

Topics in AI (CPSC 532S): Multimodal Learning with Vision, Language and Sound

Lecture 23: Large Scale Visio-Lingual Models (cont.)

Today is our last lecture ...

... I hope you enjoyed the class!

(Please do fill out <u>evaluation reports</u> on **Canvas**)

Logistics

- Assignment 3 & 4 grades (blank output)
- Assignment 3 grade fixes (out of 100, not 135 fixed)
- Be careful of looking at Average Grade on Canvas

- Assignment 5 is due today (can hand in by Friday)
- Research Paper Presentations (all are in)
- Reading Reviews (some 3 & 4 outstanding)

Logistics

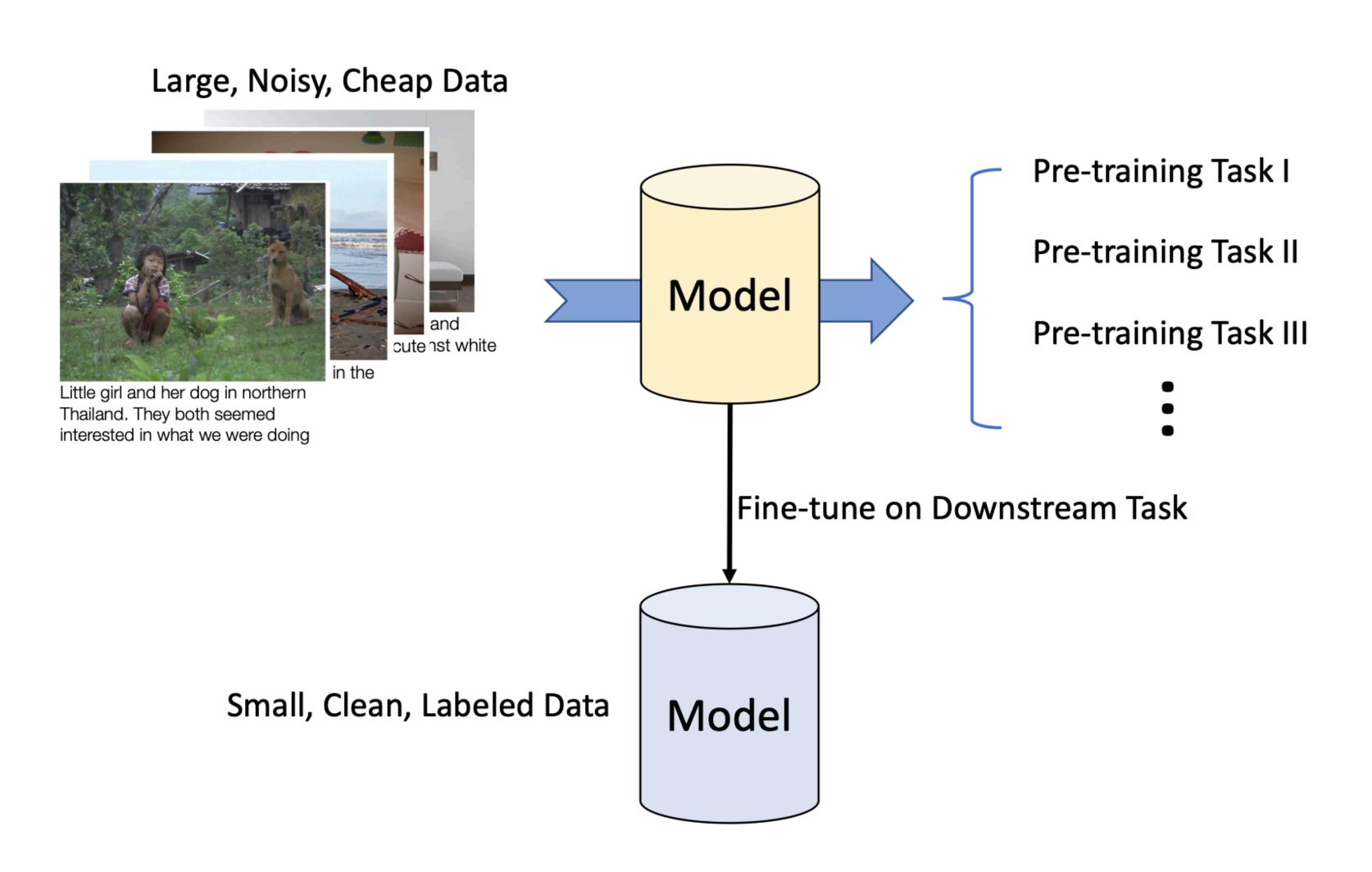
My todo's

- List of paper presentations
- Grades for Paper Readings and Presentations
- Grades for Assignment 5

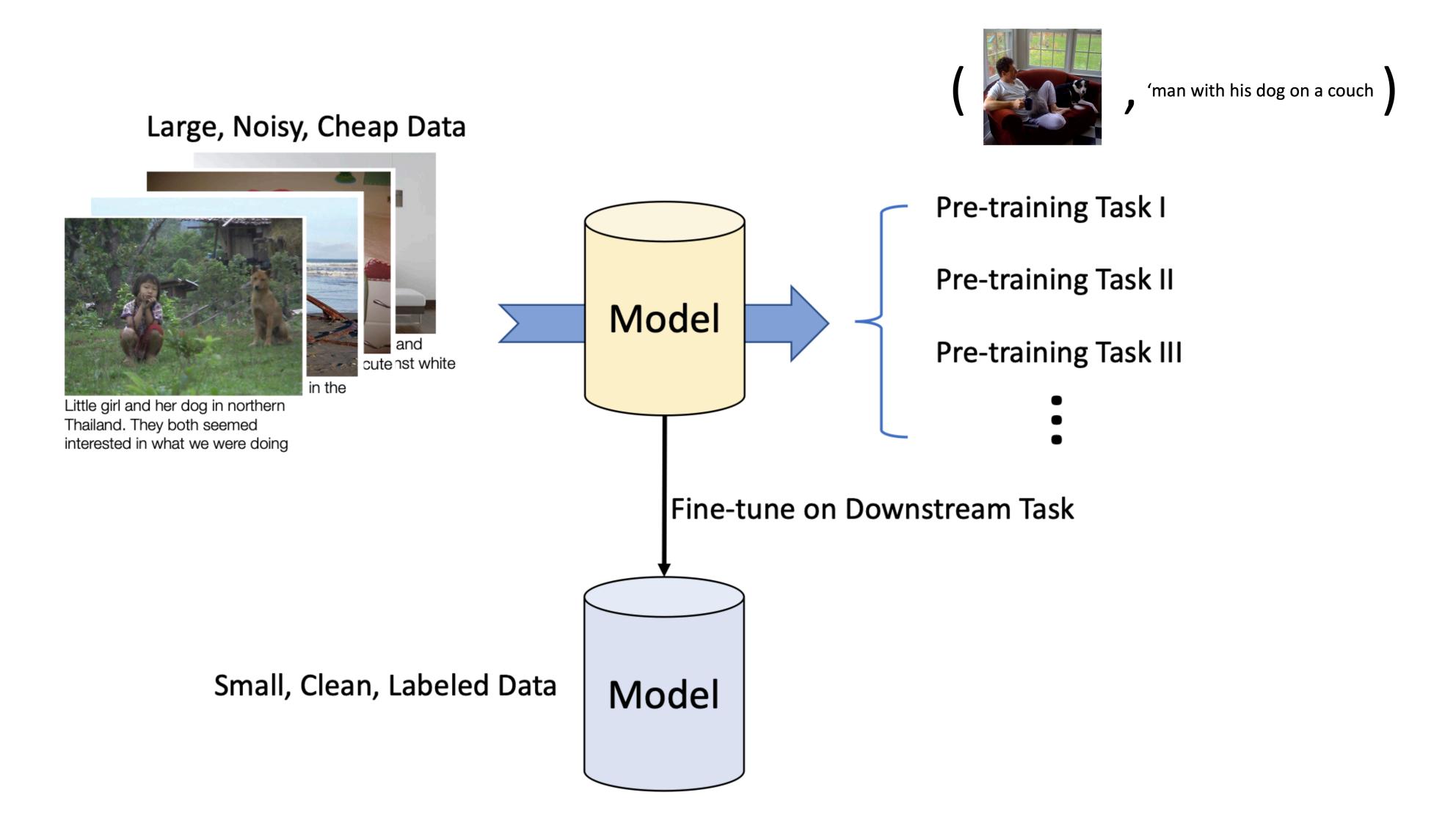
Your todo's

- Hand in Assignment 5
- Hand in Paper Readings 3 & 4 (if you have not done this yet)
- Final Project Presentations on Tuesday next week 12-3pm

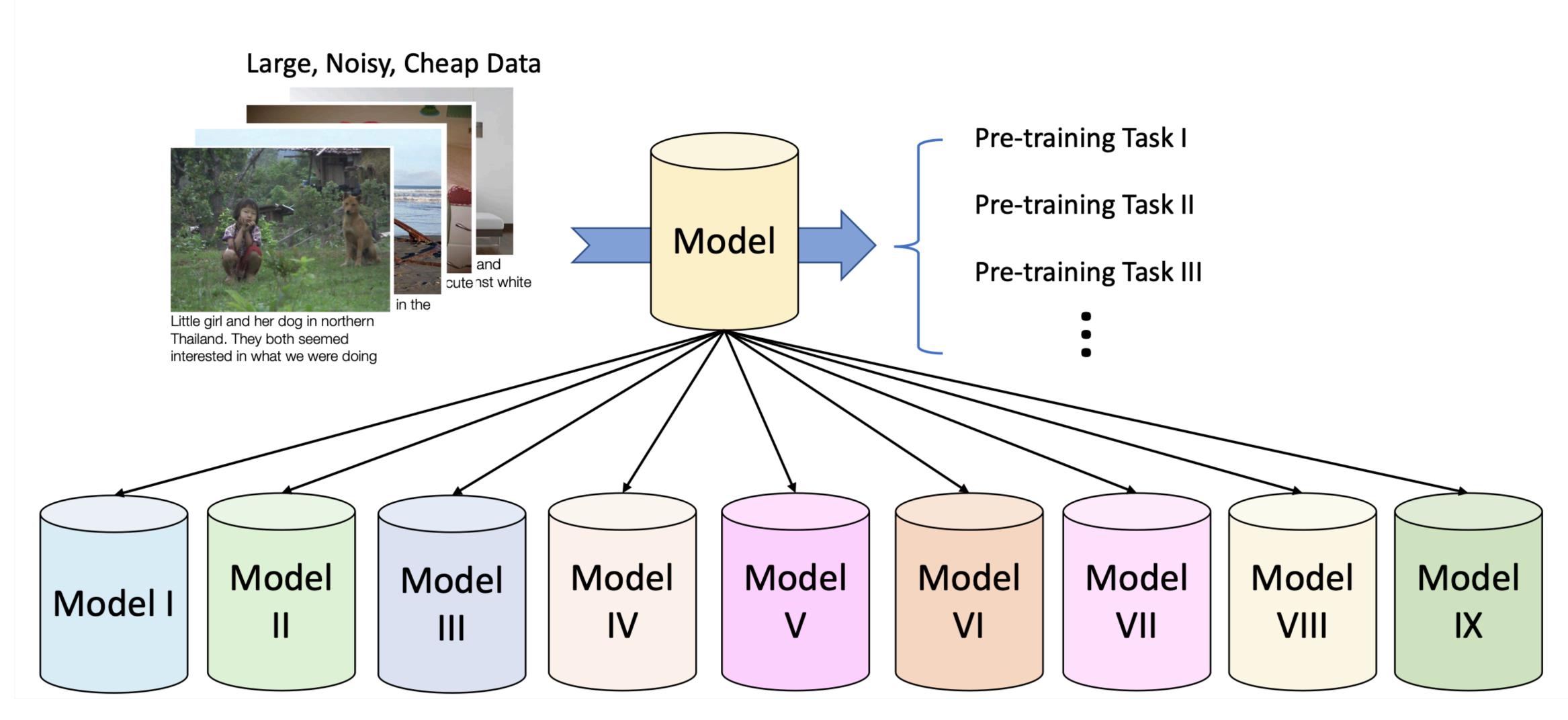
Pre-training and Foundational Models



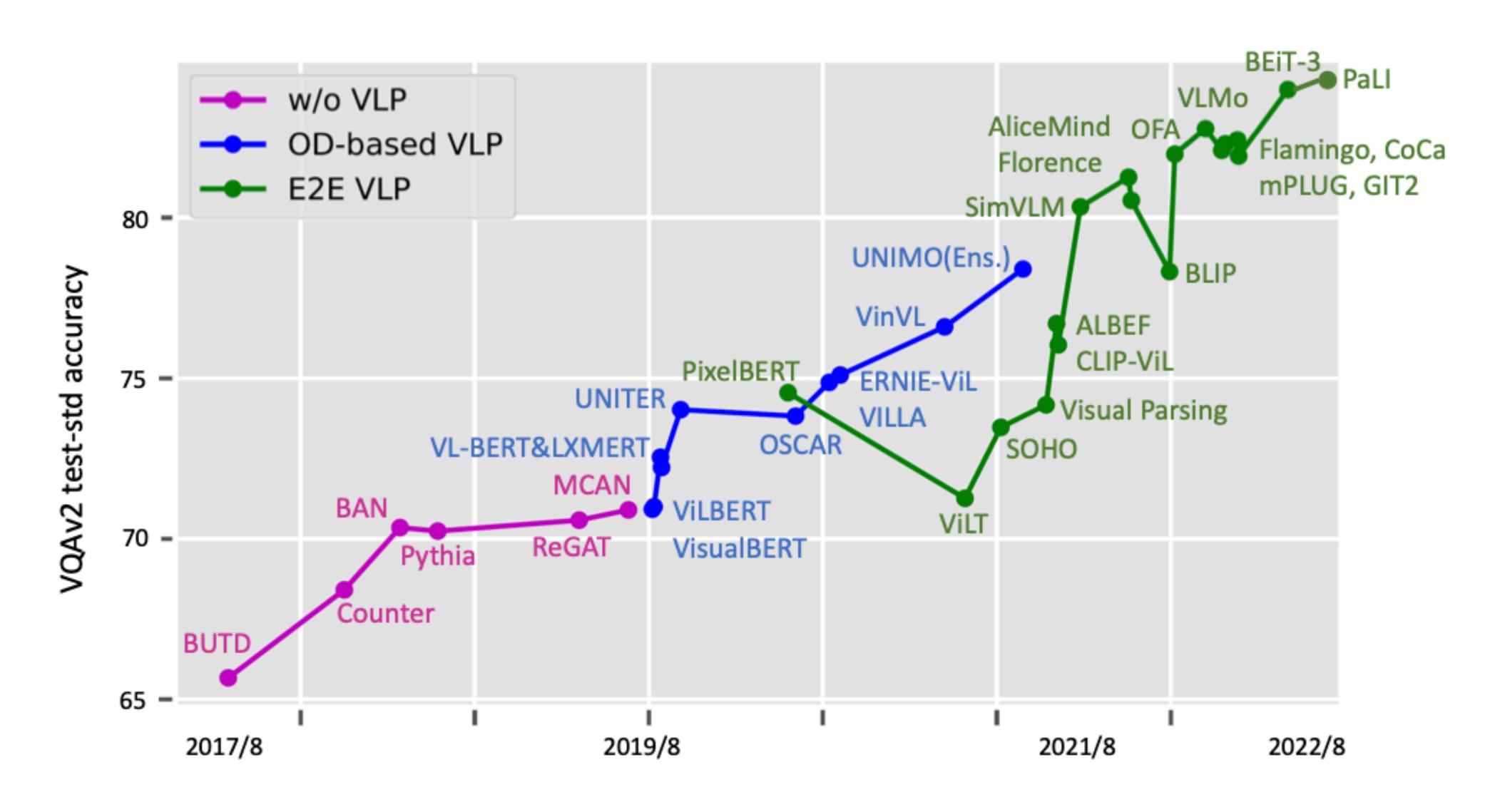
Pre-training and Foundational Models



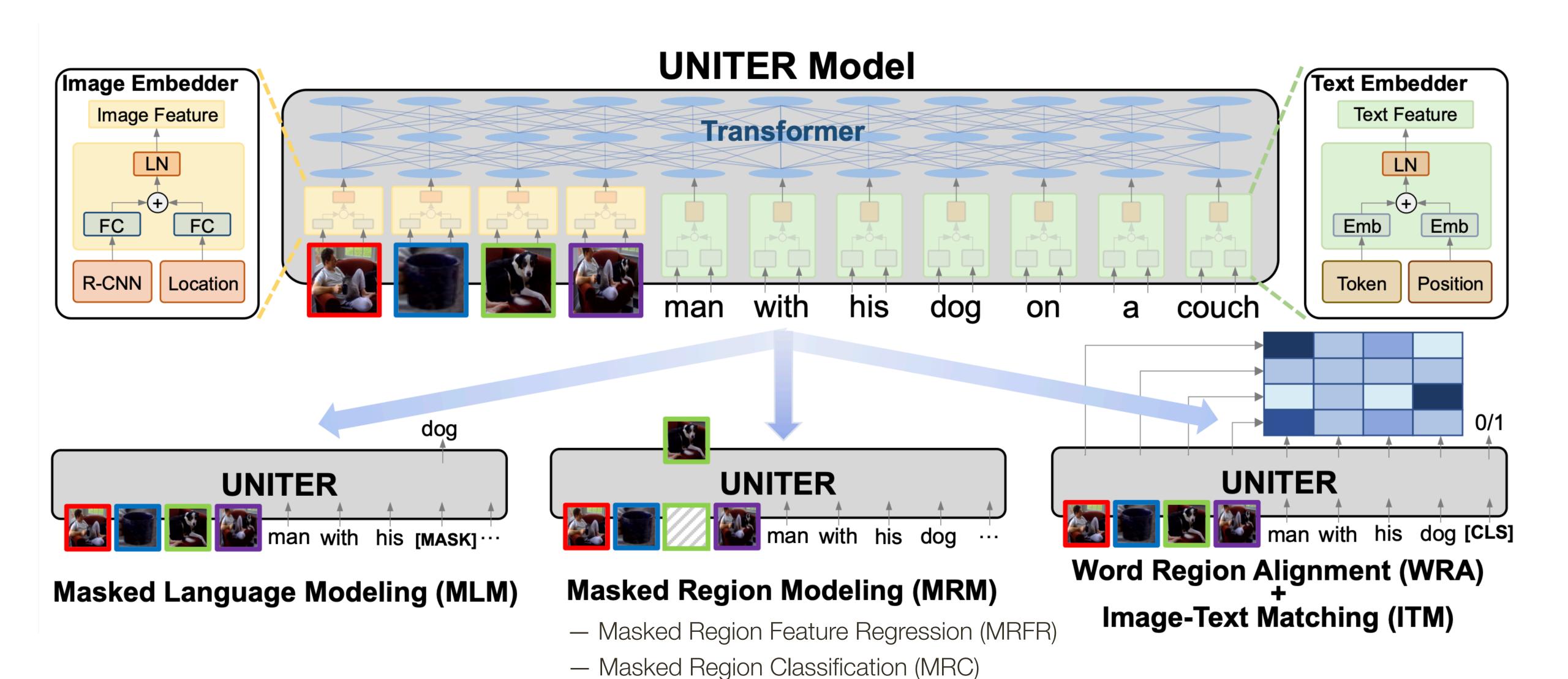
Pre-training and Foundational Models



Recent History of Visio-Lingual Models

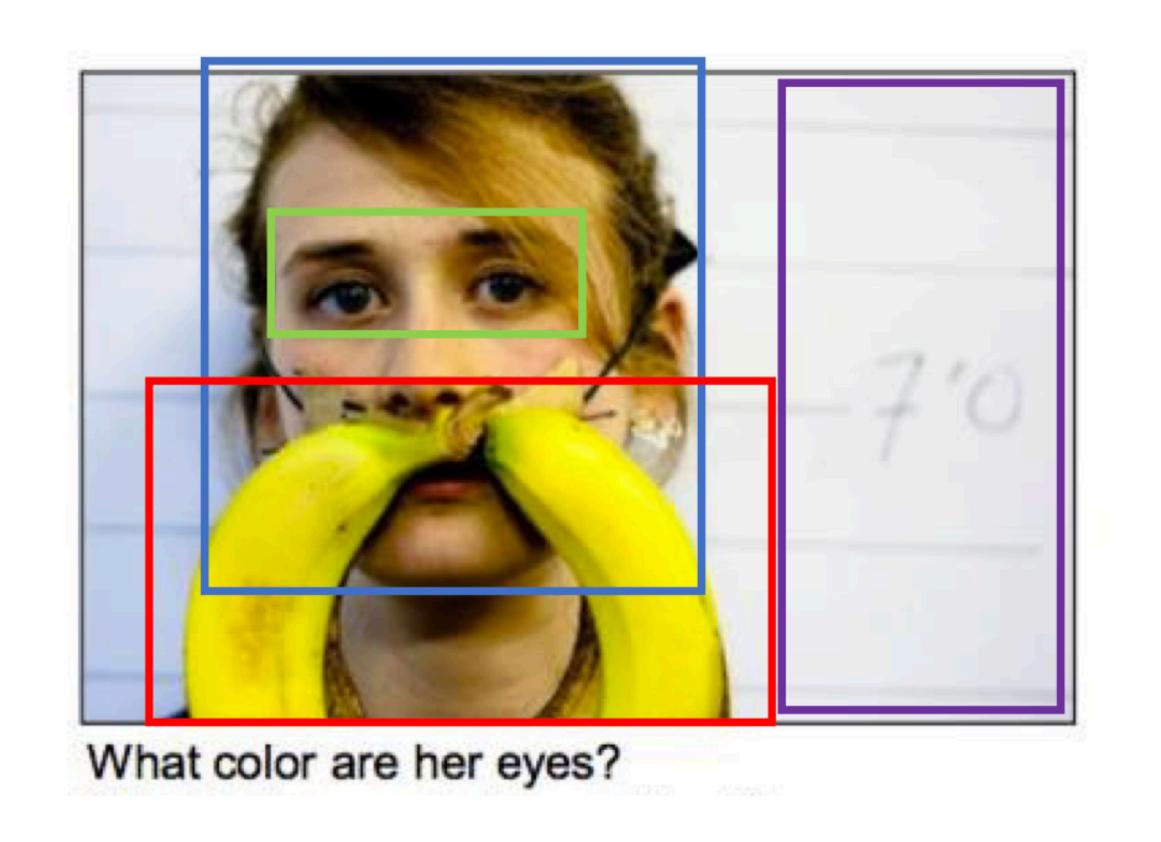


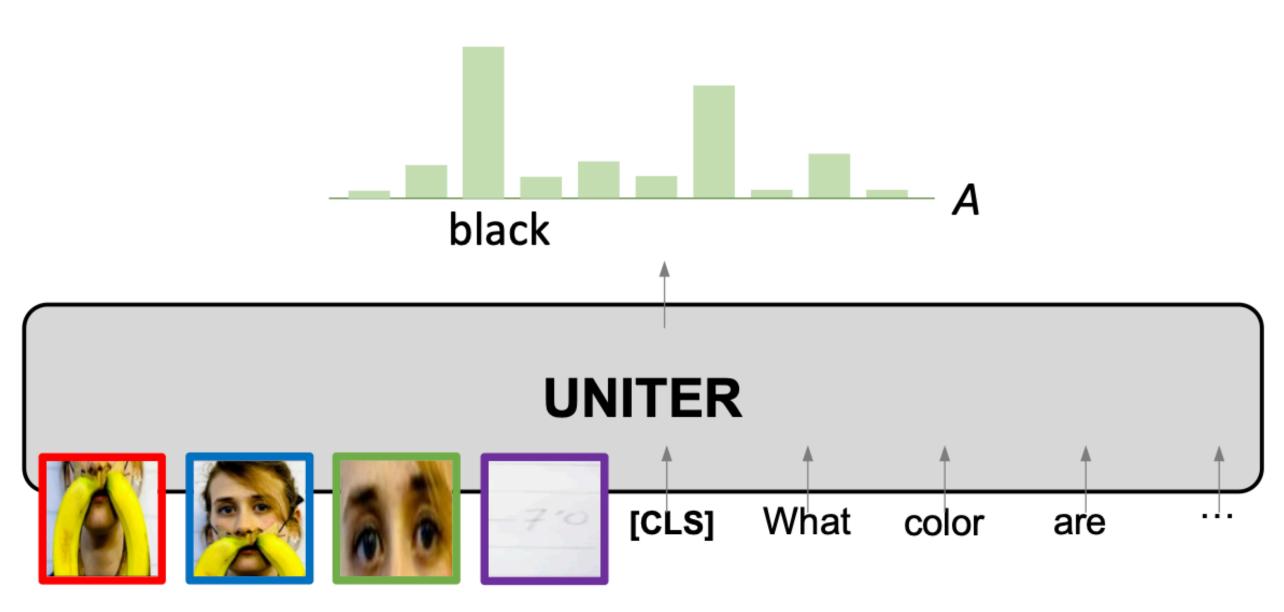
UNITER: UNiversal Image-TExt Representation Learning



Masked Region Classification with KL-Divergence (MRC-kl)

Downstream Task 1: Visual Question Answering





Downstream Task 2: Visual Entailment

- Two woman are holding packages.
 - The sisters are hugging goodbye while holding to go packages after just eating lunch.
- The men are fighting outside a deli.

