; \Theta)+\mathbf{b}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{m}
$$

Loss:

$$
\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}})=\|\mathbf{y}-\hat{\mathbf{y}}\|^{2}
$$

Binary Classification (Bernoulli)

Input: feature vector $\mathrm{x} \in \mathbb{R}^{n}$
Output: binary label $y \in\{0,1\}$
Neural Network (input + intermediate hidden layers) $f(\mathbf{x} ; \Theta): \mathbb{R}^{n} \rightarrow \mathbb{R}$
with sigmoid activations: $\mathbf{0} \leq f(\mathbf{x} ; \Theta) \leq \mathbf{1}$

Binary Classification (Bernoulli)

Input: feature vector $\mathrm{x} \in \mathbb{R}^{n}$
Output: binary label $y \in\{0,1\}$
Neural Network (input + intermediate hidden layers) $f(\mathbf{x} ; \Theta): \mathbb{R}^{n} \rightarrow \mathbb{R}$ with sigmoid activations: $\mathbf{0} \leq f(\mathbf{x} ; \Theta) \leq \mathbf{1}$

Neural Network (output): threshold hidden output (which is a sigmoid)

$$
\hat{y}=1[f(\mathbf{x} ; \Theta)>0.5]
$$

Binary Classification (Bernoulli)

Input: feature vector $\mathrm{x} \in \mathbb{R}^{n}$
Output: binary label $y \in\{0,1\}$

Neural Network (input + intermediate hidden layers) $f(\mathbf{x} ; \Theta): \mathbb{R}^{n} \rightarrow \mathbb{R}$ with sigmoid activations: $\mathbf{0} \leq f(\mathbf{x} ; \Theta) \leq \mathbf{1}$

Neural Network (output): threshold hidden output (which is a sigmoid)

$$
\hat{y}=1[f(\mathbf{x} ; \Theta)>0.5]
$$

Problem: Not differentiable, probabilistic interpretation maybe desirable

Binary Classification (Bernoulli)

Input: feature vector $\mathrm{x} \in \mathbb{R}^{n}$
Output: binary label $y \in\{0,1\}$

Neural Network (input + intermediate hidden layers) $f(\mathbf{x} ; \Theta): \mathbb{R}^{n} \rightarrow \mathbb{R}$ with sigmoid activations: $\mathbf{0} \leq f(\mathbf{x} ; \Theta) \leq \mathbf{1}$

Neural Network (output): interpret sigmoid output as probability

$$
p(y=1)=f(\mathbf{x} ; \Theta)
$$

can interpret the score as the log-odds of $y=1$ (a.k.a. the logits)

Binary Classification (Bernoulli)

Input: feature vector $\mathrm{x} \in \mathbb{R}^{n}$
Output: binary label $y \in\{0,1\}$

Neural Network (input + intermediate hidden layers) $f(\mathbf{x} ; \Theta): \mathbb{R}^{n} \rightarrow \mathbb{R}$ with sigmoid activations: $\mathbf{0} \leq f(\mathbf{x} ; \Theta) \leq \mathbf{1}$

Neural Network (output): interpret sigmoid output as probability

$$
p(y=1)=f(\mathbf{x} ; \Theta)
$$

can interpret the score as the log-odds of $y=1$ (a.k.a. the logits)

Loss: similarity between two distributions

Binary Classification (Bernoulli)

Input: feature vector $\mathrm{x} \in \mathbb{R}^{n}$
Output: binary label $y \in\{0,1\}$

We can measure similarity between distribution $p(x)$ and $q(x)$ using cross-entropy

$$
H(p, q)=-\mathbb{E}_{x \sim p}[\log q(x)]
$$

For discrete distributions this ends up being:

$$
H(p, q)=-\sum_{x} p(x) \log q(x)
$$

Loss: similarity between two distributions

Binary Classification (Bernoulli)

Input: feature vector $\mathrm{x} \in \mathbb{R}^{n}$
Output: binary label $y \in\{0,1\}$
Neural Network (input + intermediate hidden layers) $f(\mathbf{x} ; \Theta): \mathbb{R}^{n} \rightarrow \mathbb{R}$ with sigmoid activations: $\mathbf{0} \leq f(\mathbf{x} ; \Theta) \leq \mathbf{1}$

Neural Network (output): interpret sigmoid output as probability

$$
p(y=1)=f(\mathbf{x} ; \Theta)
$$

can interpret the score as the log-odds of $y=1$ (a.k.a. the logits)

Loss:

$$
\mathcal{L}(y, \hat{y})=-y \log [f(\mathbf{x} ; \Theta)]-(1-y) \log [1-f(\mathbf{x} ; \Theta)]
$$

Binary Classification (Bernoulli)

Input: feature vector $\mathrm{x} \in \mathbb{R}^{n}$
Output: binary label $y \in\{0,1\}$
Neural Network (input + intermediate hidden layers) $f(\mathbf{x} ; \Theta): \mathbb{R}^{n} \rightarrow \mathbb{R}$ with sigmoid activations: $\mathbf{0} \leq f(\mathbf{x} ; \Theta) \leq \mathbf{1}$

Neural Network (output): interpret sigmoid output as probability

$$
p(y=1)=f(\mathbf{x} ; \Theta)
$$

can interpret the score as the log-odds of $y=1$ (a.k.a. the logits)

Loss:

$$
\mathcal{L}(y, \hat{y})= \begin{cases}-\log [1-f(\mathbf{x} ; \Theta)] & y=0 \\ -\log [f(\mathbf{x} ; \Theta)] & y=1\end{cases}
$$

Binary Classification (Bernoulli)

Input: feature vector $\mathrm{x} \in \mathbb{R}^{n}$
Output: binary label $y \in\{0,1\}$

Neural Network (input + intermediate hidden layers) $f(\mathbf{x} ; \Theta): \mathbb{R}^{n} \rightarrow \mathbb{R}$ with sigmoid activations: $\mathbf{0} \leq f(\mathbf{x} ; \Theta) \leq \mathbf{1}$

Neural Network (output): interpret sigmoid output as probability

$$
p(y=1)=f(\mathbf{x} ; \Theta)
$$

Minimizing this loss is the same as maximizing log likelihood of data

Loss:

$$
\mathcal{L}(y, \hat{y})= \begin{cases}-\log [1-f(\mathbf{x} ; \Theta)] & y=0 \\ -\log [f(\mathbf{x} ; \Theta)] & y=1\end{cases}
$$

Binary Classification (Bernoulli)

Input: feature vector $\mathrm{x} \in \mathbb{R}^{n}$
Output: binary label $y \in\{0,1\}$
Neural Network (input + intermediate hidden layers) $f(\mathbf{x} ; \Theta): \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$

$$
\text { with ReLU activations: } \quad \mathbf{0} \leq f(\mathbf{x} ; \Theta)
$$

Binary Classification (Bernoulli)

Input: feature vector $\mathrm{x} \in \mathbb{R}^{n}$
Output: binary label $y \in\{0,1\}$
Neural Network (input + intermediate hidden layers) $f(\mathbf{x} ; \Theta): \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$

$$
\text { with ReLU activations: } \quad \mathbf{0} \leq f(\mathbf{x} ; \Theta)
$$

Neural Network (output): linear layer with one neuron and sigmoid activation

