

THE UNIVERSITY OF BRITISH COLUMBIA

Topics in AI (CPSC 532S): **Multimodal Learning with Vision, Language and Sound**

Lecture 22: Deep Reinforcement Learning (cont.)

Logistics

— This is our second to last lecture (last lecture Tuesday)

- Paper presentations due tomorrow (will post them over the weekend)

- Final project presentations are December 13th, noon-3pm

(I will ask you to submit slides 11:59pm on the December 12th)

I'll invite TAs possibly a few others

- Final project write-ups are due December 20th

Approaches to RL: Taxonomy

Model-free RL

Value-based RL

- Estimate the optimal action-value function $Q^*(s, a)$
- No policy (implicit)

Policy-based RL

- Search directly for the optima policy π^*
- No value function

Model-based RL

- Build a model of the world
- Plan (e.g., by look-ahead) using model

Actor-critic RL

- Value function

Policy function

* slide from Dhruv Batra

Optimal Q Value Function

- Optimal Q-function is the maximum achievable value
 - $Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a) = Q^{\pi^*}(s,a)$
- Once we have it, we can act optimally

Optimal value maximizes over all future decisions

$$Q^*(s,a) = r_{t+1} + \gamma \max_{a_{t+1}} q_{t+1}$$

Formally, Q* satisfied Bellman Equations $Q^*(s,a) = \mathbb{E}_{s'}\left[r + \gamma \max_{a'} Q^*(s',a') \mid s,a
ight]$

 $\max Q^*(s,a)$

 $ax r_{t+2} + \gamma^2 \max_{a_{t+2}} r_{t+3} + \dots$ $= r_{t+1} + \gamma \max_{a_{t+1}} Q^*(s_{t+1}, a_{t+1})$

* slide from David Silver

Q-Networks

$Q(s, a, \mathbf{w}) \approx Q^*(s, a)$

* slide from David Silver

 $Q^*(s, a) = \mathbb{E}[r + \gamma \max_{a'} Q^*(s', a') \mid s, a]$

Forward Pass:

Loss function: $L_i(\theta_i) = \mathbb{E} \left[(y_i - Q(s, a; \theta_i)^2) \right]$ $y_i = \mathbb{E}[r + \gamma \max_{a'} Q^*(s', a') \mid s, a]$ where

Backward Pass:

Gradient update (with respect to Q-function parameters θ):

$$\nabla_{\theta_i} L_i(\theta_i) = \mathbb{E}\left[r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) - Q(s, a; \theta_i)) \nabla_{\theta_i} Q(s, a; \theta_i)\right]$$

Remember: want to find a Q-function that satisfies the Bellman Equation:

Forward Pass:

Loss function: $L_i(\theta_i) = \mathbb{E}\left[(y_i - Q(s, a; \theta_i)^2)\right]$ $y_i = \mathbb{E}[r + \gamma \max_{a'} Q^*(s', a') \mid s, a]$ where

Backward Pass:

Gradient update (with respect to Q-function parameters θ):

$$\nabla_{\theta_i} L_i(\theta_i) = \mathbb{E}\left[r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) - Q(s, a; \theta_i)) \nabla_{\theta_i} Q(s, a; \theta_i)\right]$$

Forward Pass:

Loss function: $L_i(\theta_i) = \mathbb{E}\left[(y_i - Q(s, a; \theta_i)^2)\right]$ $y_i = \mathbb{E}[r + \gamma \max_{a'} Q^*(s', a') \mid s, a]$ where

Backward Pass:

Gradient update (with respect to Q-function parameters θ):

$$\nabla_{\theta_i} L_i(\theta_i) = \mathbb{E}\left[r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) - Q(s, a; \theta_i)) \nabla_{\theta_i} Q(s, a; \theta_i)\right]$$

Forward Pass:

Loss function: $L_i(\theta_i) = \mathbb{E}\left[(y_i - Q(s, a; \theta_i)^2)\right]$ $y_i = \mathbb{E}[r + \gamma \max_{a'} Q^*(s', a') \mid s, a]$ where