- Entailment
- Neutral

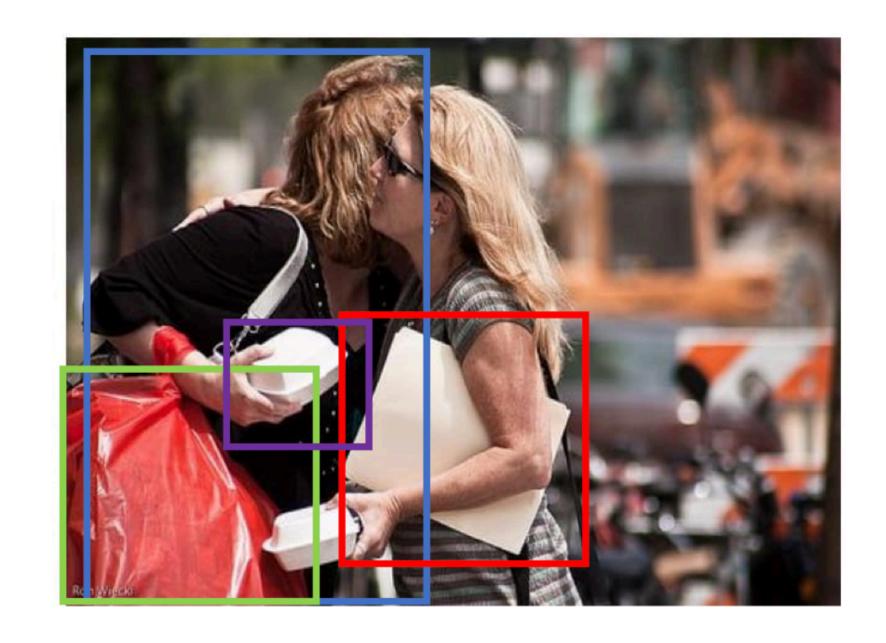
Contradiction

Hypothesis

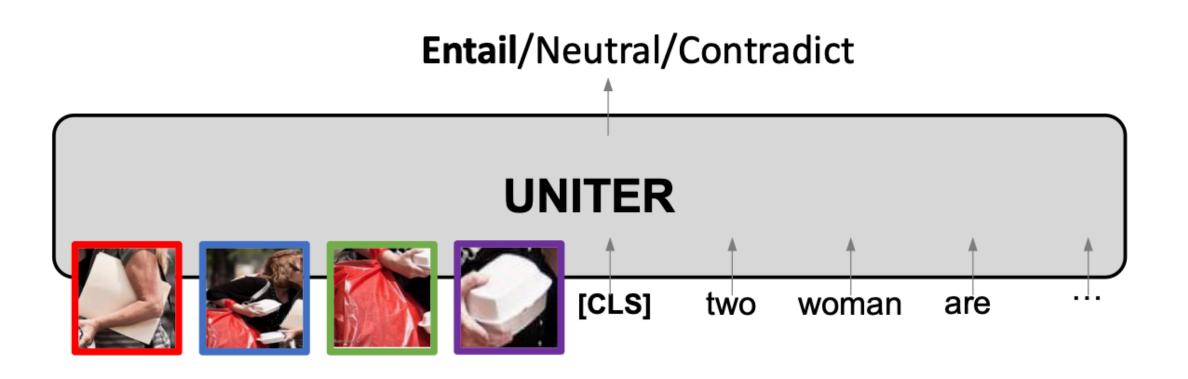
Answer

Premise

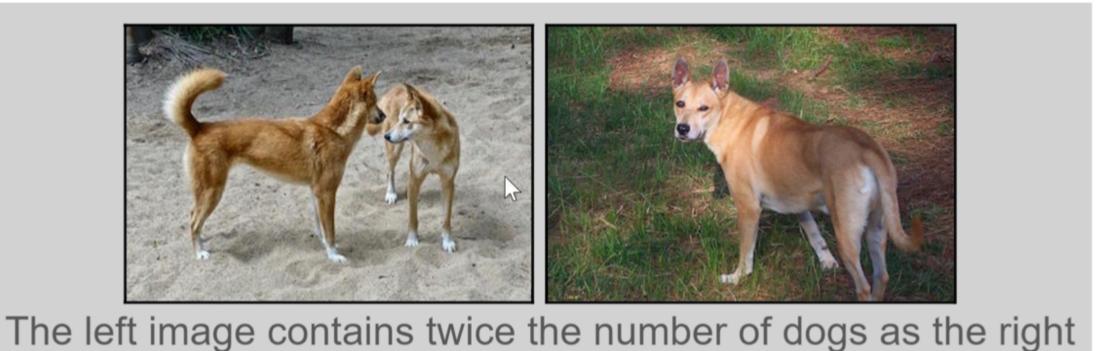
Downstream Task 2: Visual Entailment



Two woman are holding packages.



Downstream Task 3: Natural Language for Visual Reasoning

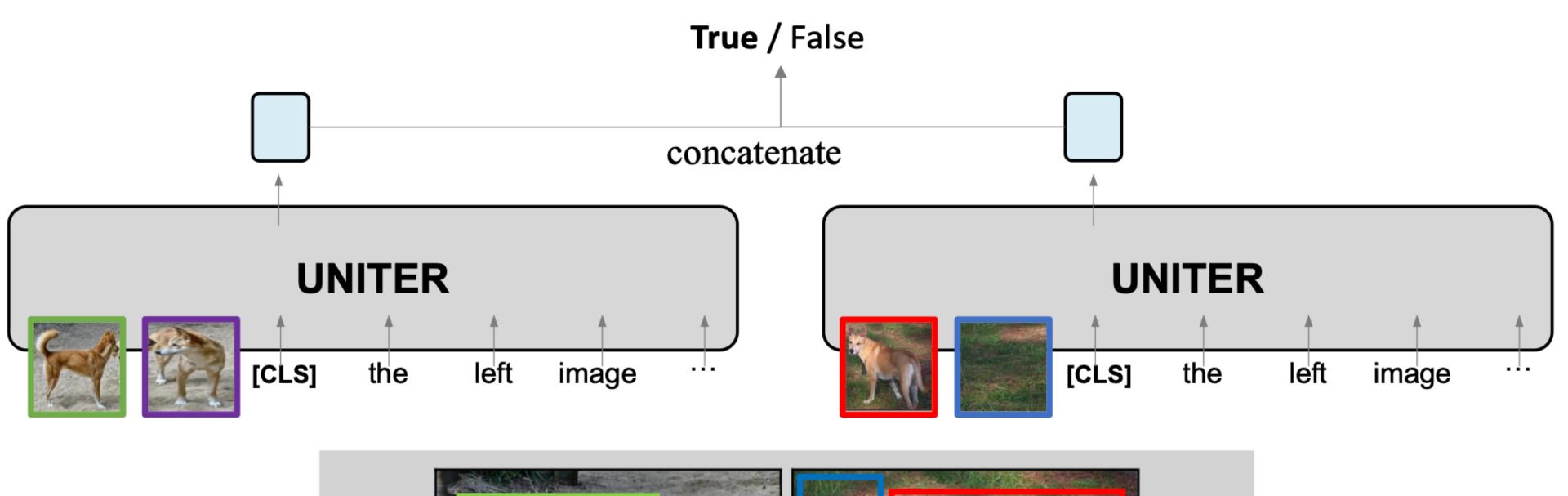


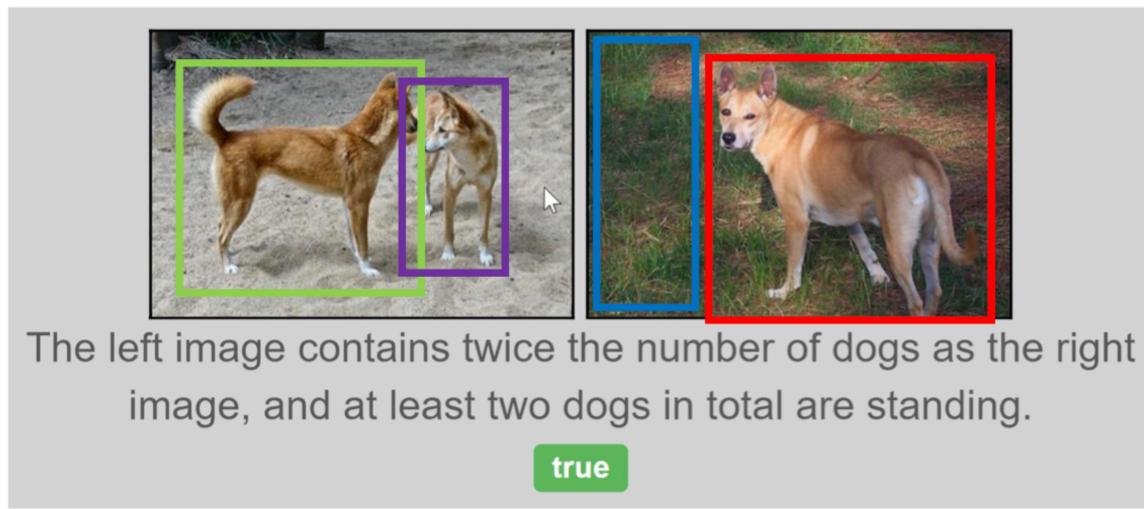
image, and at least two dogs in total are standing.

true

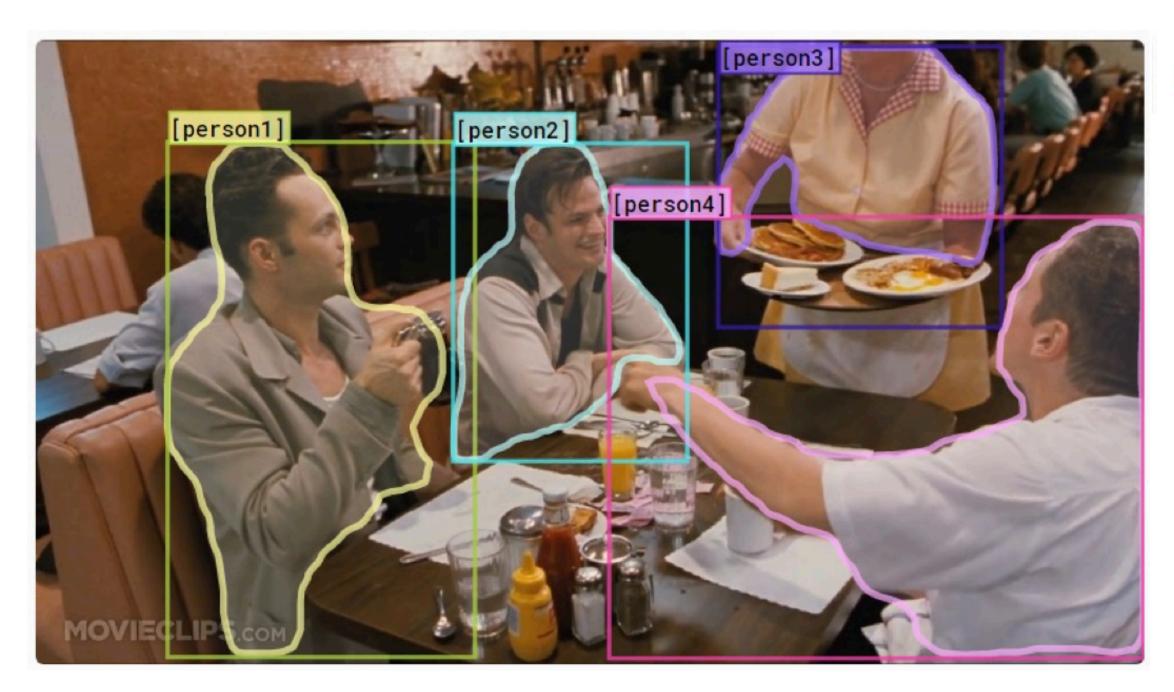


Downstream Task 3: Natural Language for Visual Reasoning





Downstream Task 4: Visual Commonsense Reasoning



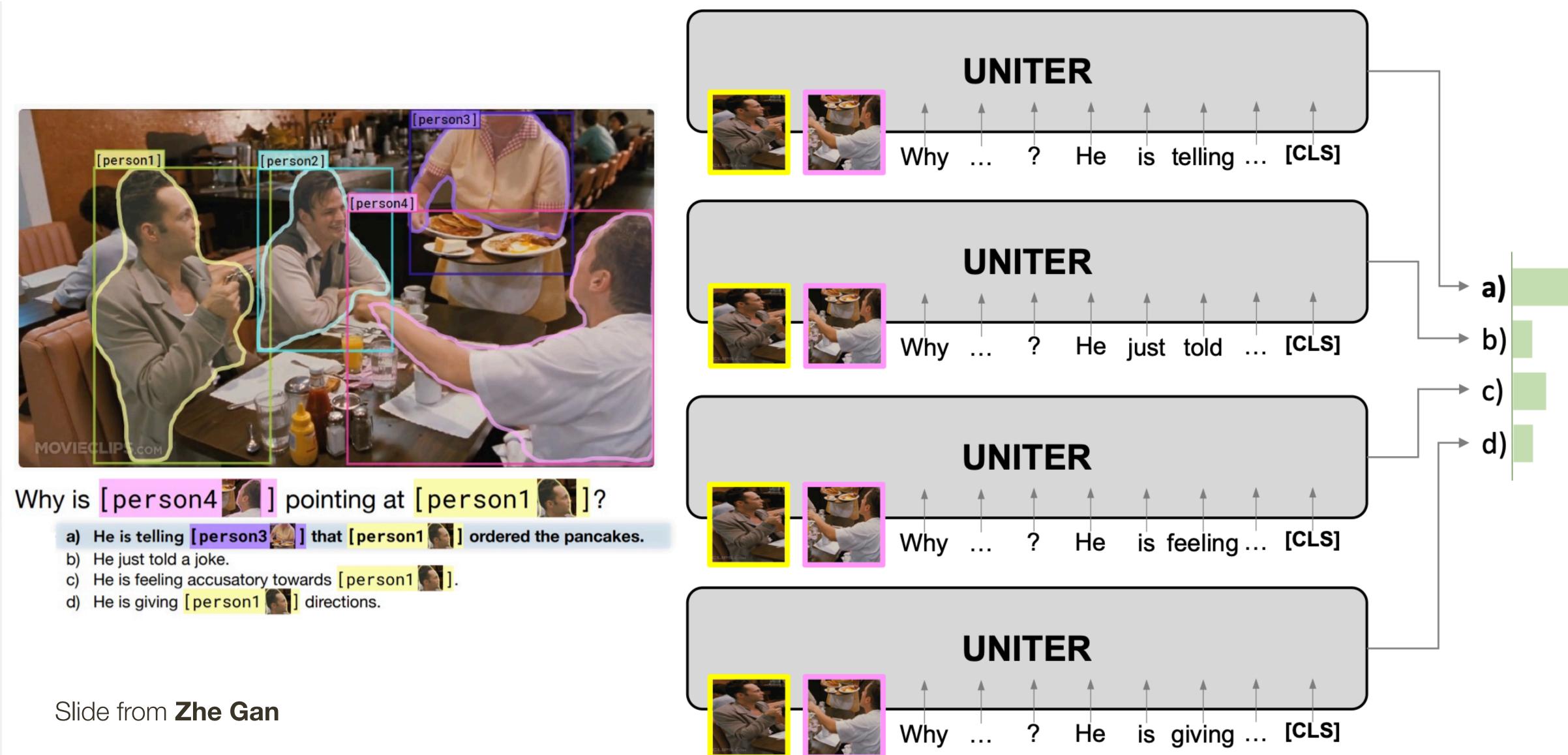
Why is [person4] pointing at [person1]?

- a) He is telling [person3 2] that [person1] ordered the pancakes.
- b) He just told a joke.
- c) He is feeling accusatory towards [person1].
- d) He is giving [person1] directions.

I choose (a) because:

- a) [person1] has the pancakes in front of him.
- b) [person4 is taking everyone's order and asked for clarification.
- c) [person3 is looking at the pancakes and both she and [person2 is are smiling slightly.
- d) [person3 [] is delivering food to the table, and she might not know whose order is whose.

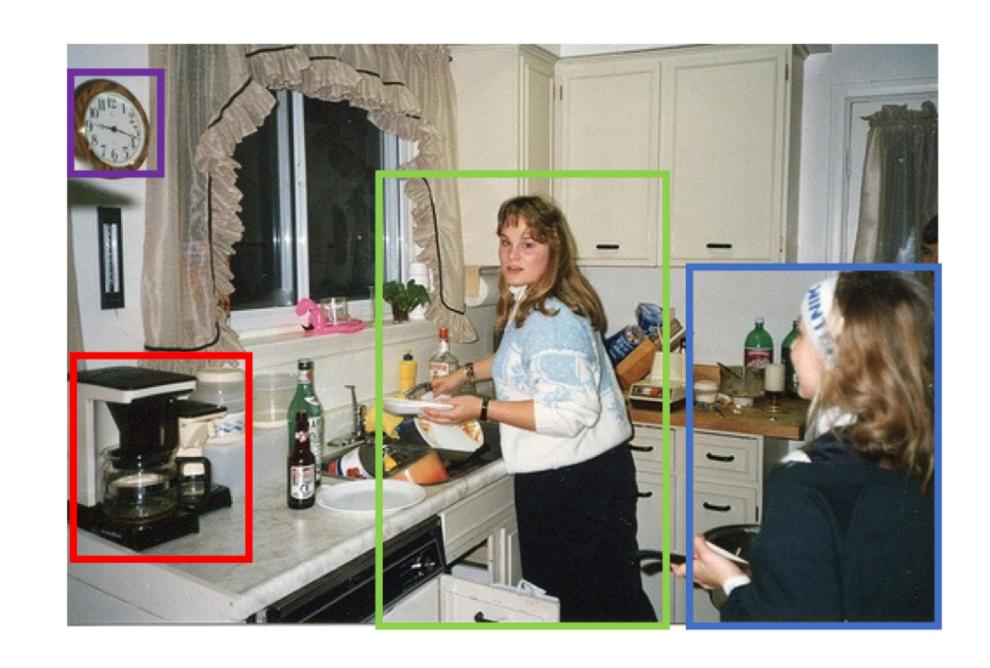
Downstream Task 4: Visual Commonsense Reasoning

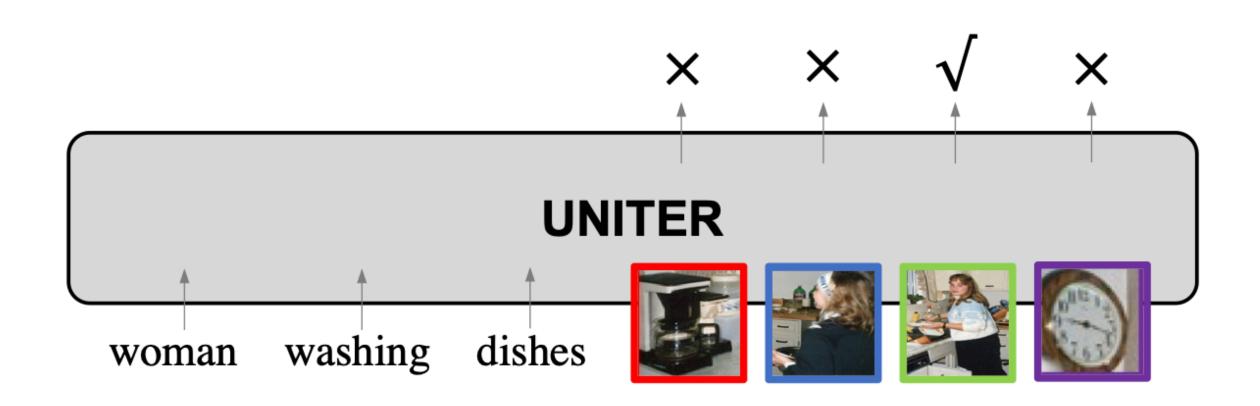


Downstream Task 5: Referring Expression Comprehension (Grounding)

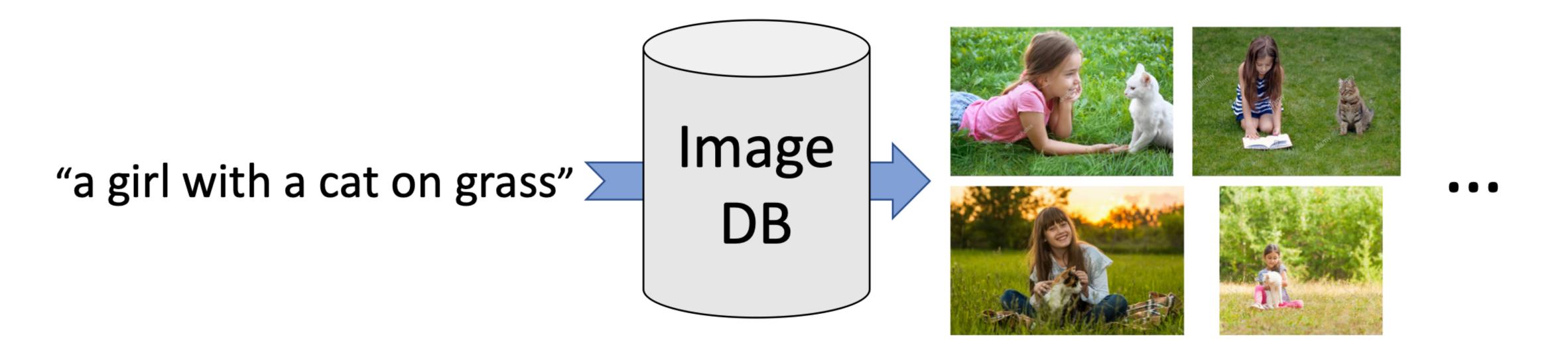
woman washing dishes

Downstream Task 5: Referring Expression Comprehension (Grounding)