Backward Pass:

Gradient update (with respect to Q-function parameters θ):

$$\nabla_{\theta_i} L_i(\theta_i) = \mathbb{E}\left[r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) - Q(s, a; \theta_i)) \nabla_{\theta_i} Q(s, a; \theta_i)\right]$$

Training the Q-Network: **Experience Replay**

Learning from batches of consecutive samples is problematic:

 Samples are correlated => inefficient learning - Current Q-network parameters determines next training samples (e.g. if maximizing => can lead to bad feedback loops

Address these problems using experience replay - Continually update a replay memory table of transitions (s_t , a_t , r_t , s_{t+1}) as game (experience) episodes are played of consecutive samples

- action is to move left, training samples will be dominated by samples from left-hand size)

- Train Q-network on random minibatches of transitions from the replay memory, instead

Experience Replay

Experience Replay

To remove correlations, build data-set from agent's own experience

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory \mathcal{D} to capacity N Initialize action-value function Q with random weights for episode = 1, M do

Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ for t = 1, T do

With probability ϵ select a random action a_t otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t$, a_t , x_{t+1} and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} Sample random minibatch of transitions $(\phi_i, a_i, r_i, \phi_{i+1})$ from \mathcal{D}

Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \\ \text{for non-terminal } \phi_{j+1} \end{cases}$

end for

end for

```
Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 according to equation 3
```


Algorithm 1 Deep Q-learning with Experience Replay Initialize replay memory \mathcal{D} to capacity N Initialize replay memory, Q-network Initialize action-value function Q with random weights for episode = 1, M do Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ for t = 1, T do With probability ϵ select a random action a_t otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t$, a_t , x_{t+1} and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} Sample random minibatch of transitions $(\phi_i, a_i, r_i, \phi_{i+1})$ from \mathcal{D} Set $y_j = \begin{cases} r_j \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) \end{cases}$ for terminal ϕ_{j+1} for non-terminal ϕ_{j+1} Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3 end for end for

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory \mathcal{D} to capacity N for episode = 1, M do

Initialize action-value function Q with random weights Play M episodes (full games) Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ for t = 1, T do

With probability ϵ select a random action a_t otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t$, a_t , x_{t+1} and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} Sample random minibatch of transitions $(\phi_i, a_i, r_i, \phi_{i+1})$ from \mathcal{D}

end for

end for

```
Set y_j = \begin{cases} r_j \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) \end{cases} for non-terminal \phi_{j+1} for non-terminal \phi_{j+1}
 Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 according to equation 3
```


Algorithm 1 Deep Q-learning with Experience Replay Initialize replay memory \mathcal{D} to capacity N Initialize state (start geme screen Initialize action-value function Q with random weights pixes) at beggining of each episode for episode = 1, M do Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ for t = 1, T do With probability ϵ select a random action a_t otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t$, a_t , x_{t+1} and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} Sample random minibatch of transitions $(\phi_i, a_i, r_i, \phi_{i+1})$ from \mathcal{D} Set $y_j = \begin{cases} r_j \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) \end{cases}$ for non-terminal ϕ_{j+1} for non-terminal ϕ_{j+1} Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3

end for

end for

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory \mathcal{D} to capacity N Initialize action-value function Q with random weights for episode = 1, M do

Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ for t = 1, T do

For each timestep T of the game (T is max steps but can return early)

With probability ϵ select a random action a_t otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t$, a_t , x_{t+1} and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} Sample random minibatch of transitions $(\phi_i, a_j, r_j, \phi_{j+1})$ from \mathcal{D} Set $y_j = \begin{cases} r_j \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) \end{cases}$ for non-terminal ϕ_{j+1} for non-terminal ϕ_{j+1} Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3

end for

end for

Algorithm 1 Deep Q-learning with Experience Replay Initialize replay memory \mathcal{D} to capacity N Initialize action-value function Q with random weights for episode = 1, M do Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ for t = 1, T do With probability ϵ select a random action a_t otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t$, a_t , x_{t+1} and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} Sample random minibatch of transitions $(\phi_i, a_j, r_j, \phi_{j+1})$ from \mathcal{D} Set $y_j = \begin{cases} r_j \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) \end{cases}$ for terminal ϕ_{j+1} for non-terminal ϕ_{j+1} end for end for

With small probability take random action (explore) Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3

Algorithm 1 Deep Q-learning with Experience Replay Initialize replay memory \mathcal{D} to capacity N Initialize action-value function Q with random weights for episode = 1, M do Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ for t = 1, T do With probability ϵ select a random action a_t otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t$, a_t , x_{t+1} and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} Sample random minibatch of transitions $(\phi_i, a_i, r_i, \phi_{i+1})$ from \mathcal{D} Set $y_j = \begin{cases} r_j \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) \end{cases}$ for non-terminal ϕ_{j+1} for non-terminal ϕ_{j+1} Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3 end for end for

Otherwise select greedy action from current policy (implicit in Q function)

Algorithm 1 Deep Q-learning with Experience Replay Initialize replay memory \mathcal{D} to capacity N Initialize action-value function Q with random weights for episode = 1, M do Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ for t = 1, T do With probability ϵ select a random action a_t otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} Sample random minibatch of transitions $(\phi_i, a_i, r_i, \phi_{i+1})$ from \mathcal{D} Set $y_j = \begin{cases} r_j \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) \end{cases}$ for non-terminal ϕ_{j+1} for non-terminal ϕ_{j+1} Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3 end for end for

Take action and observe the reward and next state

Algorithm 1 Deep Q-learning with Experience Replay Initialize replay memory \mathcal{D} to capacity N Initialize action-value function Q with random weights for episode = 1, M do Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ for t = 1, T do With probability ϵ select a random action a_t otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t$, a_t , x_{t+1} and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} Sample random minibatch of transitions $(\phi_i, a_i, r_i, \phi_{i+1})$ from \mathcal{D} Set $y_j = \begin{cases} r_j \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) \end{cases}$ for terminal ϕ_{j+1} for non-terminal ϕ_{j+1} end for end for

```
Store transition replay in memory
Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 according to equation 3
```


Algorithm 1 Deep Q-learning with Experience Replay Initialize replay memory \mathcal{D} to capacity N Initialize action-value function Q with random weights for episode = 1, M do Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ for t = 1, T do With probability ϵ select a random action a_t otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t$, a_t , x_{t+1} and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} Sample random minibatch of transitions $(\phi_i, a_i, r_i, \phi_{i+1})$ from \mathcal{D} Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$ Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3 end for end for

Sample a random mini-batch from replay memory and perform a gradient descent step

Example: Atari Playing

The algorithm tries to hit the ball back, but it is yet too clumsy to manage.

Starting out - 10 minutes of training

Example: Atari Playing

The algorithm tries to hit the ball back, but it is yet too clumsy to manage.

Starting out - 10 minutes of training

Deep RL

Value-based RL

Use neural nets to represent Q function

Policy-based RL

- Use neural nets to represent the policy π_{θ}

Model-based RL

Use neural nets to represent and learn the model

$Q(s, a; \theta)$ $Q(s, a; \theta^*) \approx Q^*(s, a)$

$\pi_{\theta^*} \approx \pi^*$

* slide from Dhruv Batra

Deep RL

Value-based RL

- Use neural nets to represent Q function $Q(s, a; \theta)$

Policy-based RL

 Use neural nets to represent the policy π_{θ}

Model-based RL

Use neural nets to represent and learn the model

$Q(s,a;\theta^*) \approx Q^*(s,a)$

$\pi_{\theta^*} \approx \pi^*$

* slide from Dhruv Batra

Formally, let's define a class of parameterized policies:

For each policy, define its value:

 $J(\theta) = \mathbb{E} \left| \sum_{t \ge 0} \gamma^t r_t | \pi_{\theta} \right|$

Formally, let's define a class of parameterized policies:

For each policy, define its value:

$$J(heta) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^t
ight.$$

We want to find the optimal policy $\theta^* = \arg \max_{\alpha} J(\theta)$

Formally, let's define a class of parameterized policies:

For each policy, define its value:

$$J(heta) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^t
ight]$$

We want to find the optimal policy $\theta^* = \arg \max_{\alpha} J(\theta)$

How can we do this?