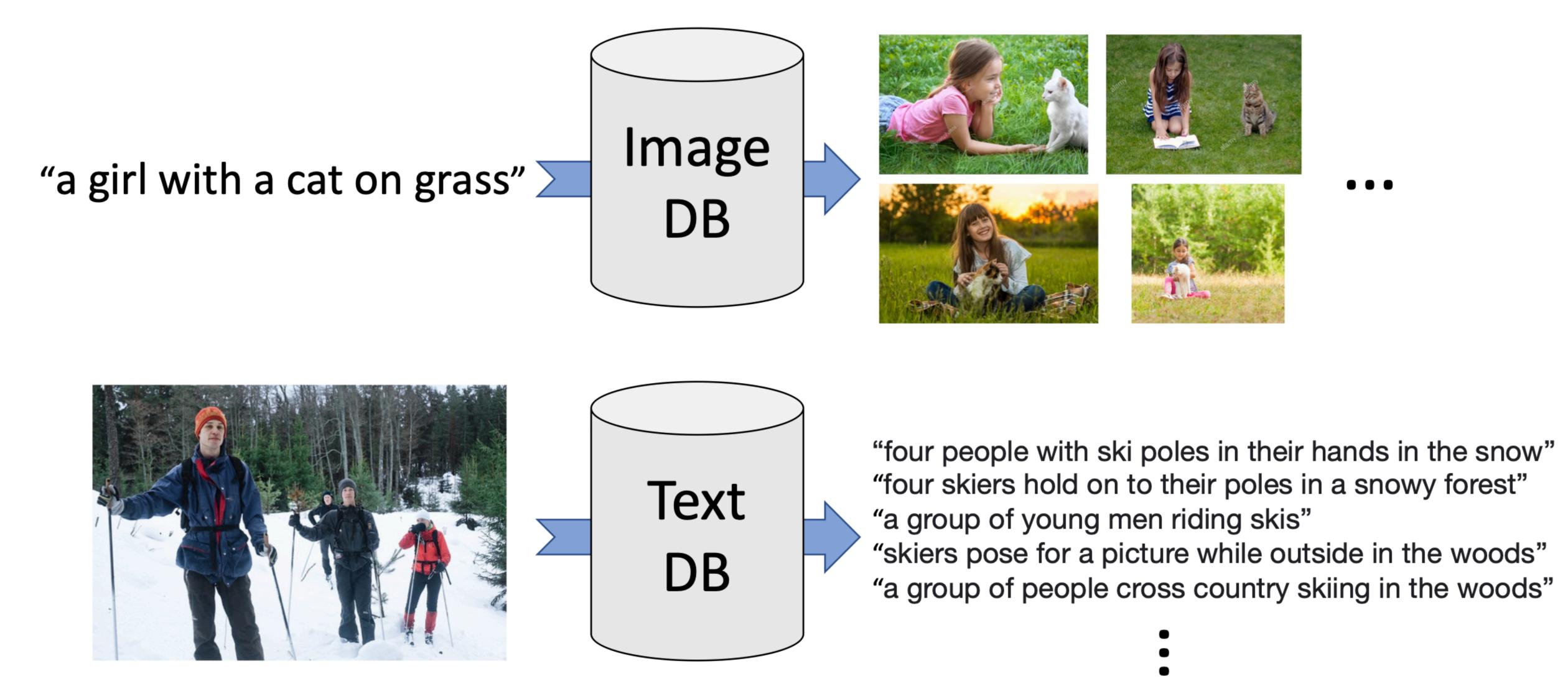




Downstream Task 6: Image-Text Retrieval

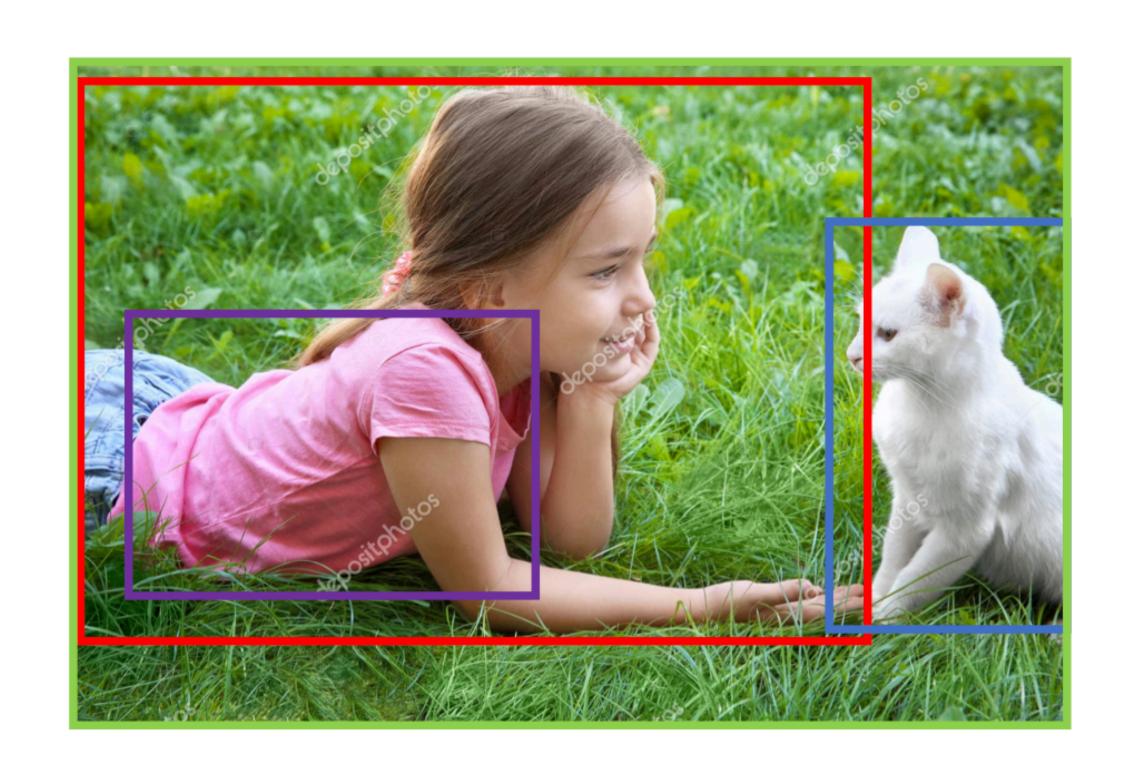


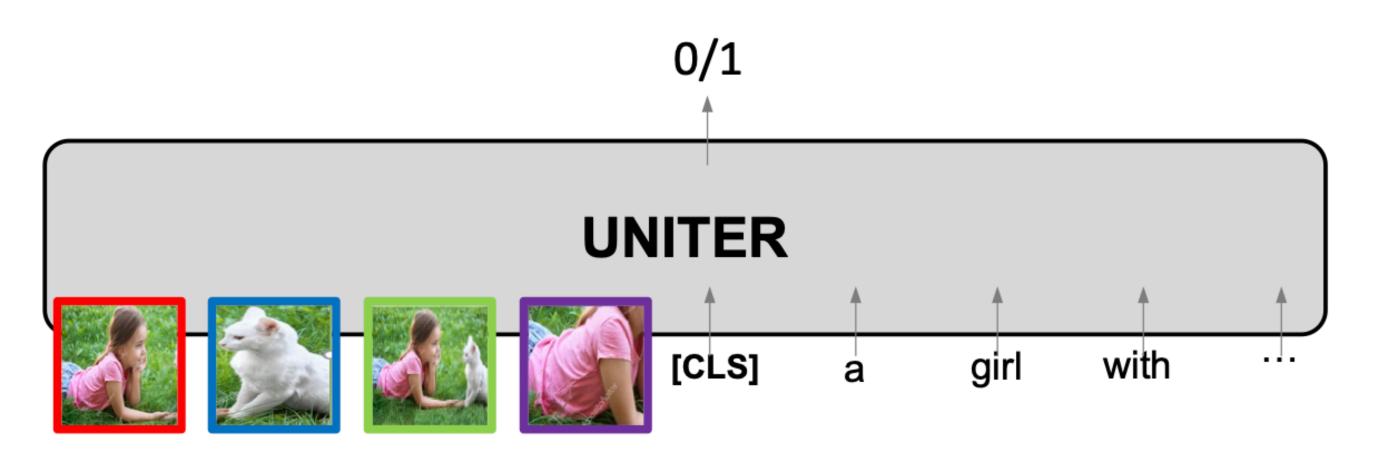
Downstream Task 6: Image-Text Retrieval



Slide from Zhe Gan

Downstream Task 6: Image-Text Retrieval



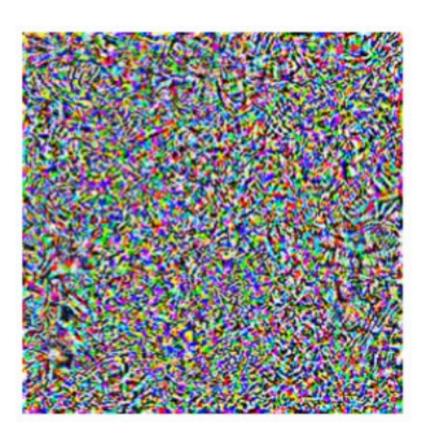


Preliminary: Adversarial Attacks

Neural Networks are prone to label-preserving adversarial examples

Computer Vision:

+ 0.005 x



"airliner"

Natural Language Processing:

Original: What is the oncorhynchus also called? A: chum salmon

Changed: What's the oncorhynchus

also called? A: keta

(b) Example for $(WP is \rightarrow WP's)$

Original: How long is the Rhine?

A: 1,230 km

Changed: How long is the Rhine??

A: more than 1,050,000

(c) Example for $(? \rightarrow ??)$

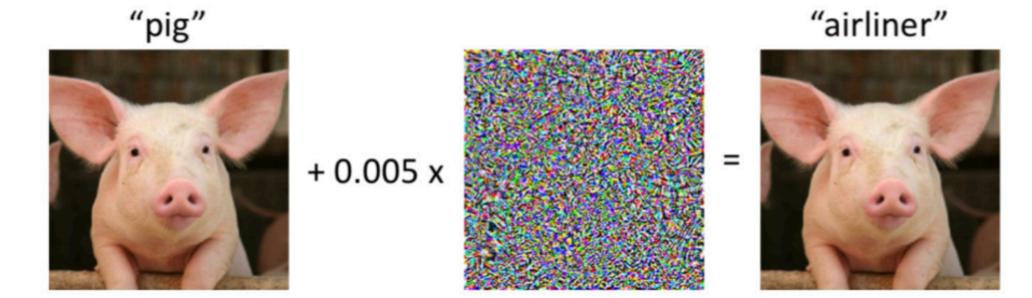
^[1] Explaining and harnessing adversarial examples. arXiv:1412.6572

^[2] Semantically equivalent adversarial rules for debugging nlp models. ACL (2018)

Preliminary: Adversarial Training

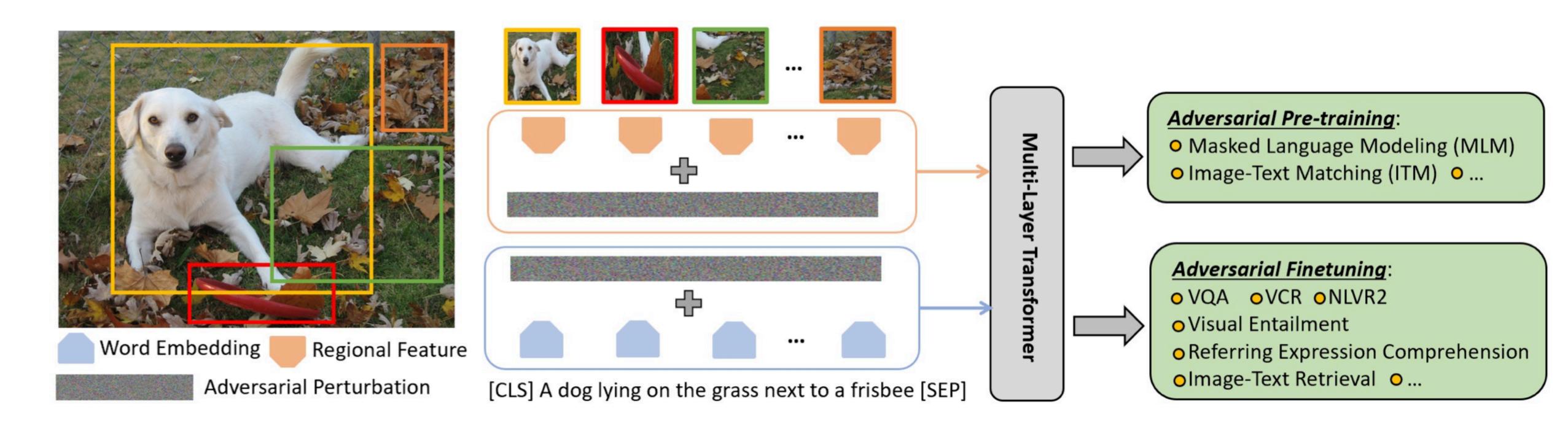
A min-max game to harness adversarial examples

$$\min_{\theta} \mathbb{E}_{(x,y)\sim\widehat{\mathcal{D}}} \left[\max_{\delta \in S} \mathcal{L}(x+\delta,y;\theta) \right]$$



- Use adversarial examples as additional training samples
 - On one hand, we try to find perturbations that maximize the empirical risk
 - On the other hand, the model tries to make correct predictions on adversarial examples
- What doesn't kill you makes you stronger!

- Ingredient #1: Adversarial pre-training + finetuning
- Ingredient #2: Perturbations in the embedding space
- Ingredient #3: Enhanced adversarial training algorithm



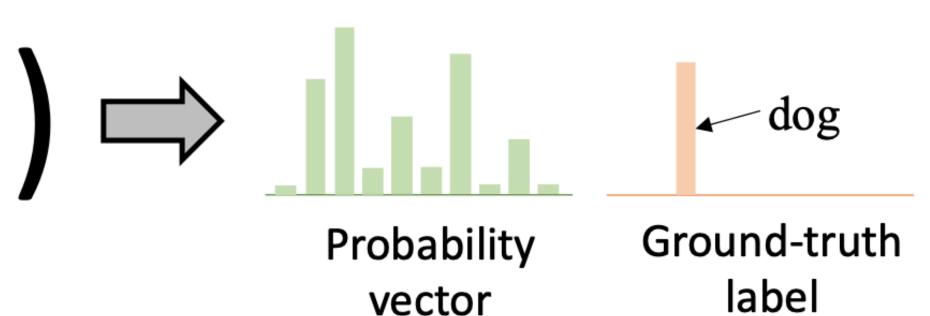
Training objective:

$$\min_{\boldsymbol{\theta}} \mathbb{E}_{(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt}, \boldsymbol{y}) \sim \mathcal{D}} \left[\mathcal{L}_{std}(\boldsymbol{\theta}) + \mathcal{R}_{at}(\boldsymbol{\theta}) + \alpha \cdot \mathcal{R}_{kl}(\boldsymbol{\theta}) \right]$$

Cross-entropy loss on clean data:

$$\mathcal{L}_{std}(\boldsymbol{\theta}) = L(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt}), \boldsymbol{y})$$

• A [MASK] lying on the grass next to a frisbee

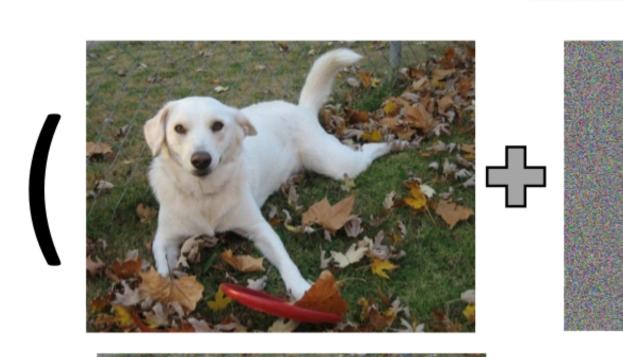


Training objective:

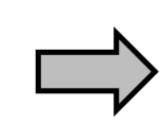
$$\min_{\boldsymbol{\theta}} \mathbb{E}_{(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt}, \boldsymbol{y}) \sim \mathcal{D}} \left[\mathcal{L}_{std}(\boldsymbol{\theta}) + \mathcal{R}_{at}(\boldsymbol{\theta}) + \alpha \cdot \mathcal{R}_{kl}(\boldsymbol{\theta}) \right]$$

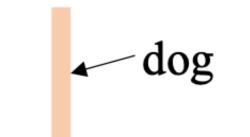
Cross-entropy loss on adversarial embeddings:

$$\mathcal{R}_{at}(\boldsymbol{\theta}) = \max_{||\boldsymbol{\delta}_{img}|| \le \epsilon} L(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img} + \boldsymbol{\delta}_{img}, \boldsymbol{x}_{txt}), \boldsymbol{y}) + \max_{||\boldsymbol{\delta}_{txt}|| \le \epsilon} L(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt} + \boldsymbol{\delta}_{txt}), \boldsymbol{y})$$

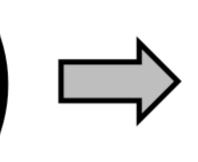


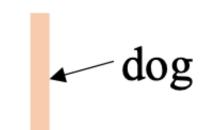
• A [MASK] lying on the grass next to a frisbee





A [MASK] lying on the grass next to a frisbee





Training objective:

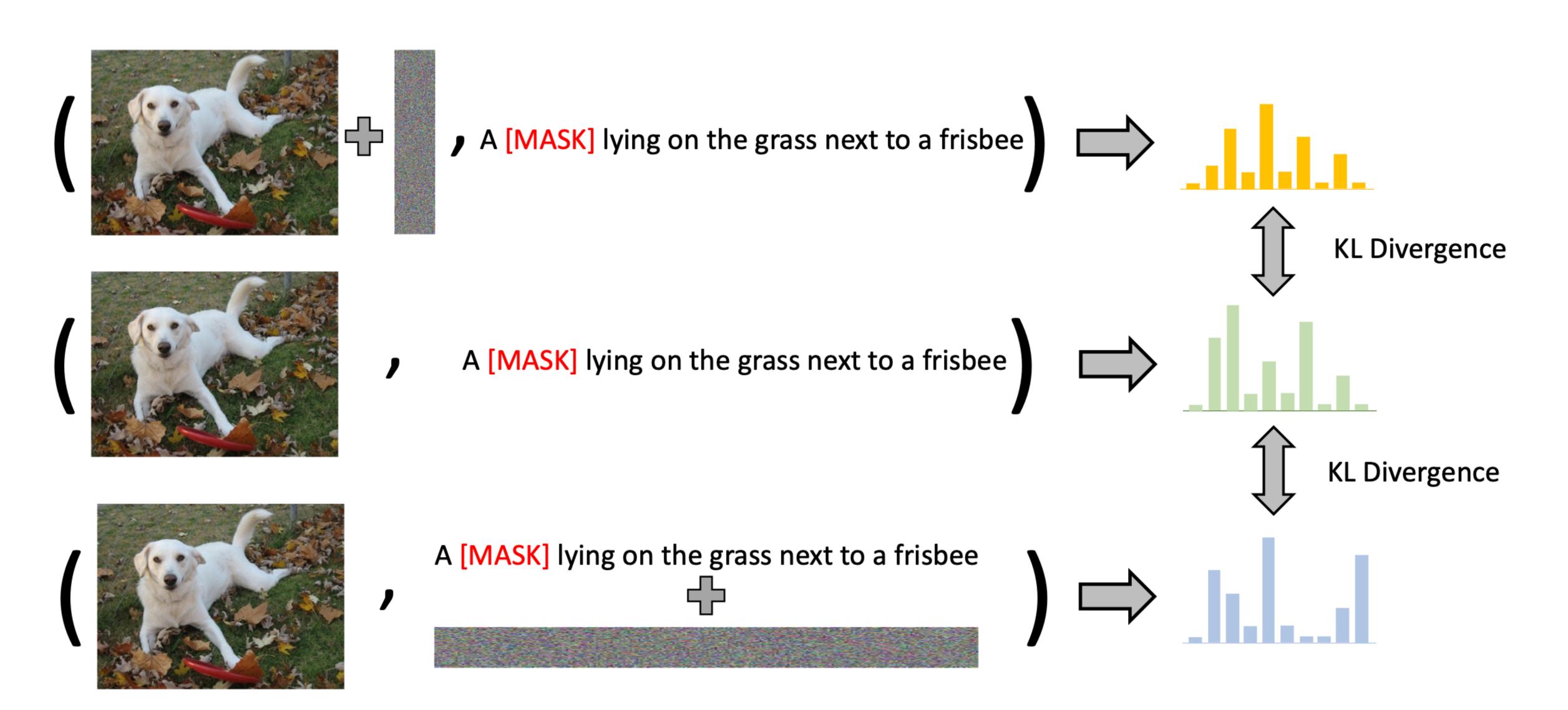
$$\min_{\boldsymbol{\theta}} \mathbb{E}_{(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt}, \boldsymbol{y}) \sim \mathcal{D}} \left[\mathcal{L}_{std}(\boldsymbol{\theta}) + \mathcal{R}_{at}(\boldsymbol{\theta}) + \alpha \cdot \mathcal{R}_{kl}(\boldsymbol{\theta}) \right]$$

KL-divergence loss for fine-grained adversarial regularization

$$\mathcal{R}_{kl}(\boldsymbol{\theta}) = \max_{||\boldsymbol{\delta}_{img}|| \leq \epsilon} L_{kl}(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img} + \boldsymbol{\delta}_{img}, \boldsymbol{x}_{txt}), f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt}))$$

$$+ \max_{||\boldsymbol{\delta}_{txt}|| \leq \epsilon} L_{kl}(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt} + \boldsymbol{\delta}_{txt}), f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt})),$$
where $L_{kl}(p, q) = \text{KL}(p||q) + \text{KL}(q||p)$.

 Not only label-preserving, but the confidence level of the prediction between clean data and adversarial examples should also be close

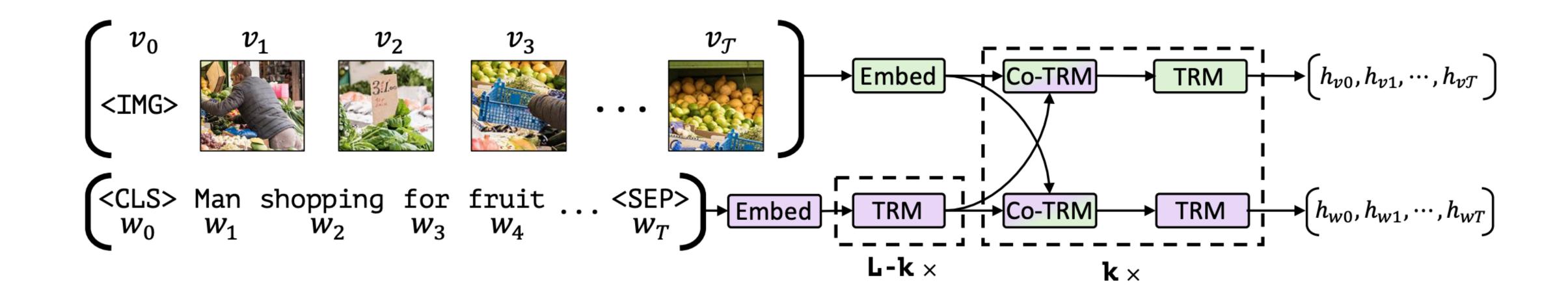


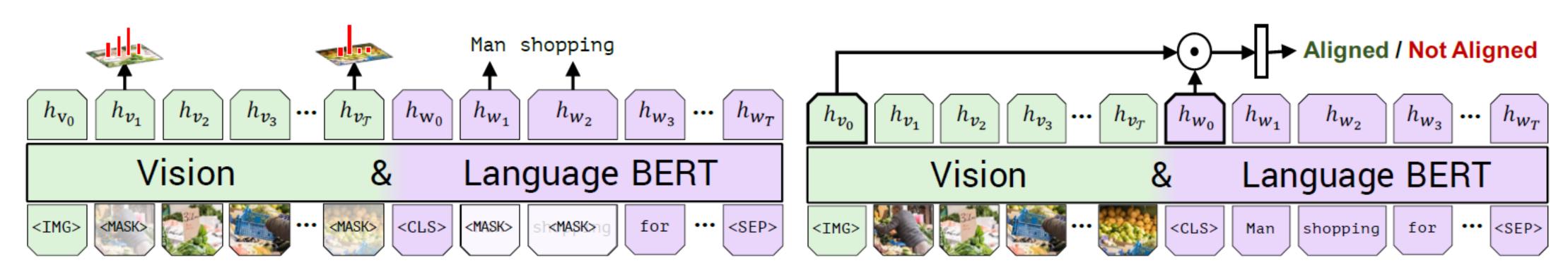
- Established new state of the art on all the tasks considered
- Gain: +0.85 on VQA, +2.9 on VCR, +1.49 on NLVR2, +0.64 on SNLI-VE

Method	V	QA		VCR	$NLVR^2$		SNLI-VE		
Wicthod	test-dev	test-std	$Q \rightarrow A$	$QA \rightarrow R$	$Q \rightarrow AR$	dev	test-P	val	test
Vilbert	70.55	70.92	72.42 (73.3)	74.47 (74.6)	54.04 (54.8)	E	-		- (=)
VisualBERT	70.80	71.00	70.8 (71.6)	73.2 (73.2)	52.2 (52.4)	67.4	67.0	_	_
LXMERT	72.42	72.54	-	_	_	74.90	74.50		-
Unicoder-VL	_	_	72.6 (73.4)	74.5 (74.4)	54.4 (54.9)	_	_	_	_
12-in-1	73.15	-	-	-	-	-	78.87	-	76.95
VL-BERT _{BASE}	71.16	-	73.8 (-)	74.4 (-)	55.2 (-)	-	-	-	-
Oscar _{BASE}	73.16	73.44	-	-	_	78.07	78.36	-	-
UNITER _{BASE}	72.70	72.91	74.56 (75.0)	77.03 (77.2)	57.76 (58.2)	77.18	77.85	78.59	78.28
VILLA BASE	73.59	73.67	75.54 (76.4)	78.78 (79.1)	59.75 (60.6)	78.39	79.30	79.47	79.03
VL-BERT _{LARGE}	71.79	72.22	75.5 (75.8)	77.9 (78.4)	58.9 (59.7)	14		711	-
Oscar _{LARGE}	73.61	73.82				79.12	80.37	_	_
UNITERLARGE	73.82	74.02	77.22 (77.3)	80.49 (80.8)	62.59 (62.8)	79.12	79.98	79.39	79.38
VILLA _{LARGE}	74.69	74.87	78.45 (78.9)	82.57 (82.8)	65.18 (65.7)	79.76	81.47	80.18	80.02

⁽a) Results on VQA, VCR, NLVR², and SNLI-VE.

Visual BERT (VIIBERT)





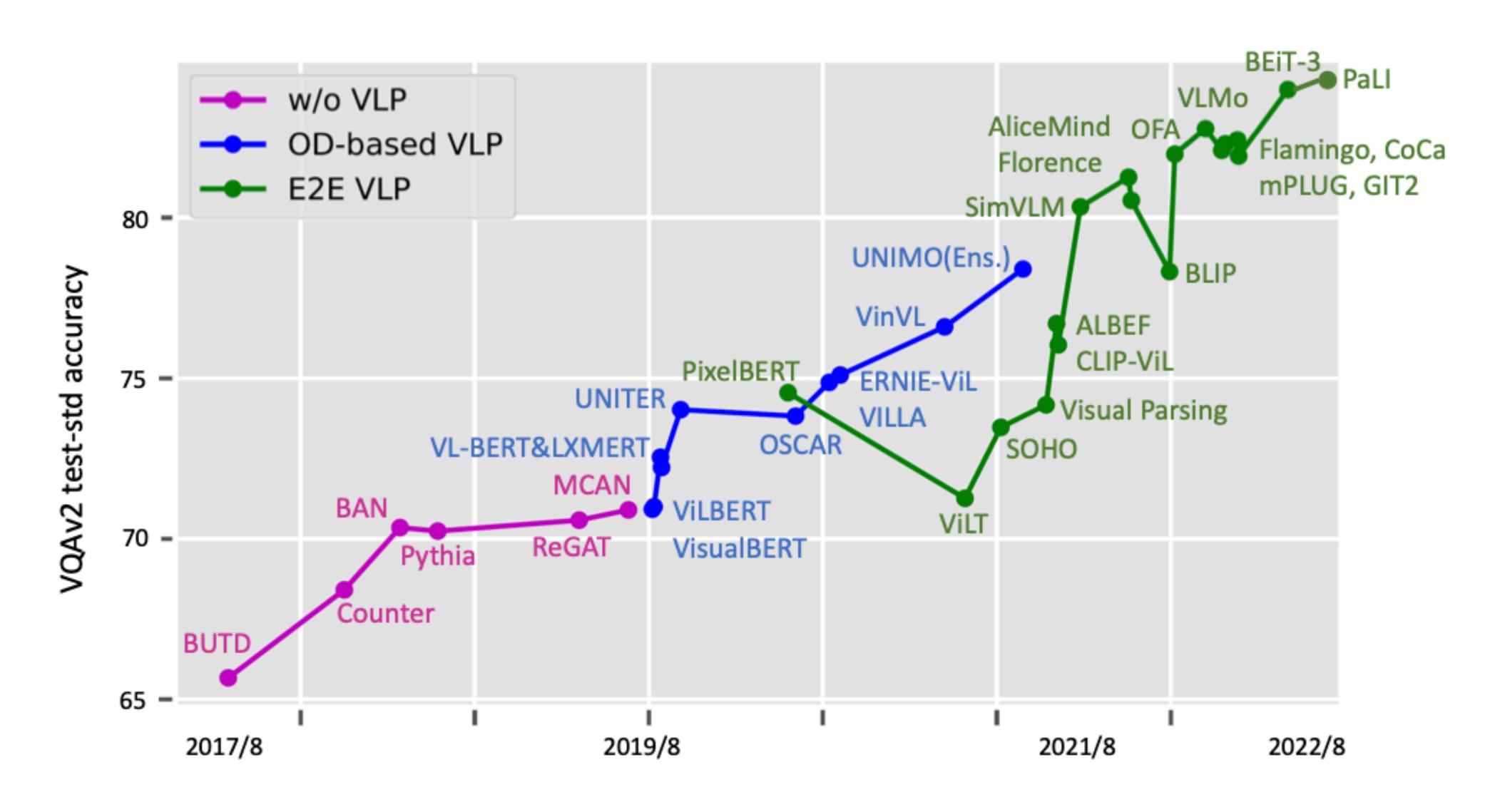
(a) Masked multi-modal learning

(b) Multi-modal alignment prediction

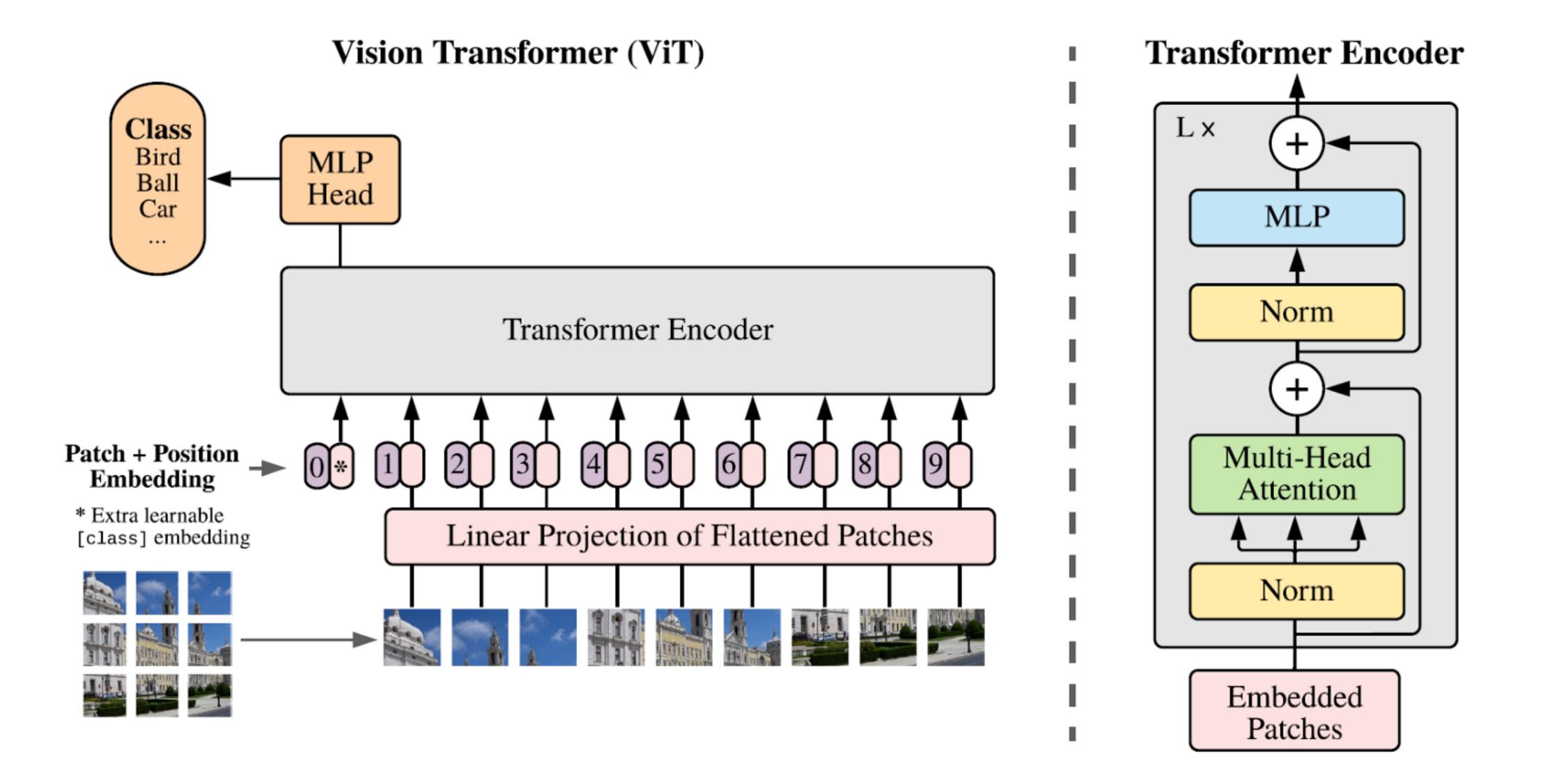
12-in-1: Multi-task Vision and Language Representation

		Vocab-based VQA (G1)			Image Retrieval (G2)		Referring Expression (G3)				Verification (G4)				
	Clean	VQAv2 n test-dev	GQA		COCO test(R1)		COCO	COCO+	COCOg	V7W test	GW	NLVR ² testP	SNLI-VE test	# params (# models)	All Tasks Average
			test-dev												
1 Single-Task (ST)		71.82	58.19	34.38	65.28	61.14	78.63	71.11	72.24	80.51	62.81	74.25	76.72	3B (12)	67.25
2 Single-Task (ST)	1	71.24	59.09	34.10	64.80	61.46	78.17	69.47	72.21	80.51	62.53	74.25	76.53	3B (12)	67.03
3 Group-Tasks (GT)	1	72.03	59.60	36.18	65.06	66.00	80.23	72.79	75.30	81.54	64.78	74.62	76.52	1B (4)	68.72
4 All-Tasks (AT)	✓	72.57	60.12	36.36	63.70	63.52	80.58	73.25	75.96	82.75	65.04	78.44	76.78	270M (1)	69.08
5 All-Tasks _{w/o G4}	1	72.68	62.09	36.74	64.88	64.62	80.76	73.60	75.80	83.03	65.41	-	-	266M (1)	-
6 GT $\xrightarrow{\text{finetune}}$ ST	✓	72.61	59.96	35.81	66.26	66.98	79.94	72.12	75.18	81.57	64.56	74.47	76.34	3B (12)	68.81
7 AT $\xrightarrow{\text{finetune}}$ ST	1	72.92	60.48	36.56	65.46	65.14	80.86	73.45	76.00	83.01	65.15	78.87	76.73	3B (12)	69.55
8 AT $\xrightarrow{\text{finetune}}$ ST		73.15	60.65	36.64	68.00	67.90	81.20	74.22	76.35	83.35	65.69	78.87	76.95	3B (12)	70.24

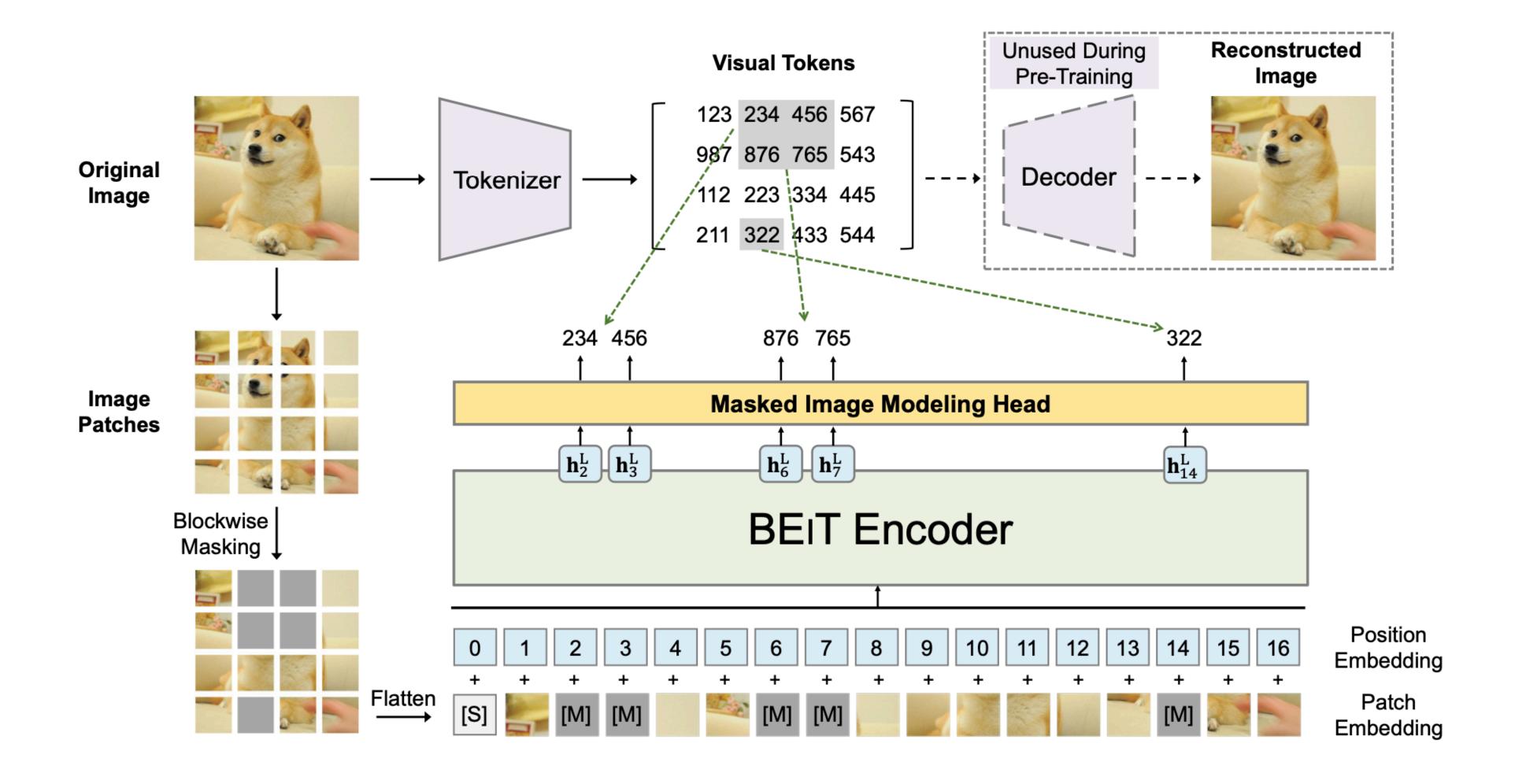
Recent History of Visio-Lingual Models



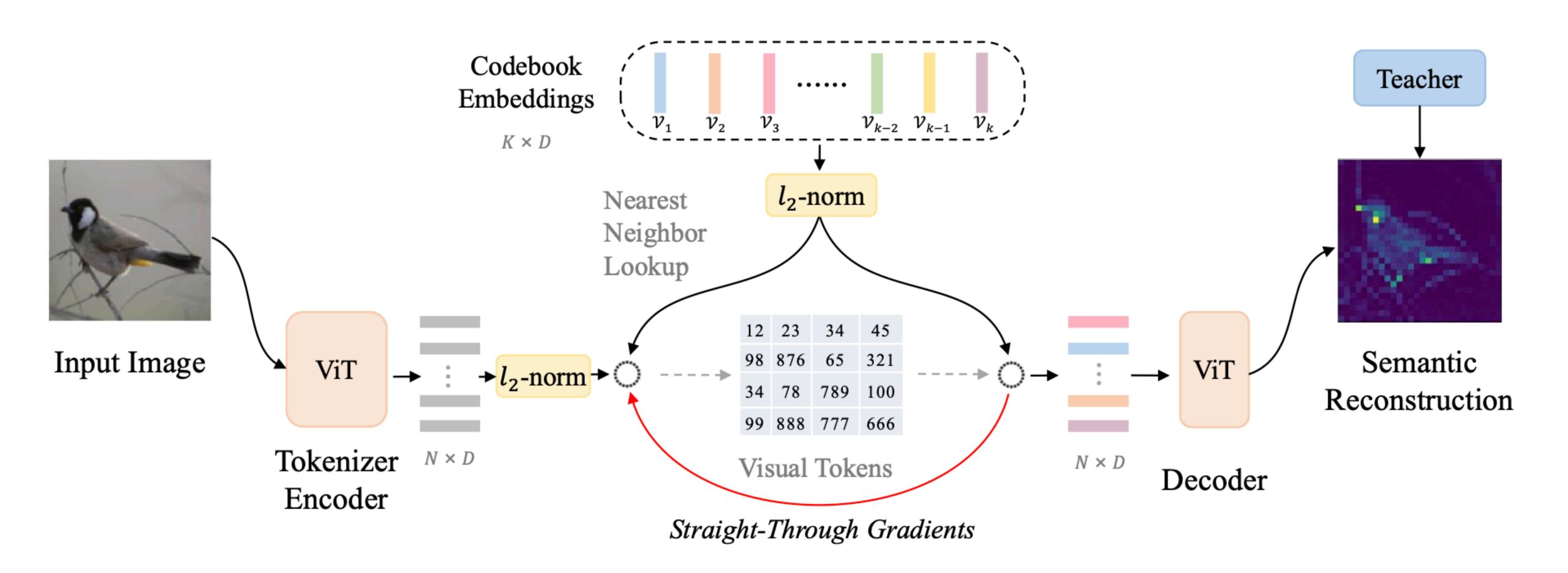
Vision Transformer

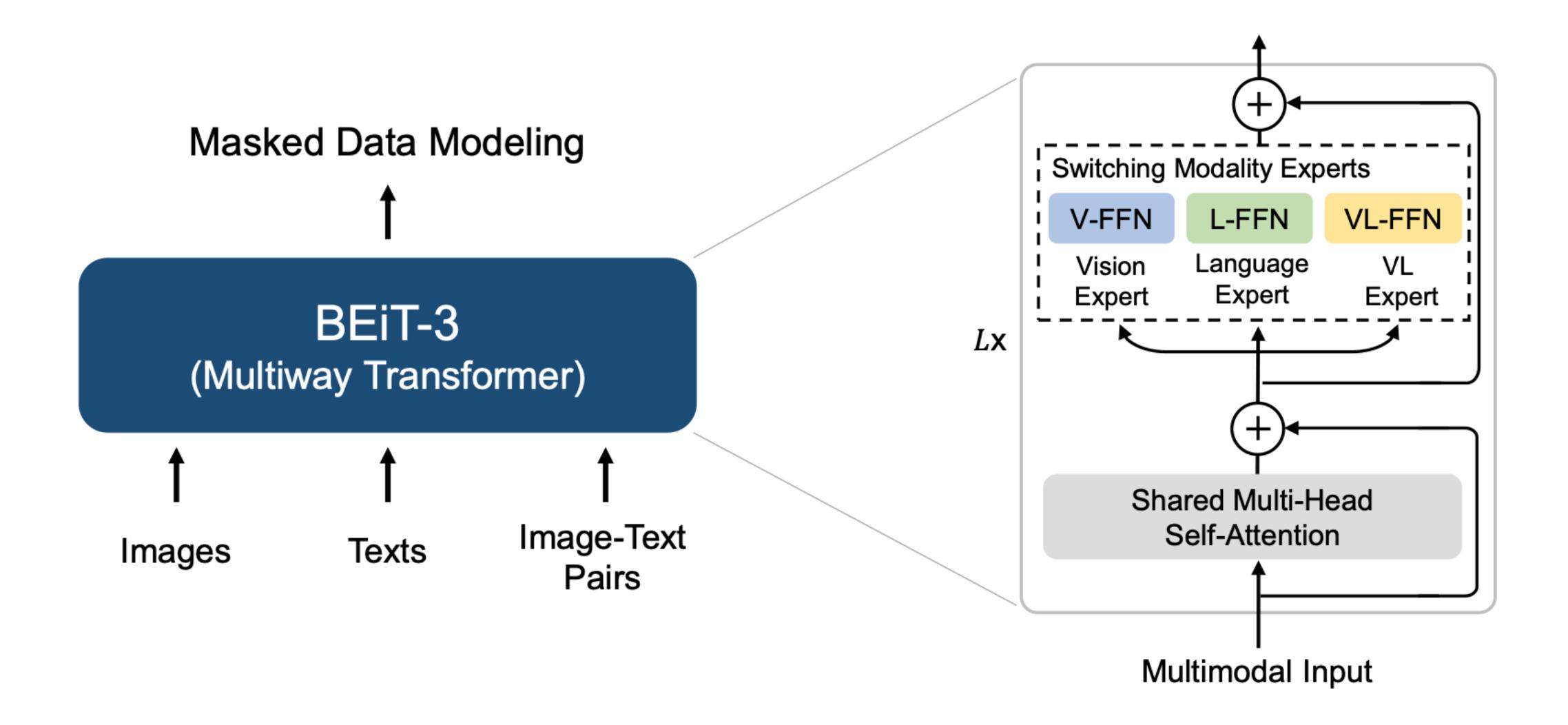


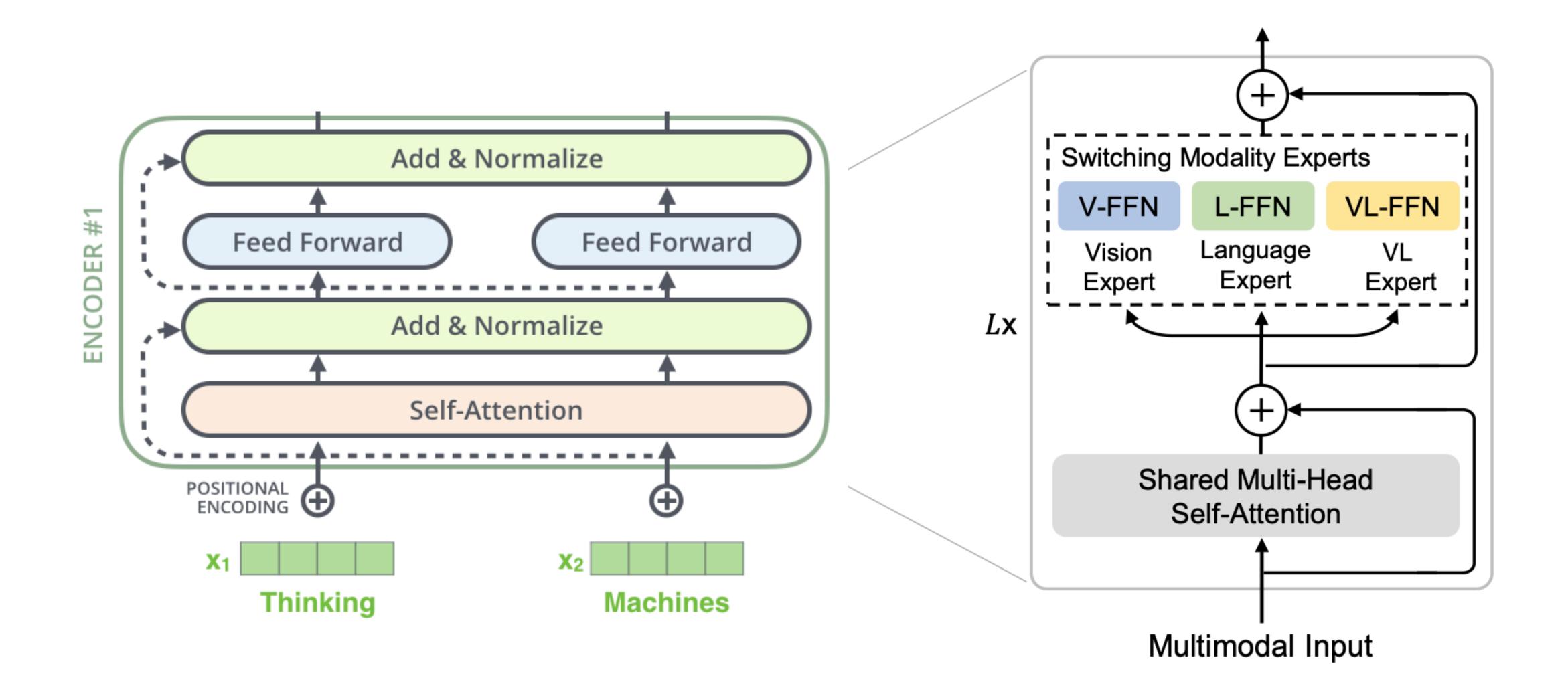
BEIT: BERT Pre-Training of Image Transformers