 $r_t r_t |\pi_{ heta}|$

Formally, let's define a class of parameterized policies:

For each policy, define its value:

$$J(heta) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^t
ight]$$

We want to find the optimal policy $\theta^* = \arg \max_{\alpha} J(\theta)$

How can we do this?

Gradient ascent on policy parameters!

 $|\pi_{\theta}|^{t}$

REINFORCE algorithm

Expected reward:

 $J(\theta) = \mathbb{E}_{\tau \sim p(\tau;\theta)} \left[r(\tau) \right]$ $= \int_{\tau} r(\tau) p(\tau; \theta) \mathrm{d}\tau$

Where $r(\tau)$ is the reward of a trajectory

$$\tau = (s_0, a_0, r_0, s_1, \ldots)$$

REINFORCE algorithm

Expected reward:

$$J(\theta) = \mathbb{E}_{\tau \sim p(\tau;\theta)} [r(\tau)]$$
$$= \int_{\tau} r(\tau) p(\tau;\theta) d\theta$$

Where $r(\tau)$ is the reward of a trajectory

Now let's differentiate this: $\nabla_{\theta} J(\theta) =$

υ

Intractable! Expectation of gradient is problematic when p depends on θ

 $\mathrm{d} au$

$$au = (s_0, a_0, r_0, s_1, \ldots) \ \int_{ au} r(au)
abla_{ heta} p(au; heta) \mathrm{d} au$$

REINFORCE algorithm

Expected reward: $J(\theta) = \mathbb{E}_{\tau \sim p(\tau;\theta)} \left[r(\tau) \right]$ $=\int_{\tau} r(\tau) p(\tau; \theta) \mathrm{d}$

Where $r(\tau)$ is the reward of a trajectory Now let's differentiate this: $\nabla_{\theta} J(\theta) =$

However, we can use a nice trick: $\nabla_{\theta} p($

If we inject this back: $\nabla_{\theta} J(\theta) = \int_{\tau} \left(r(\tau) \nabla_{\theta} \log p(\tau; \theta) \right) p(\tau; \theta) d\tau$ Can estimate with Monte Carlo sampling $= \mathbb{E}_{\tau \sim p(\tau;\theta)} \left[r(\tau) \nabla_{\theta} \log p(\tau;\theta) \right]$

$$\mathrm{l} au$$

$$\begin{aligned} \tau &= (s_0, a_0, r_0, s_1, \ldots) \\ \int_{\tau} r(\tau) \nabla_{\theta} p(\tau; \theta) d\tau \\ (\tau; \theta) &= p(\tau; \theta) \frac{\nabla_{\theta} p(\tau; \theta)}{p(\tau; \theta)} = p(\tau; \theta) \nabla_{\theta} \log p(\tau; \theta) \end{aligned}$$

Intuition

Gradient estimator:

$\nabla_{\theta} J(\theta) \approx \sum r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$ $t \ge 0$

Interpretation:

- If $r(\tau)$ is high, push up the probabilities of the actions seen
- If $r(\tau)$ is low, push down the probabilities of the actions seen

Intuition

Gradient estimator:

$\nabla_{\theta} J(\theta) \approx \sum r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$ $t \ge 0$

Interpretation:

- If $r(\tau)$ is high, push up the probabilities of the actions seen

- If $r(\tau)$ is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were good. But in expectation, it averages out!

Intuition

* slide from Dhruv Batra
Intuition

Gradient estimator:

$\nabla_{\theta} J(\theta) \approx \sum r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$ $t \ge 0$

Interpretation:

- If $r(\tau)$ is high, push up the probabilities of the actions seen

- If $r(\tau)$ is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were good. But in expectation, it averages out!