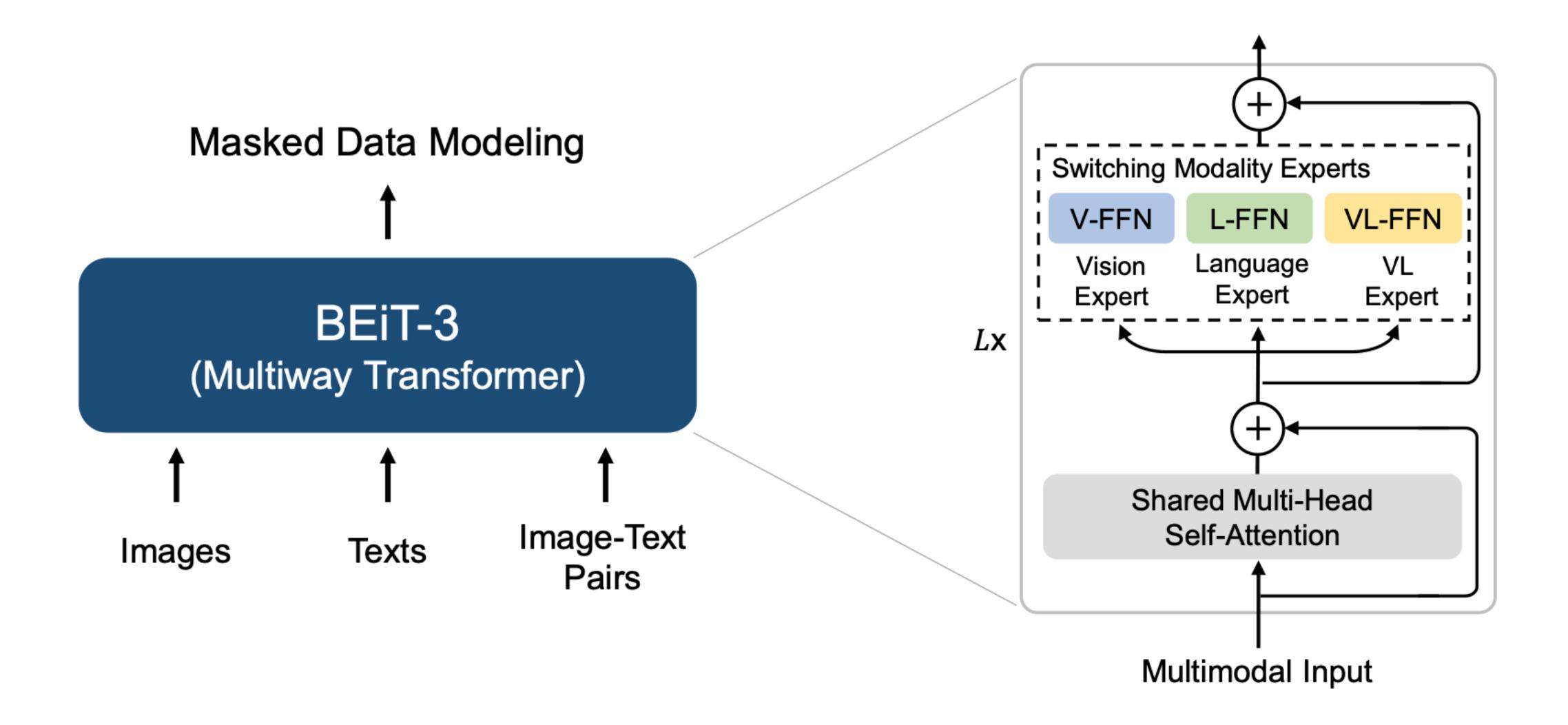


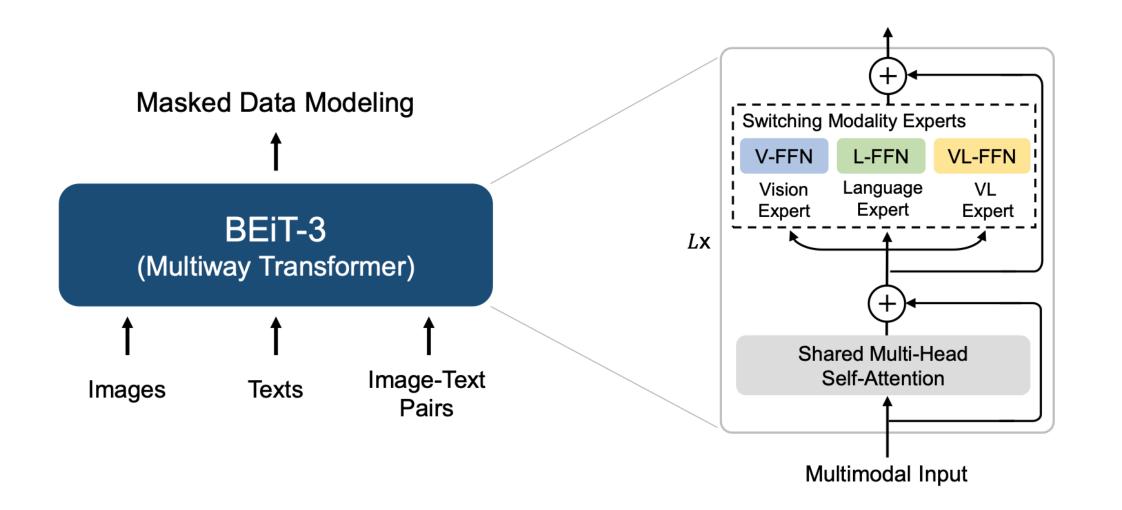
BEIT-V2

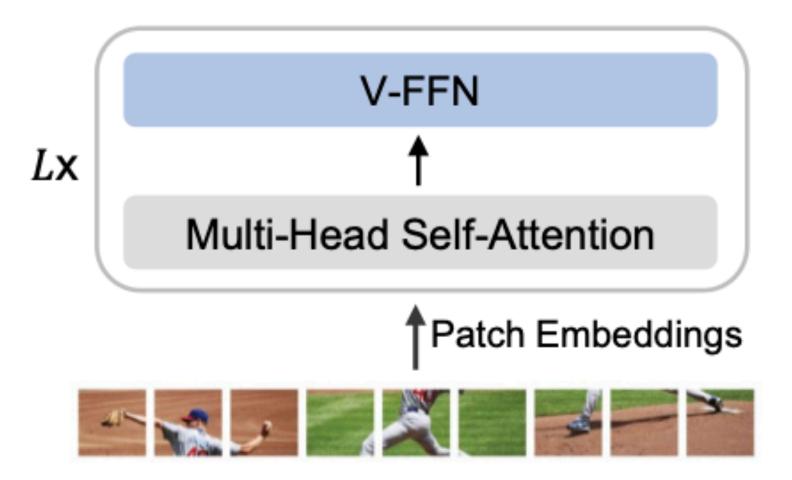






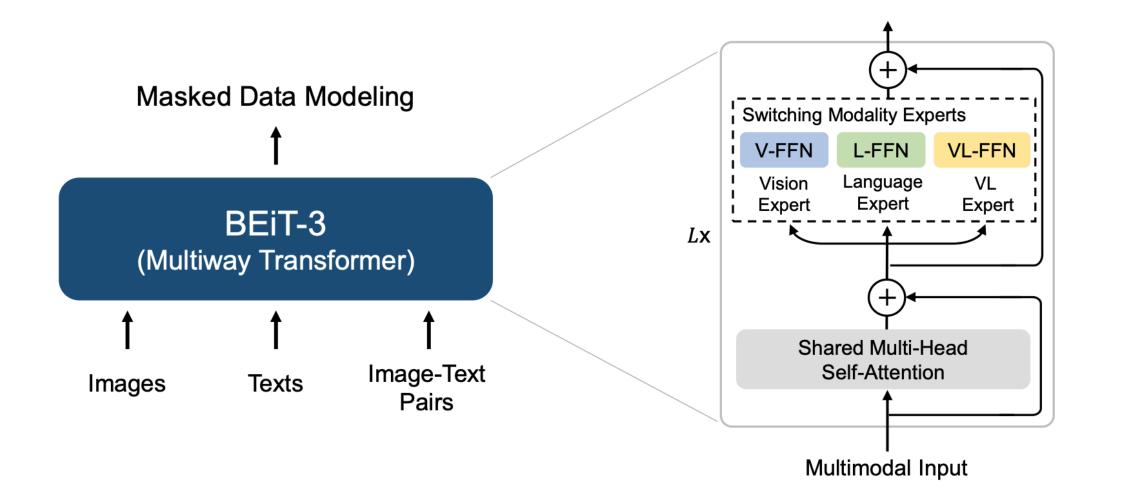


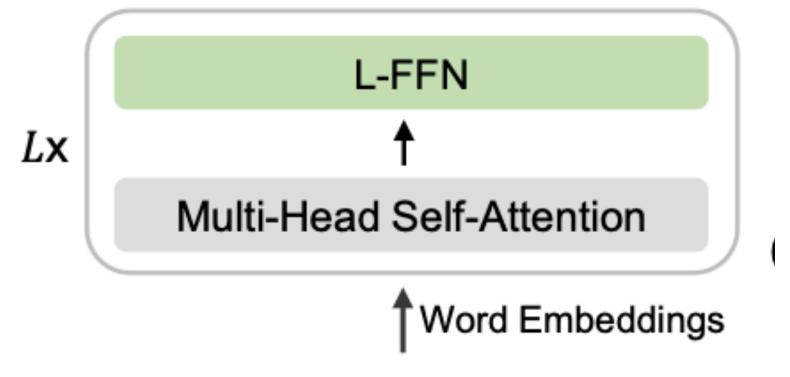




(a) Vision Encoder

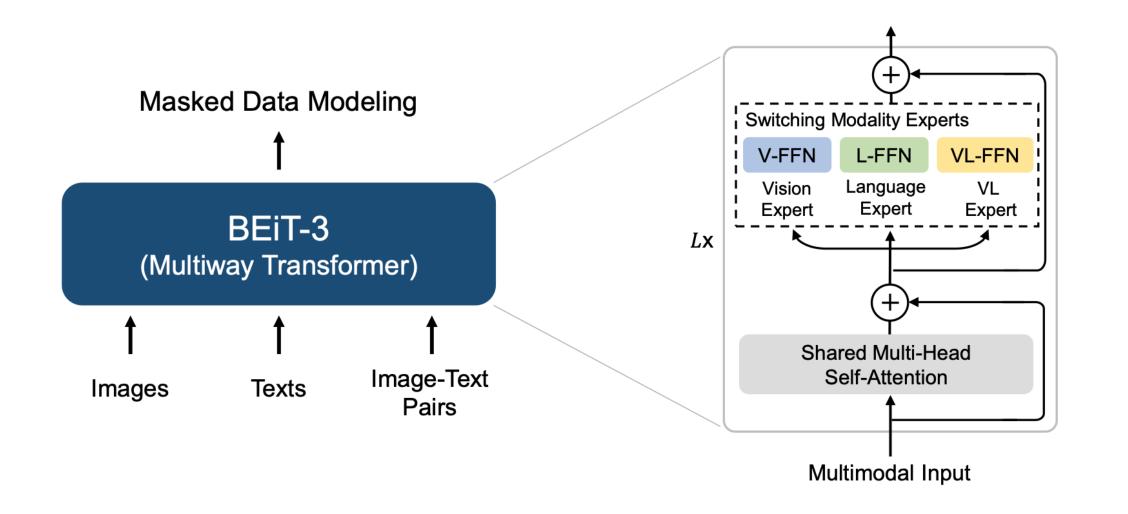
Masked Image Modeling
Image Classification (IN1K)
Semantic Segmentation (ADE20K)
Object Detection (COCO)

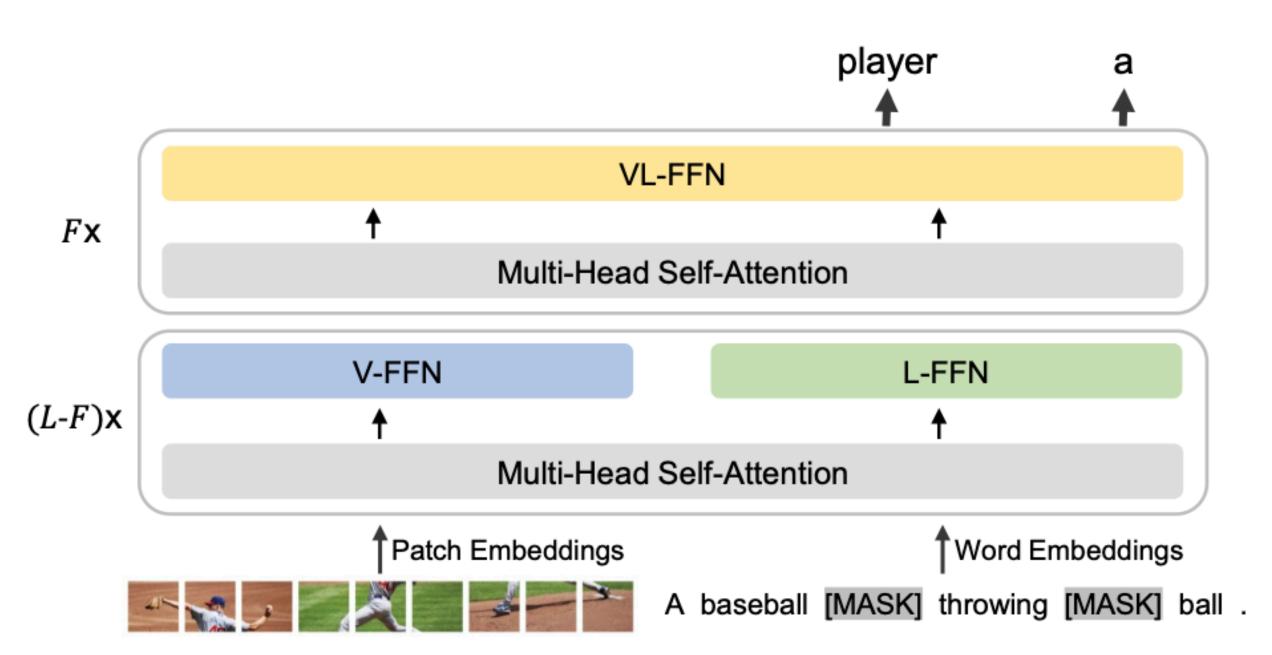




A baseball player throwing a ball .

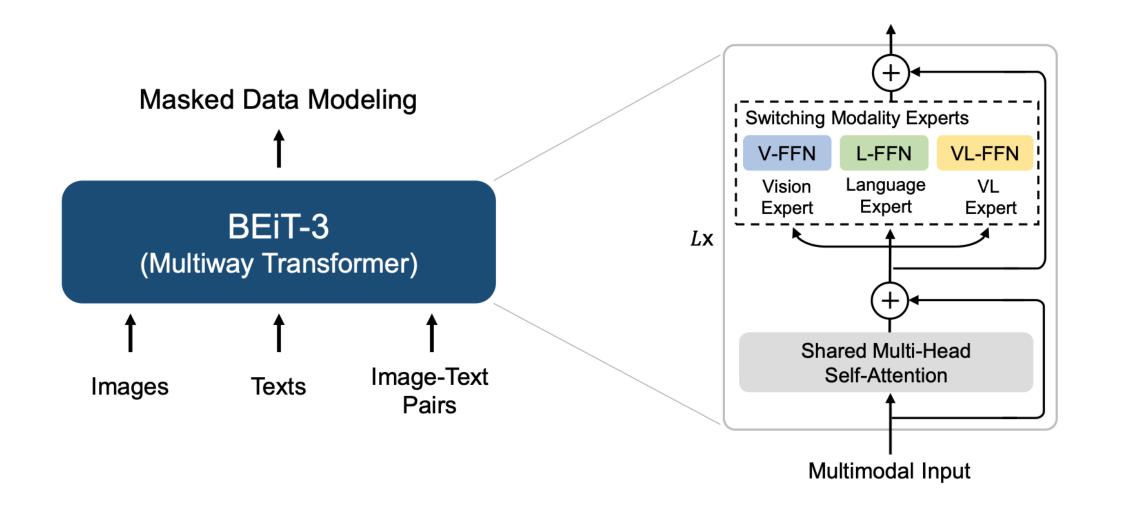
(b) Language Encoder Masked Language Modeling

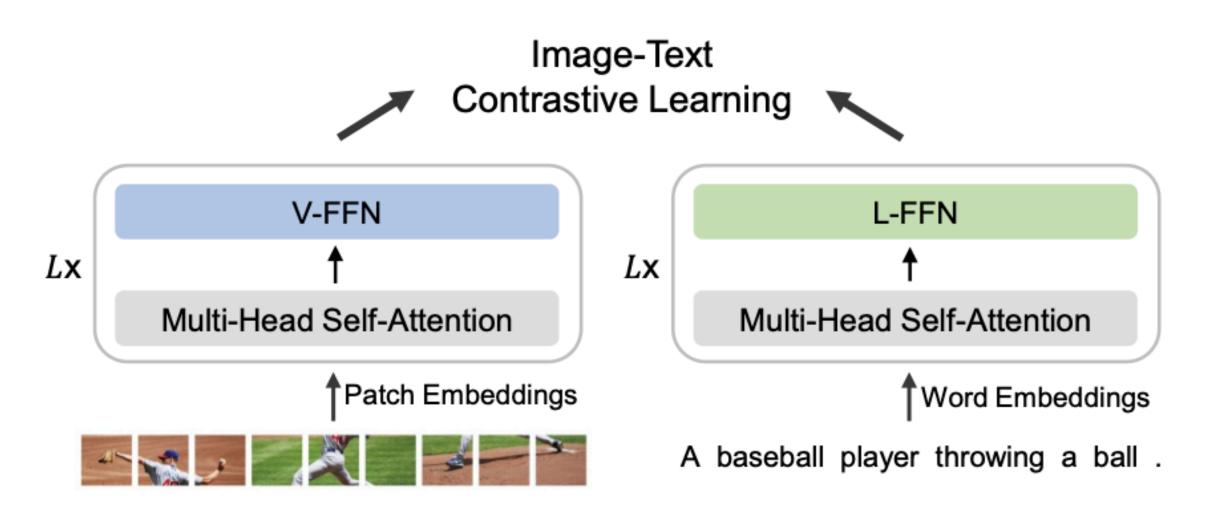




(c) Fusion Encoder

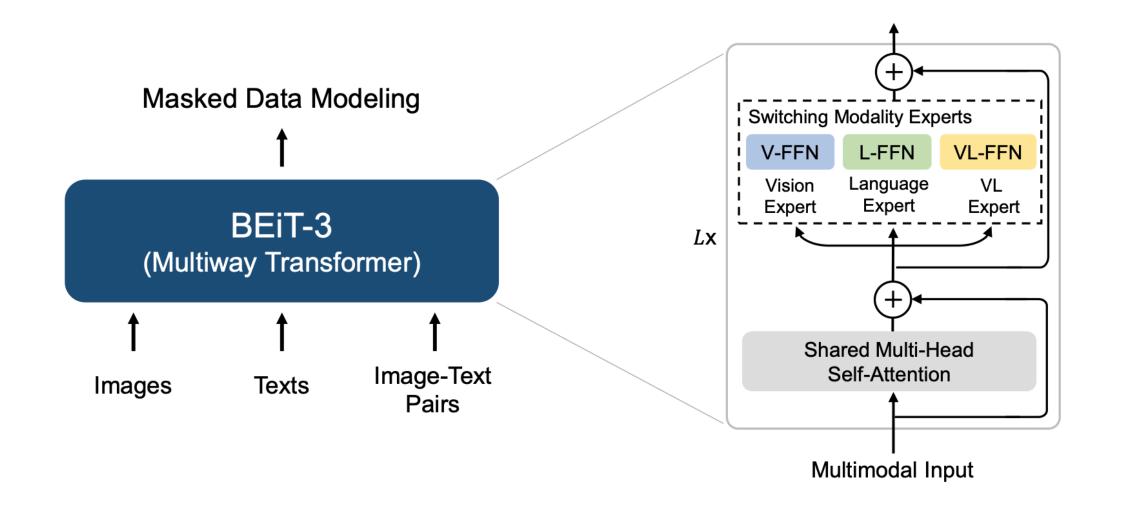
Masked Vision-Language Modeling Vision-Language Tasks (VQA, NLVR2)

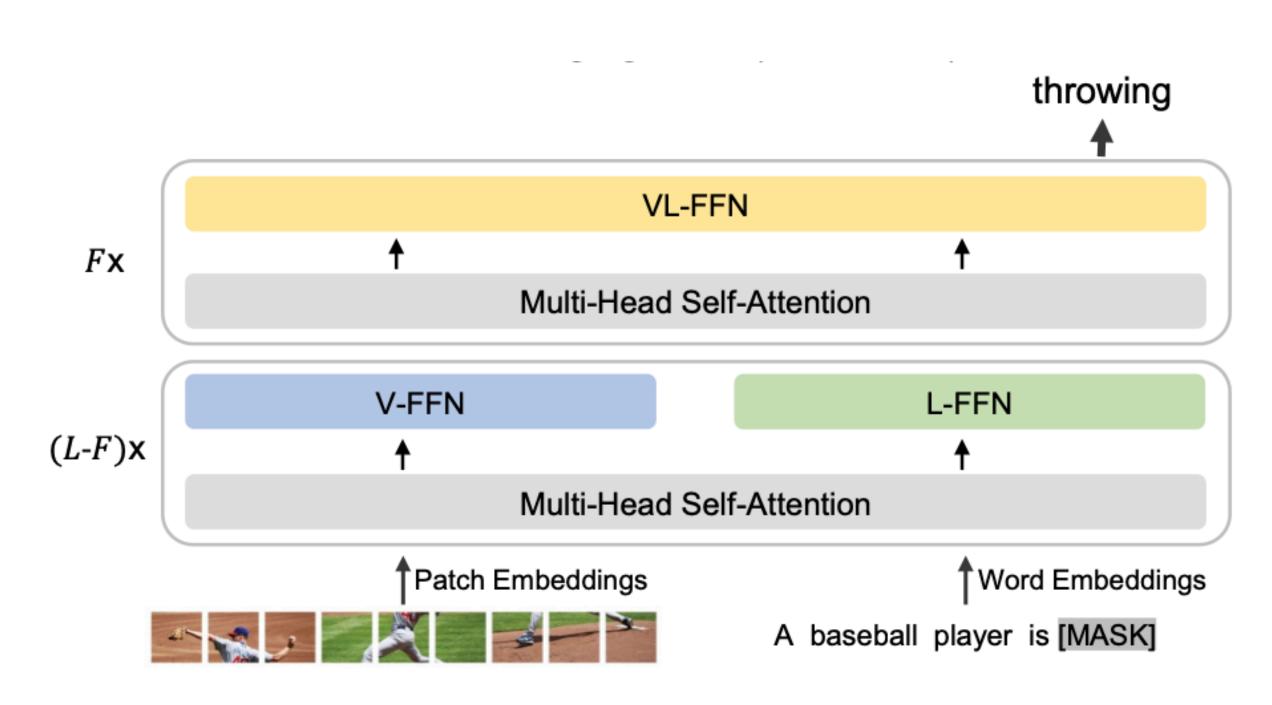




(d) Dual Encoder

Image-Text Retrieval (Flickr30k, COCO)





(e) Image-to-Text Generation Image Captioning (COCO)

Model				(5K test set) $Text \rightarrow Image$			`			$\begin{array}{c} \textbf{(1K test set)} \\ \textbf{Text} \rightarrow \textbf{Image} \end{array}$		
	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10
Fusion-encoder models												
UNITER [CLY ⁺ 20]	65.7	88.6	93.8	52.9	79.9	88.0	87.3	98.0	99.2	75.6	94.1	96.8
VILLA [GCL ⁺ 20]	-	-	-	-	-	-	87.9	97.5	98.8	76.3	94.2	96.8
Oscar [LYL ⁺ 20]	73.5	92.2	96.0	57.5	82.8	89.8	_	-	-	-	-	-
VinVL [ZLH ⁺ 21]	75.4	92.9	96.2	58.8	83.5	90.3	-	-	-	-	-	-
Dual encoder + Fusion encoder reranking												
ALBEF [LSG ⁺ 21]	77.6	94.3	97.2	60.7	84.3	90.5	95.9	99.8	100.0	85.6	97.5	98.9
BLIP [LLXH22]	82.4	95.4	97.9	65.1	86.3	91.8	97.4	99.8	99.9	87.6	97.7	99.0
Dual-encoder mod	els											
ALIGN [JYX ⁺ 21]	77.0	93.5	96.9	59.9	83.3	89.8	95.3	99.8	100.0	84.9	97.4	98.6
FILIP [YHH ⁺ 21]	78.9	94.4	97.4	61.2	84.3	90.6	96.6	100.0	100.0	87.1	97.7	99.1
Florence [YCC ⁺ 21]	81.8	95.2	-	63.2	85.7	-	97.2	99.9	-	87.9	98.1	-
BEIT-3	84.8	96.5	98.3	67.2	87.7	92.8	98.0	100.0	100.0	90.3	98.7	99.5

Model	Extra OD Data	Maximum Image Size	COCO test-dev AP ^{box} AP ^{mask}	
ViT-Adapter [CDW ⁺ 22]	_	1600	60.1	52.1
DyHead [DCX ⁺ 21]	ImageNet-Pseudo Labels	2000	60.6	_
Soft Teacher [XZH ⁺ 21]	Object365	_	61.3	53.0
GLIP [LZZ ⁺ 21]	FourODs	_	61.5	_
GLIPv2 [ZZH ⁺ 22]	FourODs	_	62.4	_
Florence [YCC ⁺ 21]	FLOD-9M	2500	62.4	_
SwinV2-G [LHL ⁺ 21]	Object365	1536	63.1	54.4
Mask DINO [LZX ⁺ 22]	Object365	1280	-	54.7
DINO [ZLL+22]	Object365	2000	63.3	-
BEIT-3	Object365	1280	63.7	54.8

Topics in AI (CPSC 532S): Multimodal Learning with Vision, Language and Sound

Lecture 23: Meta-learning

Given abundant training examples for the base classes, few-shot learning algorithms aim to learn to recognize novel classes with a limited amount of labeled examples

Given abundant training examples for the base classes, few-shot learning algorithms aim to learn to recognize novel classes with a limited amount of labeled examples



Given abundant training examples for the base classes, few-shot learning algorithms aim to learn to recognize novel classes with a limited amount of labeled examples

Task: classify test (a.k.a. query) set images with "novel labels" (labels not present in base data but available in support set)

Given: limited novel-labelled Support Set with K images from each of N novel classes

Given abundant training examples for the base classes, few-shot learning algorithms aim to learn to recognize novel classes with a limited amount of labeled examples

Task: classify test (a.k.a. query) set images with "novel labels" (labels not present in base data but available in support set)

Given: limited novel-labelled Support Set with K images from each of N novel classes

At test time: n-way k-shot tasks

2-way 4-shot

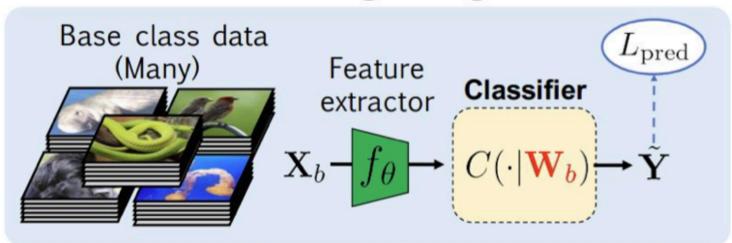
Transfer learning baselines

- Pre-training: supervised learning of model on base data
- Fine-tuning: supervised learning of (parts of or whole) model on labelled support data
- 3. Testing on test / query dataset

Transfer learning baselines

- Pre-training: supervised learning of model on base data
- Fine-tuning: supervised learning of (parts of or whole) model on labelled support data
- 3. Testing on test / query dataset

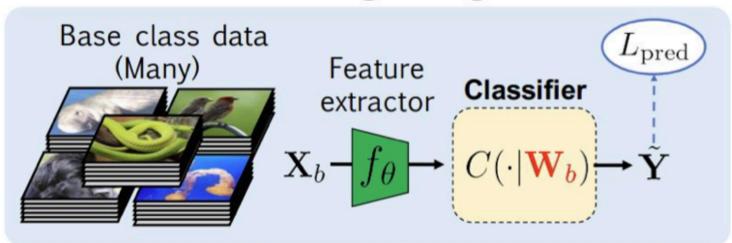
Pre- Training stage



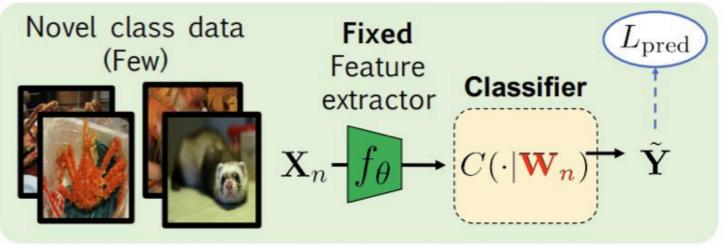
Transfer learning baselines

- 1. Pre-training: supervised learning of model on base data
- Fine-tuning: supervised learning of (parts of or whole) model on labelled support data
- 3. Testing on test / query dataset

Pre- Training stage



Fine-tuning stage

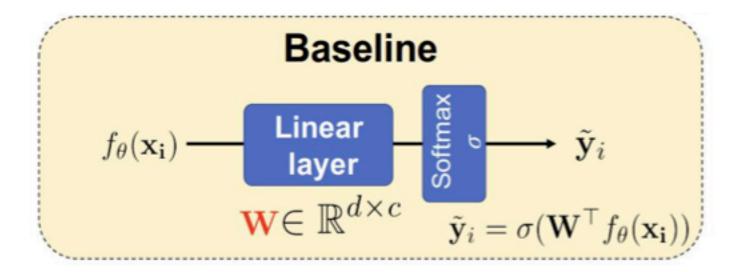


Retrain only classifier

Transfer learning baselines

- 1. Pre-training: supervised learning of model on base data
- Fine-tuning: supervised learning of (parts of or whole) model on labelled support data
- 3. Testing on test / query dataset

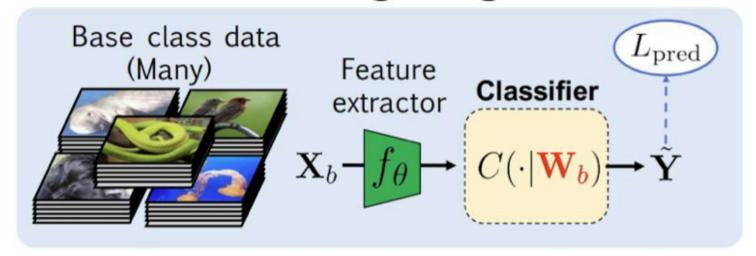
Choice of Classifier



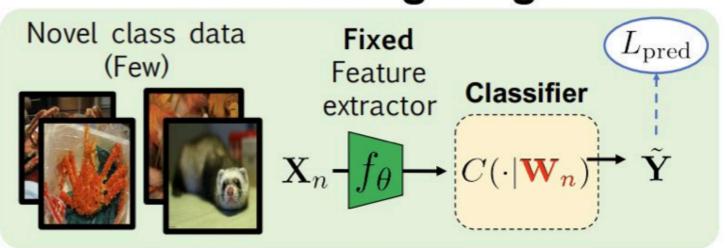
(Standard procedure)

Commonly seen last layer (a.k.a. logits) in a deep neural network classifying image into one of classes by min loss = f(predicted label probability vector, true one-hot encoded label).

Pre-Training stage



Fine-tuning stage



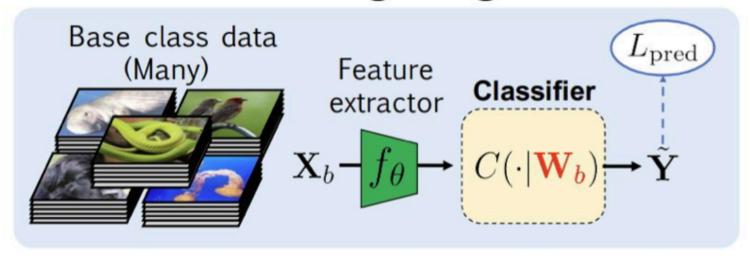
Retrain only classifier

Transfer learning baselines

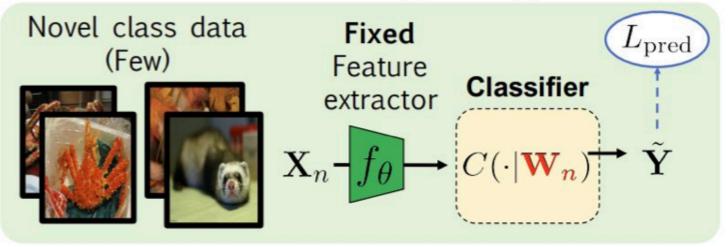
- 1. Pre-training: supervised learning of model on base data
- Fine-tuning: supervised learning of (parts of or whole) model on labelled support data
- 3. Testing on test / query dataset

Expected to not perform well on test / query dataset without large support set (in fine-tuning stage)

Pre-Training stage



Fine-tuning stage



Retrain only classifier

Transfer learning baselines

Meta-learning

"Learning to learn": a paradigm specifically for the k-shot

n-way task that uses base data to "learn to learn", i.e. learn

a meta-learner, and applies the meta-learner on the testing

- 1. Pre-training: supervised learning of model on base data
- Fine-tuning: supervised learning of (parts of or whole) model on labelled support data
- 3. Testing on test / query dataset

phase (support + query) data.

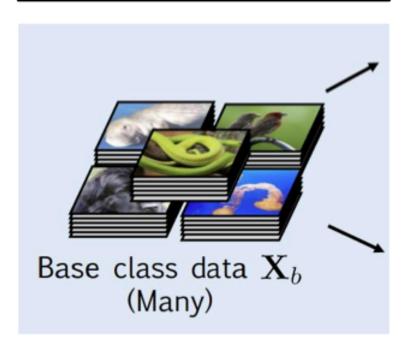
Expected to not perform well on test / query dataset without large support set (in fine-tuning stage)

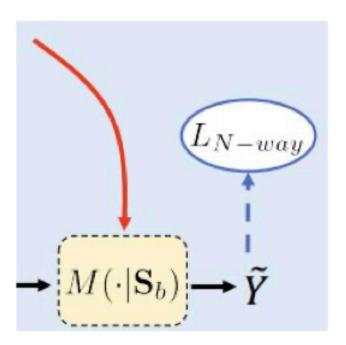
Transfer learning baselines

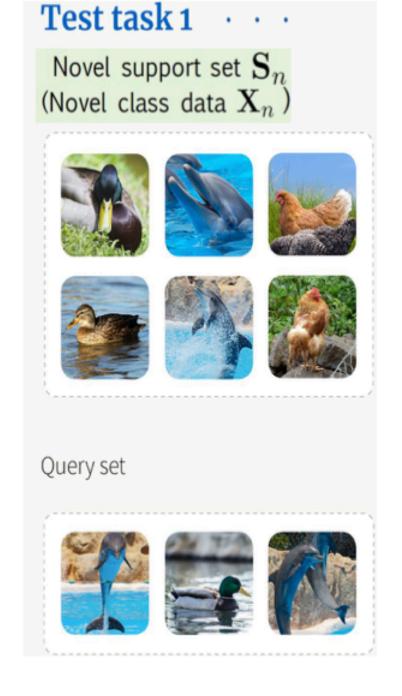
Meta-learning

"Learning to learn": a paradigm specifically for the k-shot n-way task that uses base data to "learn to learn", *i.e.* learn a *meta-learner*, and applies the meta-learner on the testing phase (support + query) data.

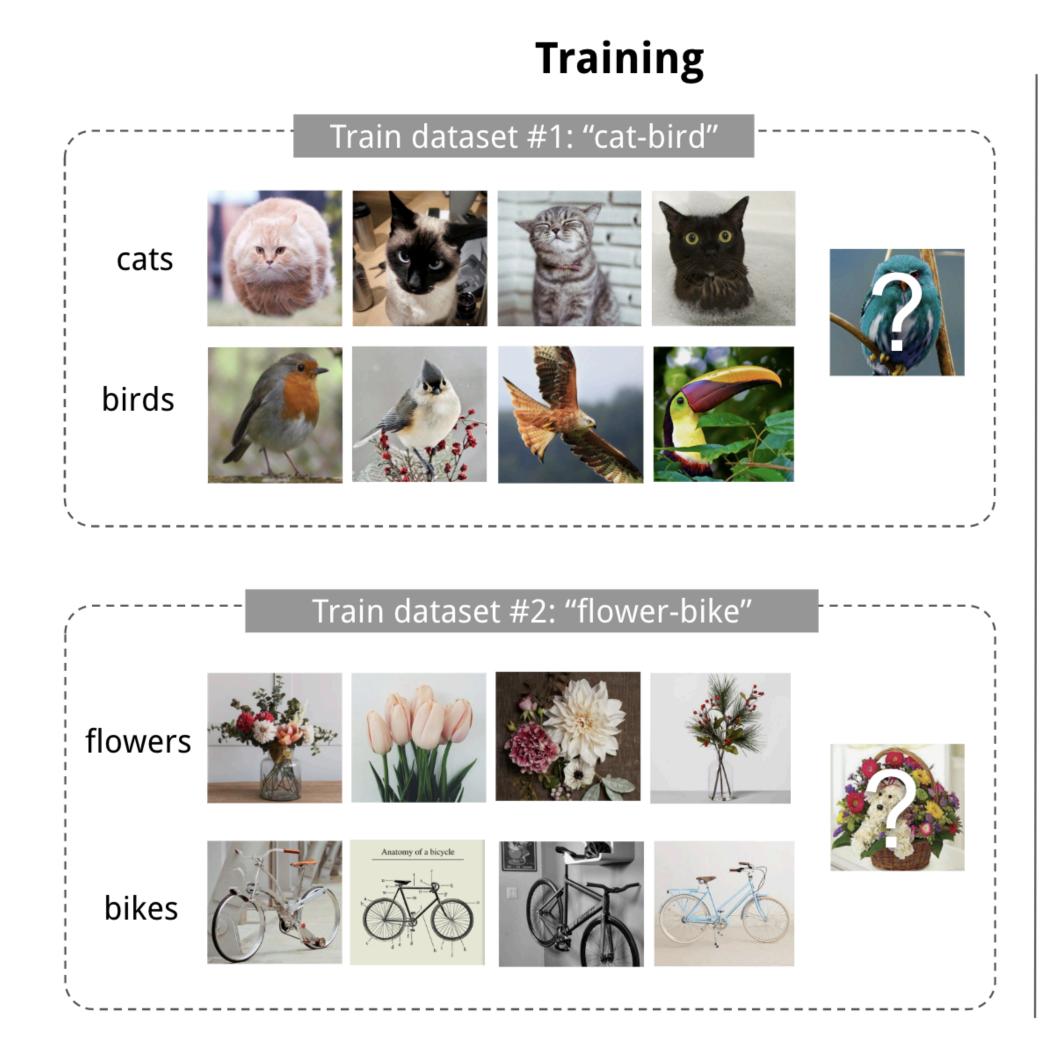
Randomly sample N
classes and
rearrange base
class data into
meta-training tasks
that simulate test
(usually same k, N).





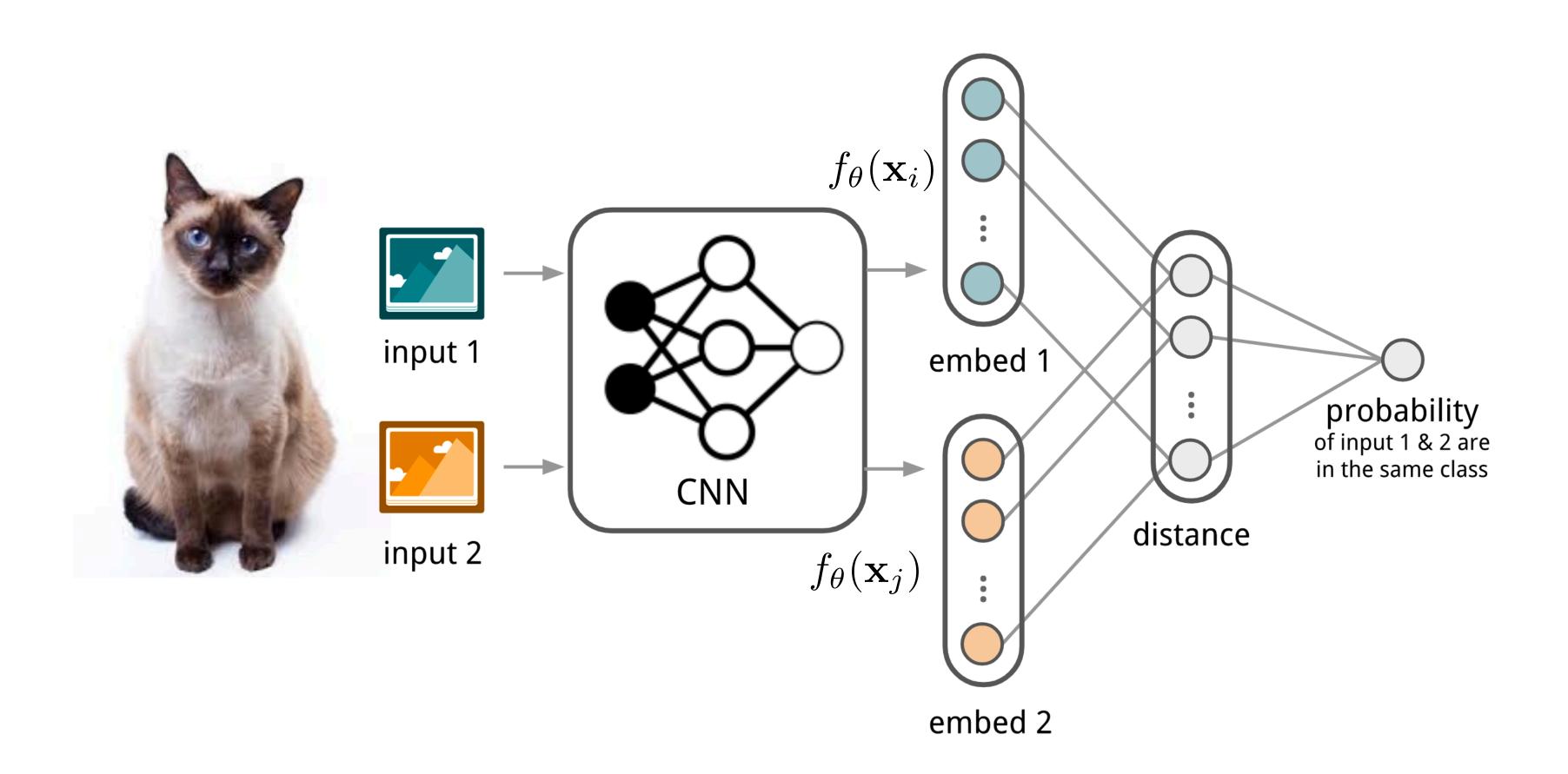


Meta-Learning

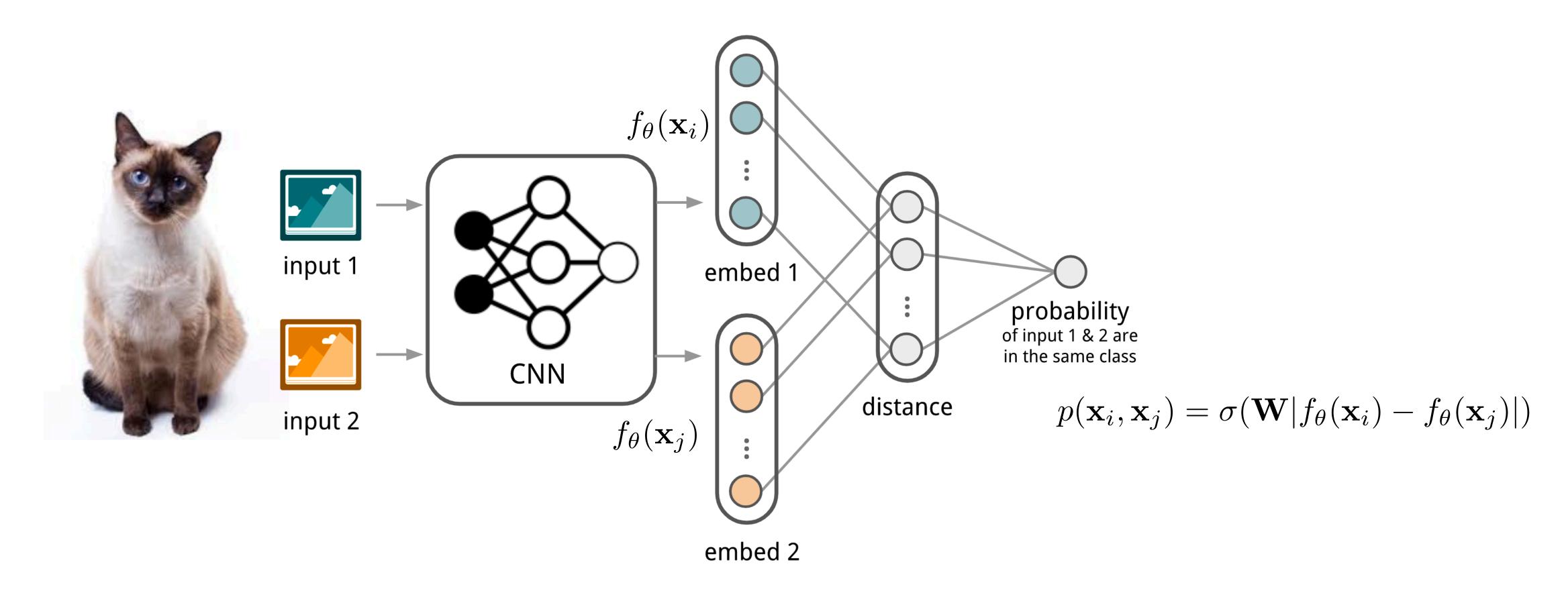


Testing

Metric-Based Meta-Learning — Siamese Neural Nets



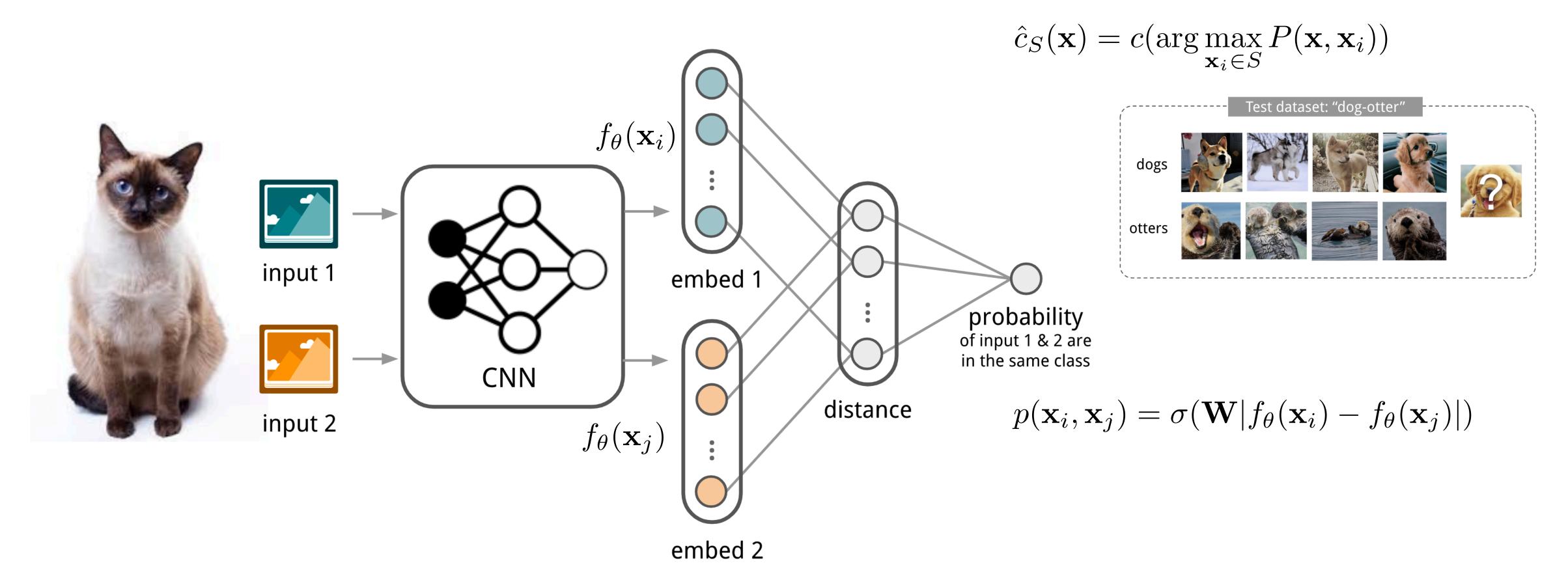
Metric-Based Meta-Learning — Siamese Neural Nets