> However, this also suffers from high variance because credit assignment is really hard. Can we help the estimator?

Unstable system. Poll will fall if left to own devices.

Goal: Keep the poll upright by applying +1 / -1 force (move cart left or right)

Reward: +1 for every frame for every time step pole remains upright

State: 4-D (position + velocity of cart, angle + velocity of pole)

https://medium.com/@fork.tree.ai/understanding-baseline-techniques-for-reinforce-53a1e2279b57

Unstable system. Poll will fall if left to own devices.

Goal: Keep the poll upright by applying +1 / -1 force (move cart left or right)

Reward: +1 for every frame for every time step pole remains upright

State: 4-D (position + velocity of cart, angle + velocity of pole)

https://medium.com/@fork.tree.ai/understanding-baseline-techniques-for-reinforce-53a1e2279b57

$R + \gamma R + \gamma^2 R +$

Note: we can focus on short-term horizon policy by setting gamma = 0

on long-term horizon policy by setting gamma close to 1

$$\gamma^3 R + \ldots = \frac{R}{1 - \gamma}$$

$R + \gamma R + \gamma^2 R +$

Note: we can focus on short-term horizon policy by setting gamma = 0

on long-term horizon policy by setting gamma close to 1

What happens if we delayed our reward, e.g., only receive 1 if pole is upright after 500 time steps?

$$\gamma^3 R + \ldots = \frac{R}{1 - \gamma}$$

$R + \gamma R + \gamma^2 R +$

Note: we can focus on short-term horizon policy by setting gamma = 0

on long-term horizon policy by setting gamma close to 1

What happens if we delayed our reward, e.g., only receive 1 if pole is upright after 500 time steps?

$$\gamma^3 R + \ldots = \frac{R}{1 - \gamma}$$

 $\gamma^{499}R$

REINFORCE with Whitening Baseline Subtract mean over rewards in a rollout and divide by the standard deviation $\nabla_{\theta} J(\theta) \approx \sum r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$ $t \ge 0$

1 iteration = 1 episode + gradient update step

$$r(\tau) = \sum \gamma^t r_t \qquad r(\tau) = \frac{\sum \gamma^t r_t - \mu_{r_t}}{\sigma_{r_t}}$$

1 interaction = 1 action taken in the environment

REINFORCE with Whitening Baseline Does not solve a game, even after 1000 iterations!! Algorithm unstable (variance is high)

1 iteration = 1 episode + gradient update step 1 interaction = 1 action taken in the environment

REINFORCE with Learned Baseline (self-critic)

Mean episode length over training iterations 500 400 Episode length 300 200 100 REINFORCE REINFORCE learned baseline 0 200 400 600 800 0 Iterations

1 iteration = 1 episode + gradient update step

$$r(\tau) = \sum \gamma^t r_t - V_\phi(s_t)$$

1 interaction = 1 action taken in the environment

REINFORCE with Sampled Baseline

https://medium.com/@fork.tree.ai/understanding-baseline-techniques-for-reinforce-53a1e2279b57

$$\hat{v}(S_t) = \frac{1}{N_b} \sum_{b=1}^{N_b} G_t^{(b)} \quad \text{(sample rollouts)}$$
$$\hat{v}(S_t) = G_t^{(greedy)} \quad \text{(greedy rollout)}$$

 $\theta_{t+1} = \theta_t + \alpha \left(G_t - \hat{v}(S_t) \right) \nabla \log \pi(A_t | S_t, \theta)$

REINFORCE with Sampled Baseline

https://medium.com/@fork.tree.ai/understanding-baseline-techniques-for-reinforce-53a1e2279b57

1 iteration = 1 episode + gradient update step 1 interaction = 1 action taken in the environment

REINFORCE with Sampled Baseline

https://medium.com/@fork.tree.ai/understanding-baseline-techniques-for-reinforce-53a1e2279b57

1 iteration = 1 episode + gradient update step 1 interaction = 1 action taken in the environment

Objective: Image Classification

Take a sequence of "glimpses" selectively focusing on regions of the image, to predict class