Training Objective: do two images belong to same class

Siamese Neural Nets

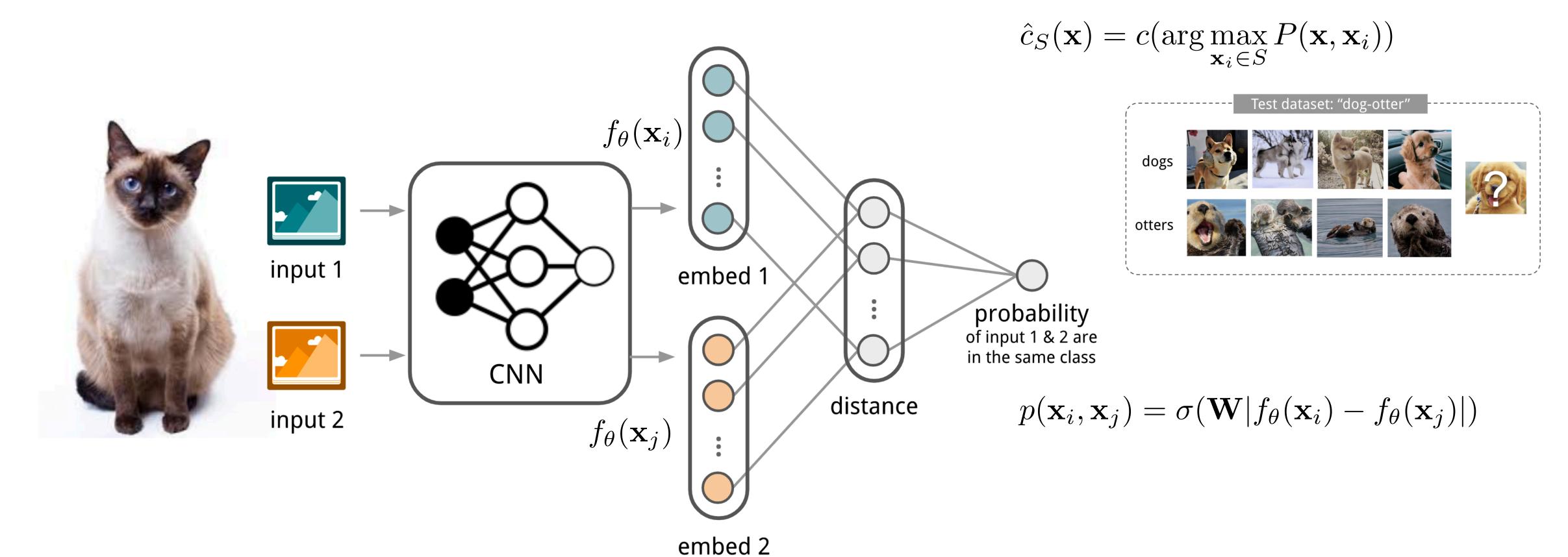
Inference: output the label of the most similar support image (i.e., nearest neighbor)



Training Objective: do two images belong to same class

Siamese Neural Nets

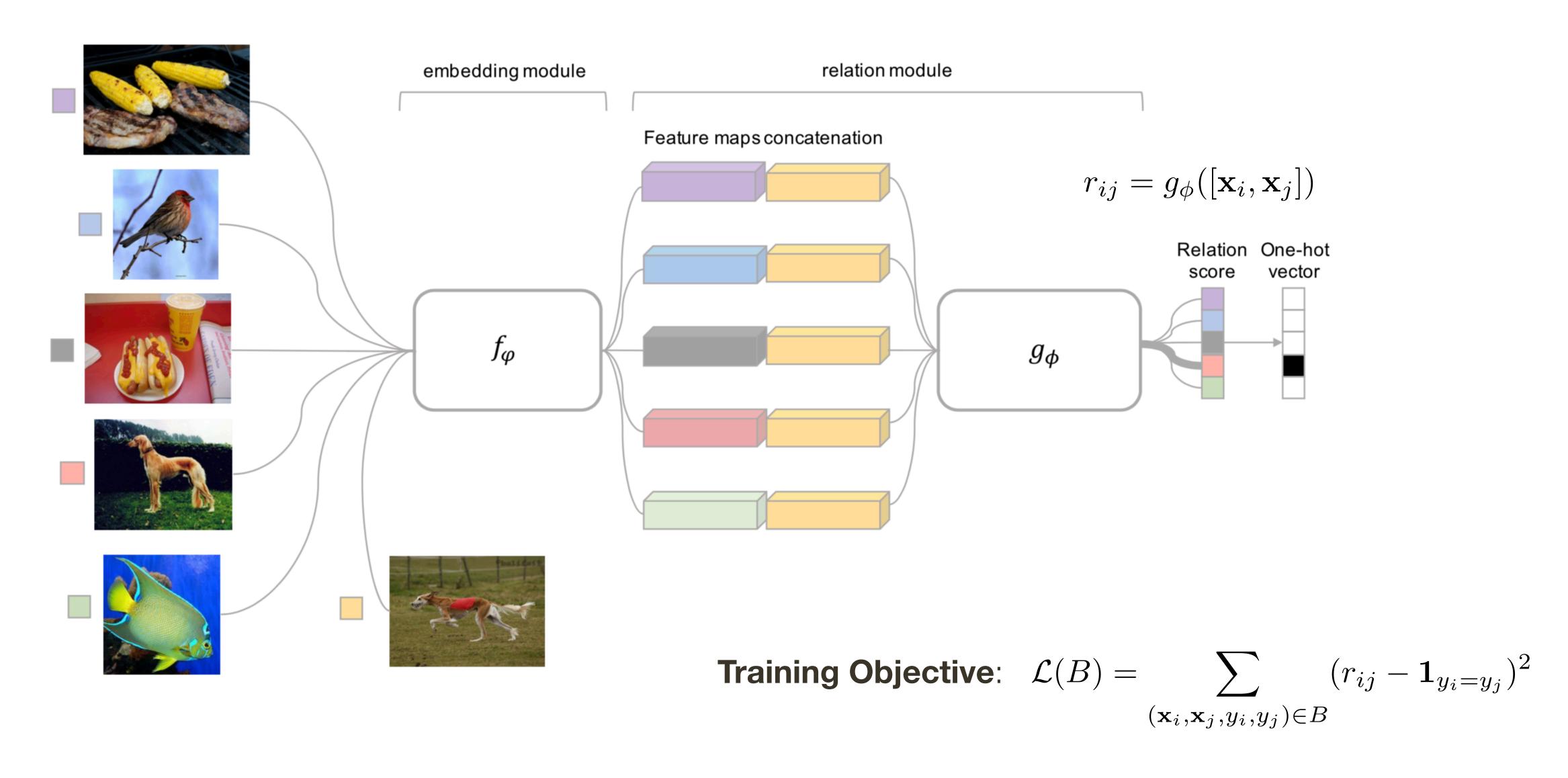
Inference: output the label of the most similar support image (i.e., nearest neighbor)



Training Objective: do two images belong to same class

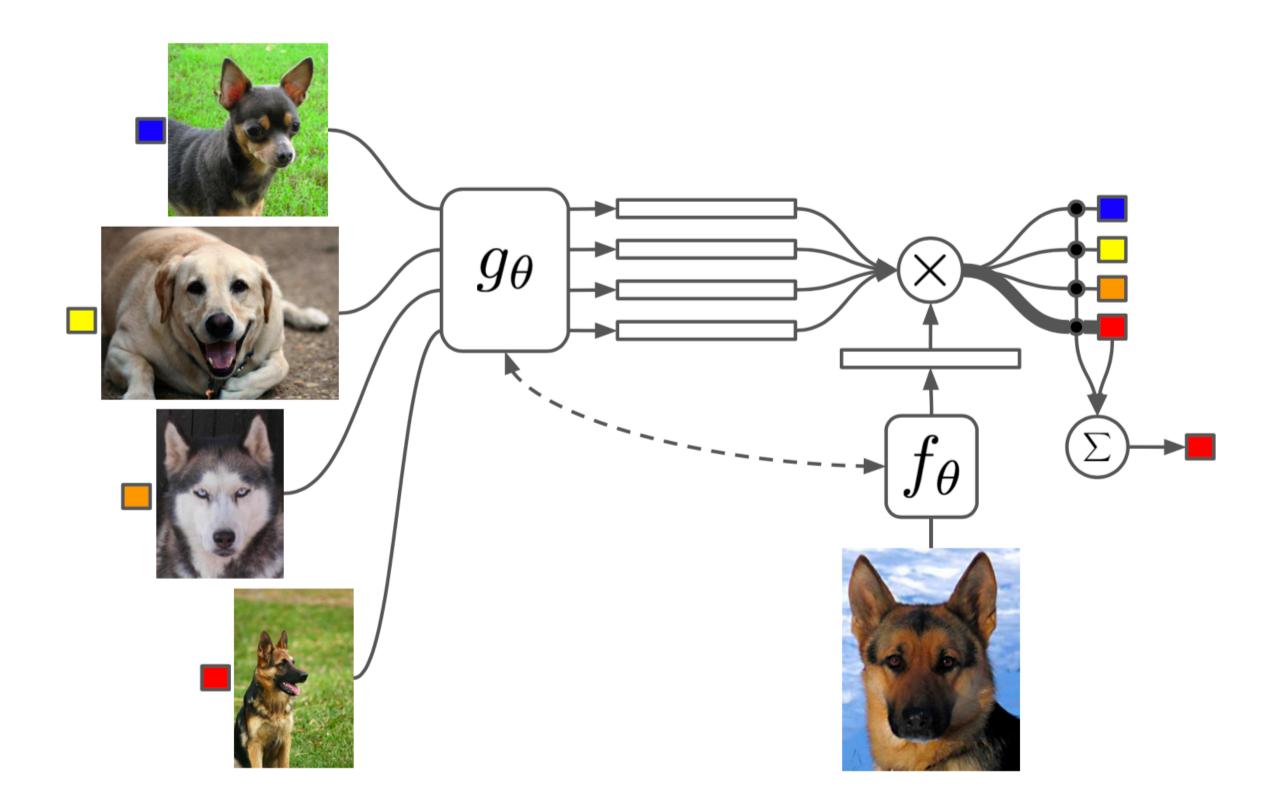
$$\mathcal{L}(B) = \sum_{(\mathbf{x}_i, \mathbf{x}_j, y_i, y_j) \in B} \mathbf{1}_{y_i = y_j} \log p(\mathbf{x}_i, \mathbf{x}_j) + (1 - \mathbf{1}_{y_i = y_j}) \log (1 - p(\mathbf{x}_i, \mathbf{x}_j))$$

Metric-Based Meta-Learning — Relation Networks



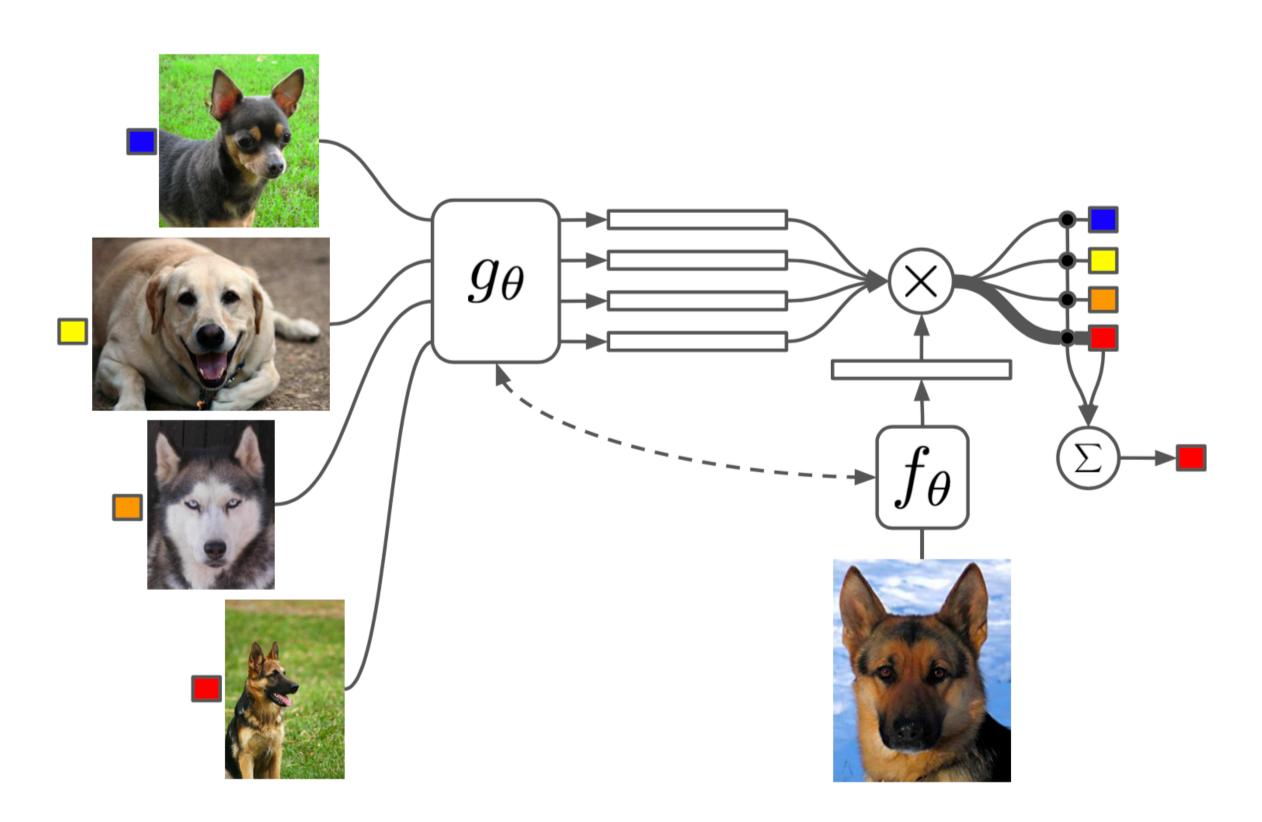
Inference: output the label distribution is simply sum of labels from support set, weighted by similarity/relevance

$$c_S(\mathbf{x}) = P(y|\mathbf{x}, S) = \sum_{i=1}^k a(\mathbf{x}, \mathbf{x}_i) y_i$$
, where $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^k$



Inference: output the label distribution is simply sum of labels from support set, weighted by similarity/relevance

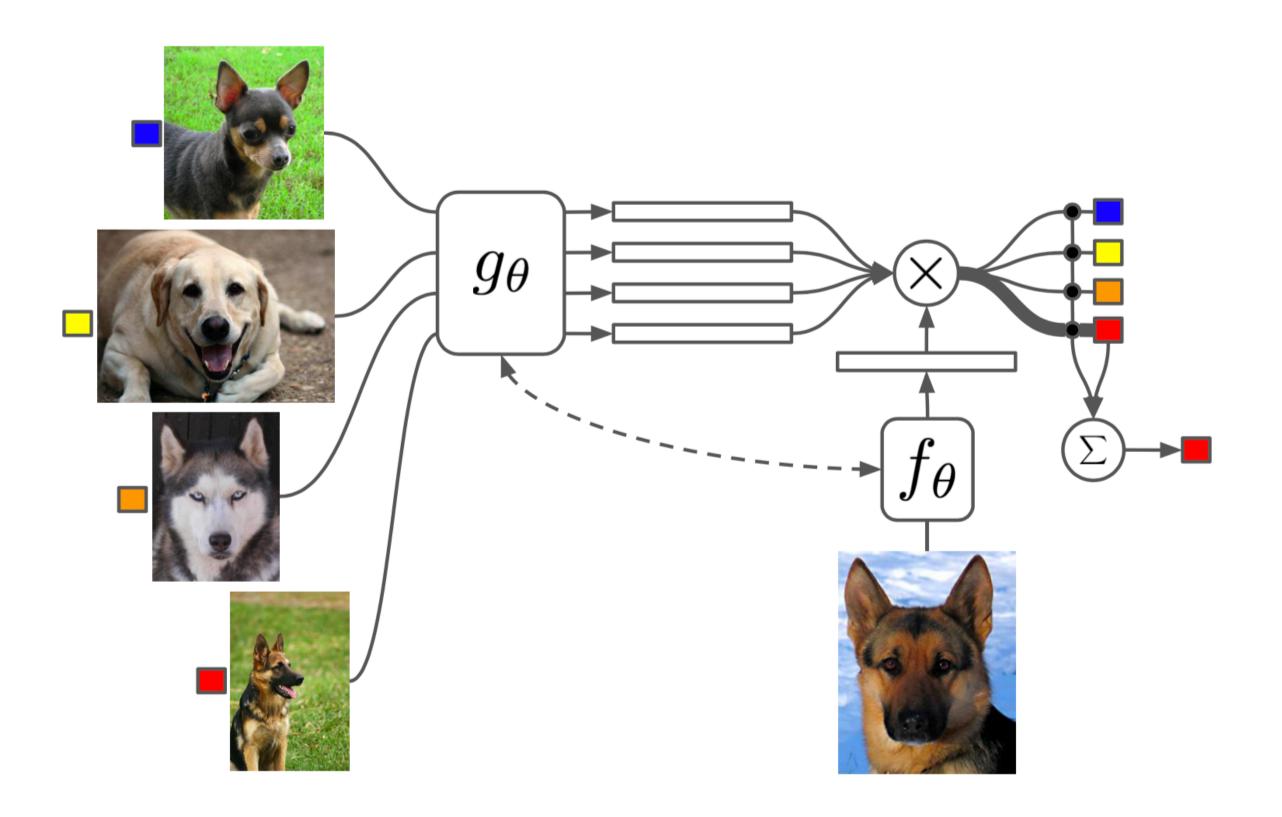
$$c_S(\mathbf{x}) = P(y|\mathbf{x}, S) = \sum_{i=1}^k a(\mathbf{x}, \mathbf{x}_i) y_i$$
, where $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^k$



$$a(\mathbf{x}, \mathbf{x}_i) = \frac{\exp(\operatorname{cosine}(f(\mathbf{x}), g(\mathbf{x}_i)))}{\sum_{j=1}^{k} \exp(\operatorname{cosine}(f(\mathbf{x}), g(\mathbf{x}_j)))}$$

Inference: output the label distribution is simply sum of labels from support set, weighted by similarity/relevance

$$c_S(\mathbf{x}) = P(y|\mathbf{x}, S) = \sum_{i=1}^k a(\mathbf{x}, \mathbf{x}_i) y_i$$
, where $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^k$



$$a(\mathbf{x}, \mathbf{x}_i) = \frac{\exp(\operatorname{cosine}(f(\mathbf{x}), g(\mathbf{x}_i)))}{\sum_{j=1}^{k} \exp(\operatorname{cosine}(f(\mathbf{x}), g(\mathbf{x}_j)))}$$

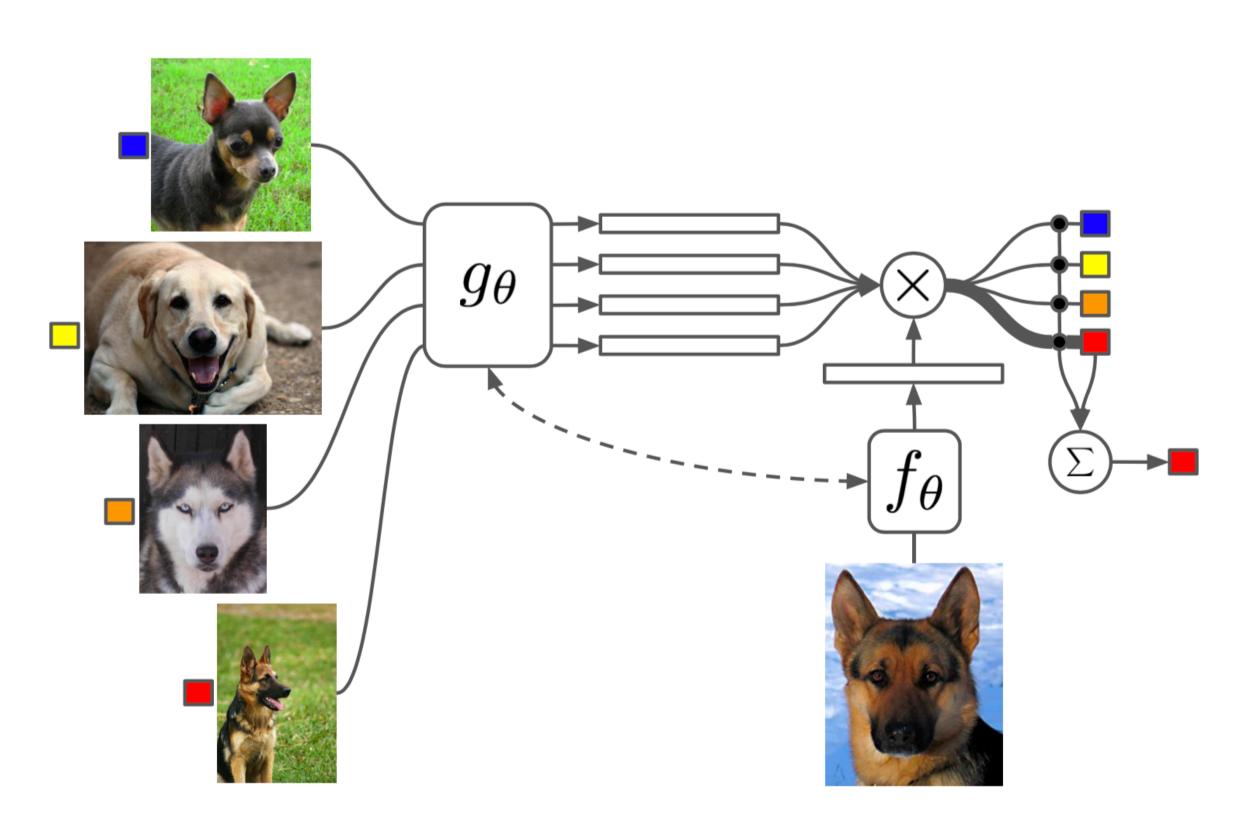
Simple version: f=g + soft-attention

Key = features of support set imagesValue = labels of support set images

Query = features of test image

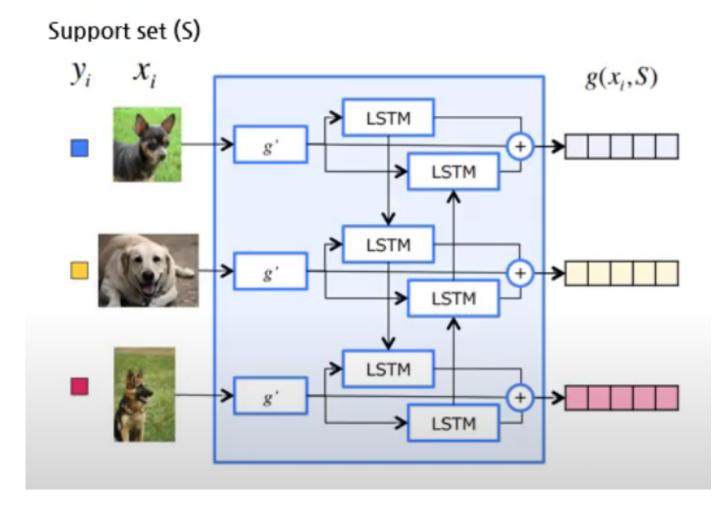
Inference: output the label distribution is simply sum of labels from support set, weighted by similarity/relevance

$$c_S(\mathbf{x}) = P(y|\mathbf{x}, S) = \sum_{i=1}^k a(\mathbf{x}, \mathbf{x}_i) y_i$$
, where $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^k$



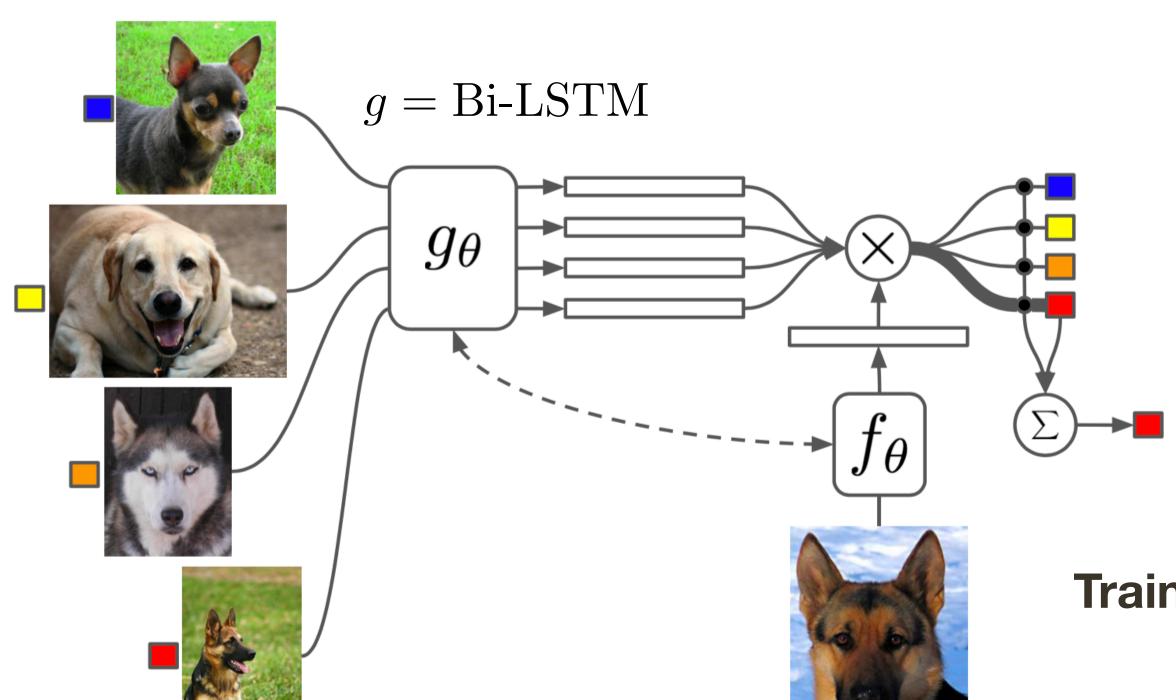
$$a(\mathbf{x}, \mathbf{x}_i) = \frac{\exp(\operatorname{cosine}(f(\mathbf{x}), g(\mathbf{x}_i)))}{\sum_{j=1}^{k} \exp(\operatorname{cosine}(f(\mathbf{x}), g(\mathbf{x}_j)))}$$

$$g = \text{Bi-LSTM}$$



Inference: output the label distribution is simply sum of labels from support set, weighted by similarity/relevance

$$c_S(\mathbf{x}) = P(y|\mathbf{x}, S) = \sum_{i=1}^k a(\mathbf{x}, \mathbf{x}_i) y_i$$
, where $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^k$



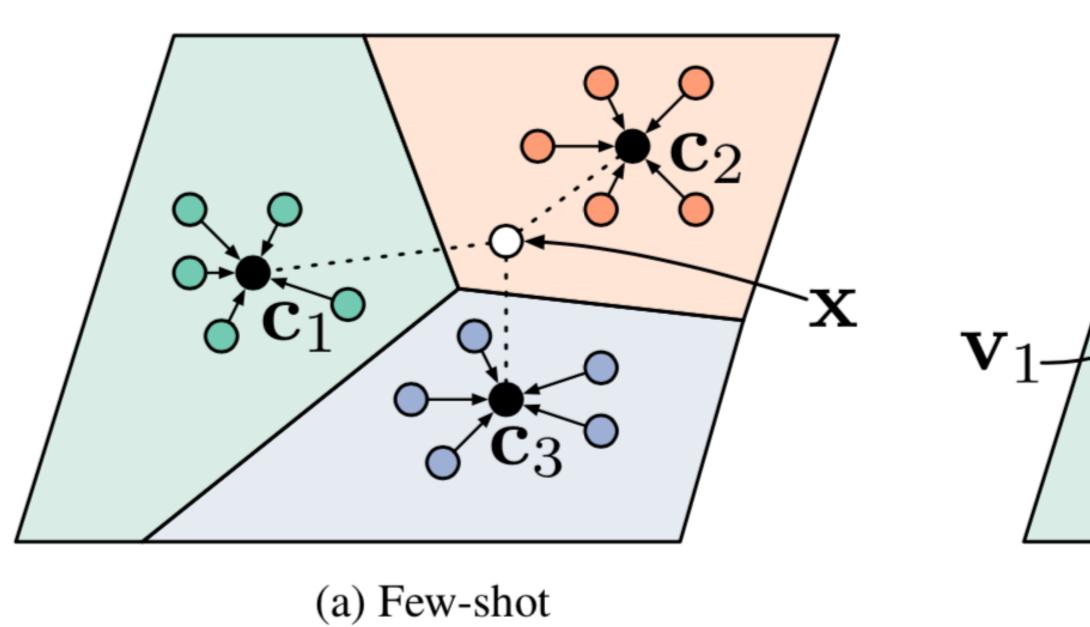
$$a(\mathbf{x}, \mathbf{x}_i) = \frac{\exp(\operatorname{cosine}(f(\mathbf{x}), g(\mathbf{x}_i)))}{\sum_{j=1}^{k} \exp(\operatorname{cosine}(f(\mathbf{x}), g(\mathbf{x}_j)))}$$

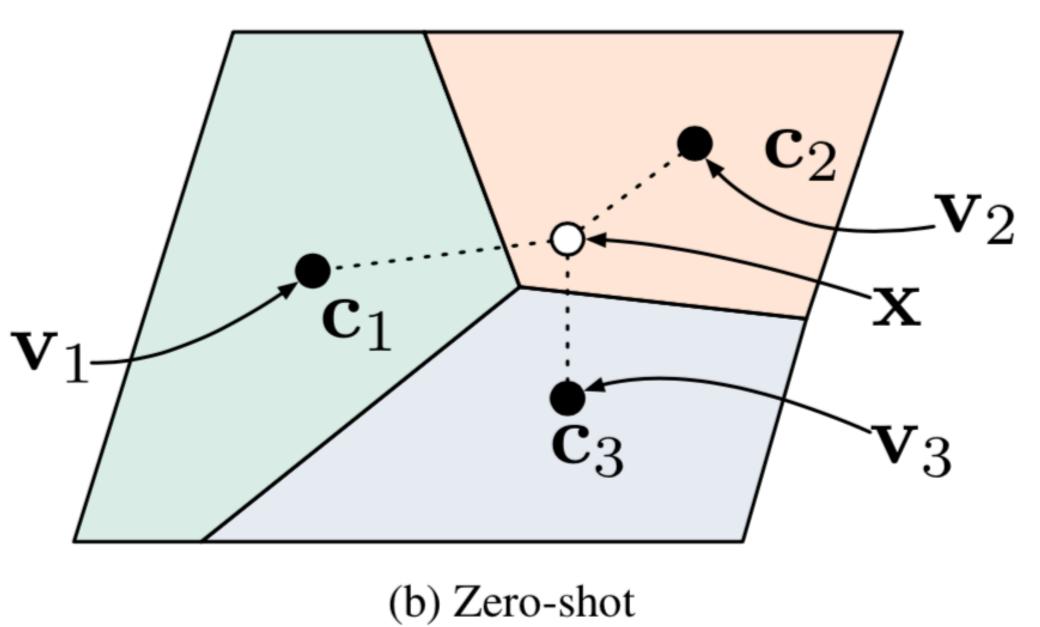
Training Objective: correct classification of query examples

$$\theta^* = \arg\max_{\theta} \mathbb{E}_{L \subset \mathcal{L}} [\mathbb{E}_{S^L \subset \mathcal{D}, B^L \subset \mathcal{D}} [\sum_{(\mathbf{x}, y) \in B^L} P_{\theta}(y | \mathbf{x}, S^L)]]$$

Metric-Based Meta-Learning — Prototypical Networks

$$\mathbf{v}_c = \frac{1}{|S_c|} \sum_{(\mathbf{x}_i, y_i) \in S_c} f_{\theta}(\mathbf{x}_i)$$

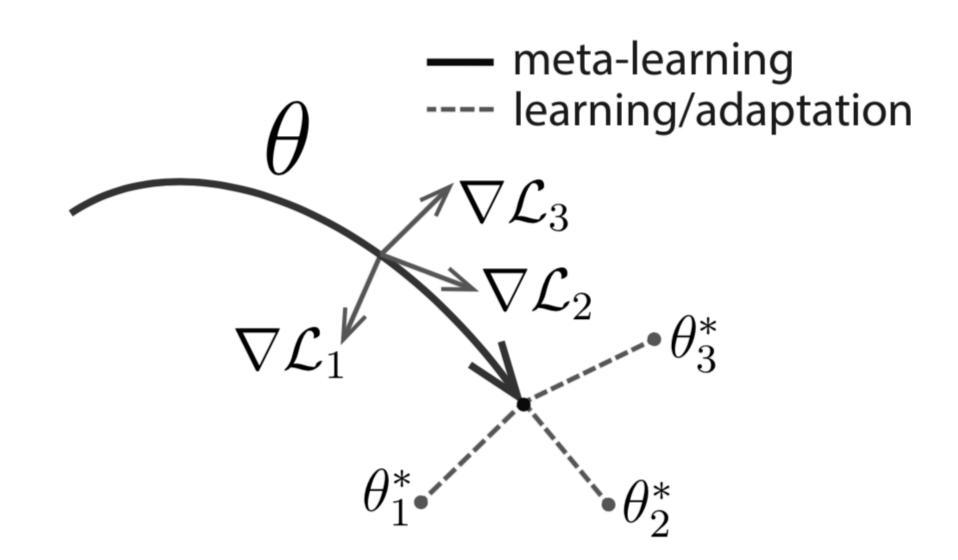




$$P(y = c | \mathbf{x}) = \operatorname{softmax}(-d_{\varphi}(f_{\theta}(\mathbf{x}), \mathbf{v}_c)) = \frac{\exp(-d_{\varphi}(f_{\theta}(\mathbf{x}), \mathbf{v}_c))}{\sum_{c' \in \mathcal{C}} \exp(-d_{\varphi}(f_{\theta}(\mathbf{x}), \mathbf{v}_{c'}))}$$

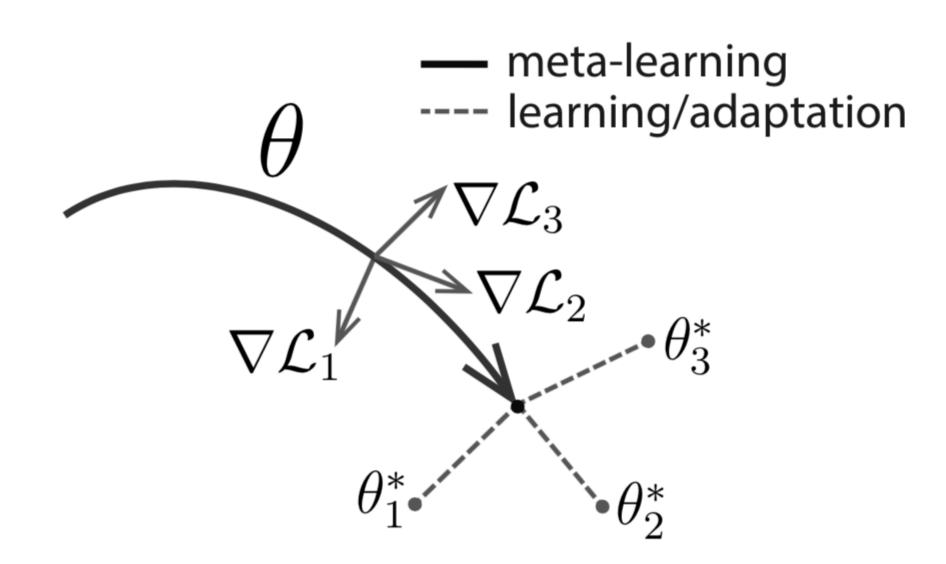
$$\mathcal{L}(\theta) = -\log P_{\theta}(y = c|\mathbf{x})$$

Idea: learn model initialization from which one can rapidly adopt to ANY meta-task



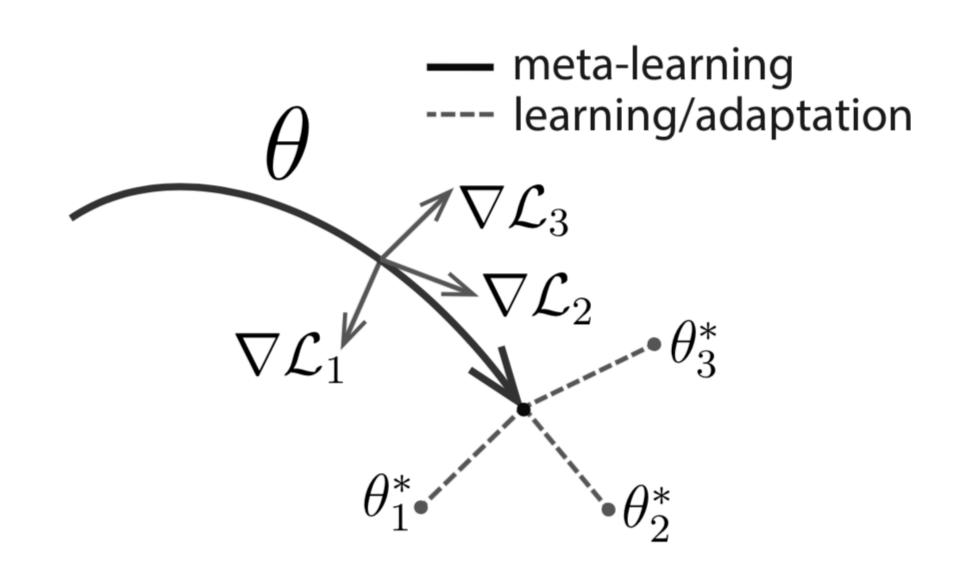
Idea: learn model initialization from which one can rapidly adopt to ANY meta-task

Means: find model parameters that are sensitive to changes in the task



Idea: learn model initialization from which one can rapidly adopt to ANY meta-task

Means: find model parameters that are sensitive to changes in the task



Adapting parameters for one task for k steps:

$$\theta_{0} = \theta_{\text{meta}}$$

$$\theta_{1} = \theta_{0} - \alpha \nabla_{\theta} \mathcal{L}^{(0)}(\theta_{0})$$

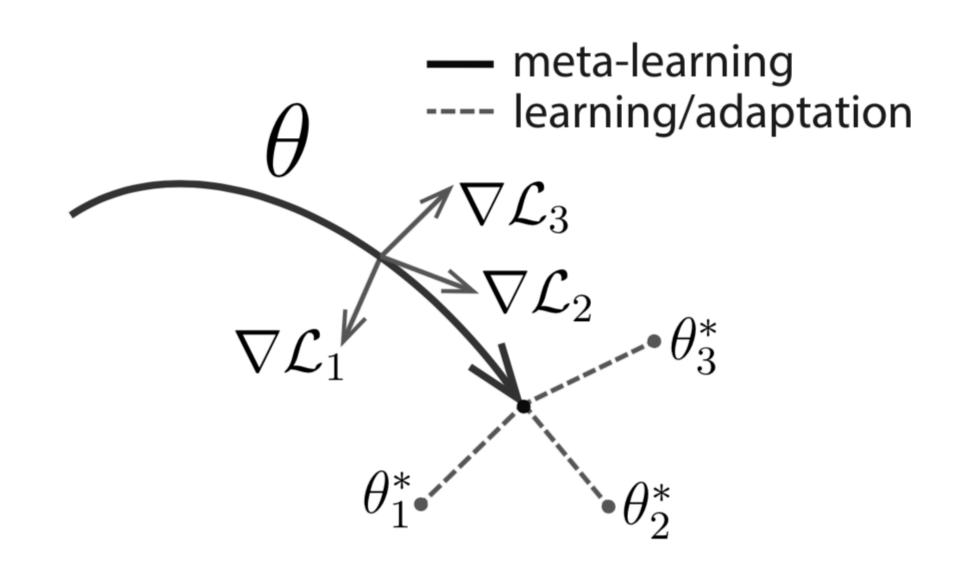
$$\theta_{2} = \theta_{1} - \alpha \nabla_{\theta} \mathcal{L}^{(0)}(\theta_{1})$$

$$\cdots$$

$$\theta_{k} = \theta_{k-1} - \alpha \nabla_{\theta} \mathcal{L}^{(0)}(\theta_{k-1})$$

Idea: learn model initialization from which one can rapidly adopt to ANY meta-task

Means: find model parameters that are sensitive to changes in the task



Adapting parameters for one task for k steps:

$$\theta_{0} = \theta_{\text{meta}}$$

$$\theta_{1} = \theta_{0} - \alpha \nabla_{\theta} \mathcal{L}^{(0)}(\theta_{0})$$

$$\theta_{2} = \theta_{1} - \alpha \nabla_{\theta} \mathcal{L}^{(0)}(\theta_{1})$$

$$\cdots$$

$$\theta_{k} = \theta_{k-1} - \alpha \nabla_{\theta} \mathcal{L}^{(0)}(\theta_{k-1})$$

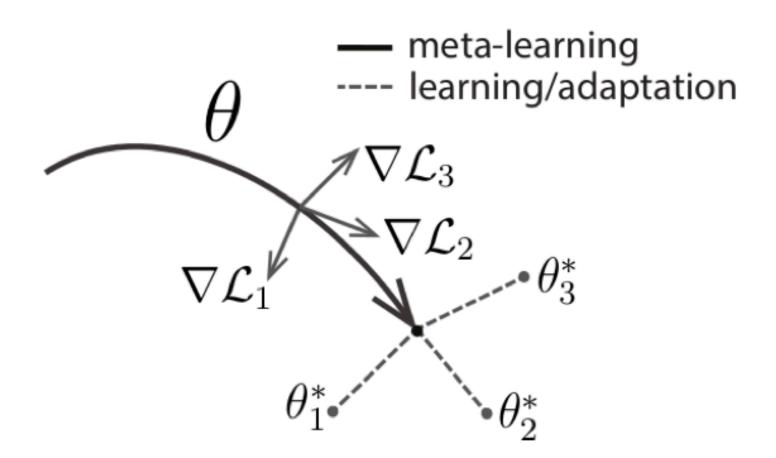
Optimizing meta-parameters:

$$\theta_{\text{meta}} \leftarrow \theta_{\text{meta}} - \beta g_{\text{MAML}}$$

Inner Loop: Update the model for a task from an initialization

Outer Loop: Optimize for the performance of all inner loop models on all tasks

Intuition: We want achieve a low loss after only a few updates on a task



MAML — Algorithm

Algorithm 1 Model-Agnostic Meta-Learning

Require: $p(\mathcal{T})$: distribution over tasks

Require: α , β : step size hyperparameters

1: randomly initialize θ

2: **while** not done **do**

3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$

MAML — Inner Loop

Algorithm 1 Model-Agnostic Meta-Learning

Require: $p(\mathcal{T})$: distribution over tasks

Require: α , β : step size hyperparameters

- 1: randomly initialize θ
- 2: while not done do
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples
- 6: Compute adapted parameters with gradient de
 - scent: $\theta_i' = \theta \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- 7: **end for**

Inner Loop: Update the model for a task from an initialization

$$\theta_i' = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$$

Simple gradient update on the sampled task

MAML — Outer Loop

Algorithm 1 Model-Agnostic Meta-Learning

Require: $p(\mathcal{T})$: distribution over tasks

Require: α , β : step size hyperparameters

- 1: randomly initialize θ
- 2: while not done do
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples
- Compute adapted parameters with gradient descent: $\theta'_i = \theta \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- 7: end for
- 8: Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$
- 9: end while

Meta-objective:

$$\min_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'}) = \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})})$$

Total loss of all updated models

Meta-update:

$$\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_{i} \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_{i}}(f_{\theta'_{i}})$$

Total loss of all updated models

MAML — Issues

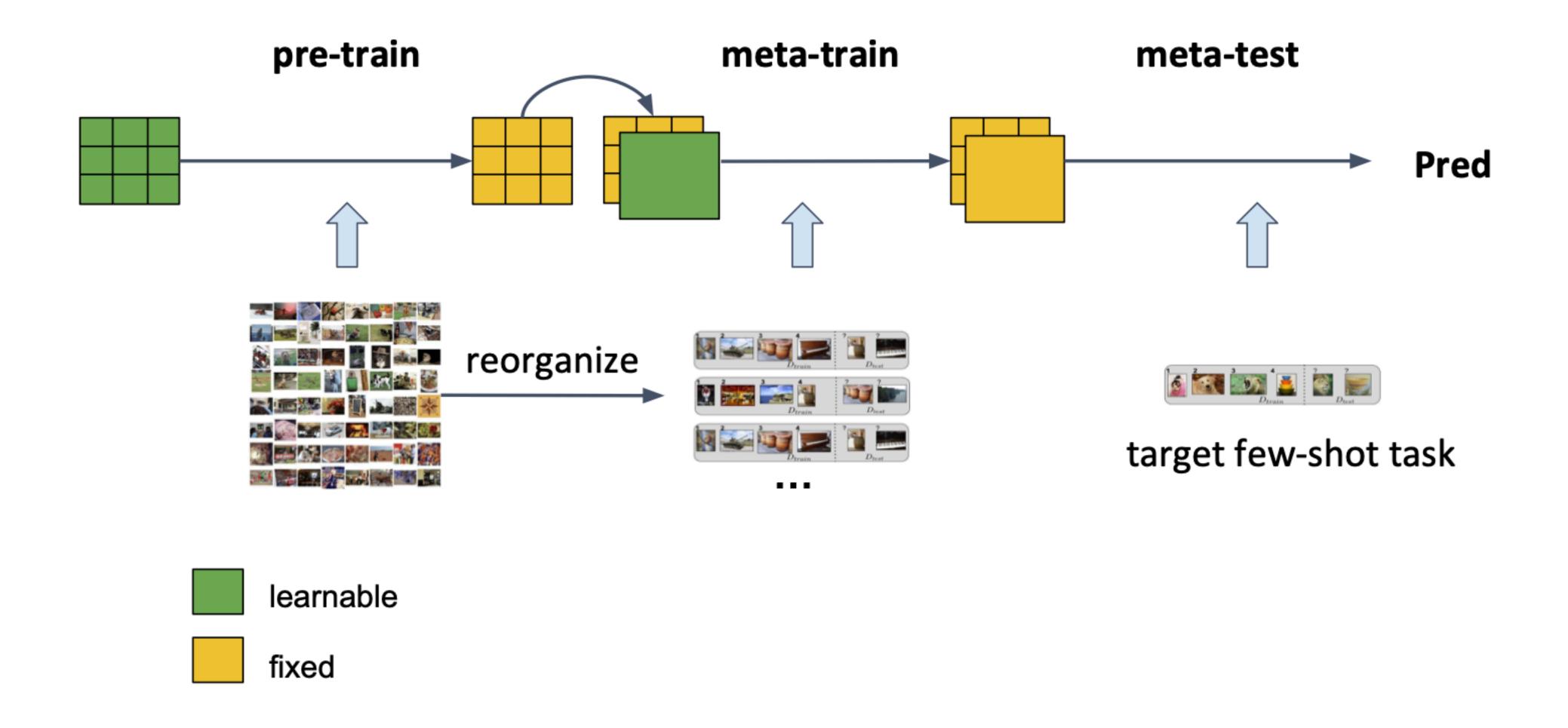
Hard to train with deep feature extractor networks

Solution: Meta-transfer learning

Slow training

Solution: Hard task sampling (will not cover)

A more typical pipeline ...



Multi-modal Few-shot Learners — Flamingo