- Inspiration from human perception and eye movements
- Saves computational resources => scalability
- Able to ignore clutter / irrelevant parts of image

glimpse

[Mnih *et al.*, 2014]

Objective: Image Classification

Take a sequence of "glimpses" selectively focusing on regions of the image, to predict class

- Inspiration from human perception and eye movements
- Saves computational resources => scalability
- Able to ignore clutter / irrelevant parts of image

State: Glimpses seen so far **Action:** (x,y) coordinates (center of glimpse) of where to look next in image **Reward**: 1 at the final timestep if image correctly classified, 0 otherwise

glimpse

[Mnih *et al.*, 2014]

Objective: Image Classification

Take a sequence of "glimpses" selectively focusing on regions of the image, to predict class

- Inspiration from human perception and eye movements
- Saves computational resources => scalability
- Able to ignore clutter / irrelevant parts of image

State: Glimpses seen so far **Action**: (x,y) coordinates (center of glimpse) of where to look next in image **Reward**: 1 at the final timestep if image correctly classified, 0 otherwise

Glimpsing is a **non-differentiable operation** => learn policy for how to take glimpse actions using REINFORCE Given state of glimpses seen so far, use RNN to model the state and output next action

glimpse

[Mnih *et al.*, 2014]

[Mnih et al., 2014]

[Mnih et al., 2014]

[Mnih et al., 2014]

[Mnih et al., 2014]

Has also been used in many other tasks including fine-grained image recognition, image captioning, and visual question-answering!

[Mnih *et al.*, 2014]

Has also been used in many other tasks including fine-grained image recognition, image captioning, and visual question-answering!

[Mnih *et al.*, 2014]

Has also been used in many other tasks including fine-grained image recognition, image captioning, and visual question-answering!

[Mnih *et al.*, 2014]

Has also been used in many other tasks including fine-grained image recognition, image captioning, and visual question-answering!

[Mnih *et al.*, 2014]

[Hu et al., 2017]

Learning To Reason: End-to-End Module Networks for VQA [Hu et al., 2017]

attend : $Image \rightarrow Attention$

Takes image and outputs attention map, conditions on the [label], i.e., find()

Learning To Reason: End-to-End Module Networks for VQA [Hu et al., 2017]

attend : $Image \rightarrow Attention$

Takes image and outputs attention map, conditions on the [label], i.e., find()

 $re-attend : Attention \rightarrow Attention$

Shifts a attention based on logical relationship (e.g. above)

attend : $Image \rightarrow Attention$

Takes image and outputs attention map, conditions on the [label], i.e., find()

 $combine : Attention \times Attention \rightarrow Attention$

Logical relations on attention (e.g., and/or)

 $re-attend: Attention \rightarrow Attention$

Shifts a attention based on logical relationship (e.g. above)

attend : $Image \rightarrow Attention$

Takes image and outputs attention map, conditions on the [label], i.e., find()

 $combine : Attention \times Attention \rightarrow Attention$

Logical relations on attention (e.g., and/or)

 $re-attend: Attention \rightarrow Attention$

Shifts a attention based on logical relationship (e.g. above)

 $classify: Image \times Attention \rightarrow Label$

Given attention and image, generate a label

Learning To Reason: End-to-End Module Networks for VQA [Hu et al., 2017]

measure : $Attention \rightarrow Label$

Is there a red shape above a circle?

[Andreas et al., 2017]

Is there a red shape above a circle?

Note: Every sample = different computational graph (but that's OK)

[Andreas et al., 2017]

Is there a red shape above a circle?

[Andreas et al., 2017]

[Hu et al., 2017]

Deep **RL-based** Image Captioning /w REINFORCE

[Pasunuru and Bansal]

1

Deep **RL-based** Image Captioning

[Ren et al. 2017]

Summary

Policy gradients: very general but suffer from high variance so requires a lot of samples. *Challenge*: sample-efficiency

Q-learning: does not always work but when it works, usually more sampleefficient. *Challenge*: exploration

Guarantees:

— Policy Gradients: Converges to a local minima of $J(\theta)$, often good enough! - Q-learning: Zero guarantees since you are approximating Bellman equation with a complicated function approximator

THE UNIVERSITY OF BRITISH COLUMBIA

Topics in AI (CPSC 532S): **Multimodal Learning with Vision, Language and Sound**

Lecture 22: Large Scale Visio-Lingual Models (cont.)

Review: Transformers

Task: produce contextualized representation of each (source) words

(target) word

Visual BERT (VilBERT)

(a) Masked multi-modal learning

(b) Multi-modal alignment prediction

[Lu et al., 2019]

Pre-training and Foundational Models

Large, Noisy, Cheap Data

Pre-training and Foundational Models

Large, Noisy, Cheap Data

Slide from **Zhe Gan**

'man with his dog on a couch

Pre-training Task I

Pre-training Task II

Pre-training Task III

Fine-tune on Downstream Task

Pre-training and Foundational Models

Recent History of Visio-Lingual Models

Slide from **Zhe Gan**

300 dim

4096 dim 7 dim = [x1, y1, x2, y2, w, h, w * h]

Slide from **Zhe Gan**

300 dim

300 dim

Masked Language Modeling (MLM)

Slide from **Zhe Gan**

Masked Language Modeling (MLM)

Slide from **Zhe Gan**

Masked Region Modeling (MRM)

Slide from **Zhe Gan**

Slide from **Zhe Gan**

Masked Region Classification with KL-Divergence (MRC-kl)

		VOA	IR	TR	NILVD ²	Ref-
re-training Tasks	Meta-Sum	VQA	(Flickr)	(Flickr)	NLVR	COCO+
		test-dev	val	val	dev	val^d
MLM + ITM + MRC	393.97	71.46	81.39	91.45	76.18	73.49
MLM + ITM + MRFR	396.24	71.73	81.76	92.31	76.21	74.23
MLM + ITM + MRC-kl	397.09	71.63	82.10	92.57	76.28	74.51
MLM + ITM + MRC-kl + MRFR	399.97	71.92	83.73	92.87	76.93	74.52

Downstream Task 1: Visual Question Answering

What color are her eyes?

Slide from **Zhe Gan**

[Antol et al., ICCV 2015]

Downstream Task 2: Visual Entailment

Premise

Slide from **Zhe Gan**

Two woman are holding packages. The sisters are hugging goodbye while holding to go packages after just eating lunch. The men are fighting outside a deli.

Hypothesis

- Entailment
- Neutral

Contradiction

Answer

[Xie et al., 2019]

191

Downstream Task 2: Visual Entailment

Two woman are holding packages.

Downstream Task 3: Natural Language for Visual Reasoning

The left image contains twice the number of dogs as the right One image shows exactly two brown acorns in back-to-back caps image, and at least two dogs in total are standing. on green foliage.

true

Slide from **Zhe Gan**

false

[Suhr et al., ACL 2019]

Downstream Task 3: Natural Language for Visual Reasoning

Slide from **Zhe Gan**

The left image contains twice the number of dogs as the right image, and at least two dogs in total are standing.

true

Downstream Task 4: Visual Commonsense Reasoning

Slide from **Zhe Gan**

[Zellers et al., CVPR 2019]

91

Downstream Task 4: Visual Commonsense Reasoning

Why is [person4] pointing at [person1]?

- a) He is telling [person3] that [person1] ordered the pancakes.
- b) He just told a joke.
- c) He is feeling accusatory towards [person1].
- d) He is giving [person1] directions.

Downstream Task 5: Referring Expression Comprehension (Grounding)

woman washing dishes

Downstream Task 5: Referring Expression Comprehension (Grounding)

Downstream Task 6: Image-Text Retrieval

"a girl with a cat on grass"

Downstream Task 6: Image-Text Retrieval

"a girl with a cat on grass" \geq

Slide from **Zhe Gan**

"four people with ski poles in their hands in the snow" "four skiers hold on to their poles in a snowy forest" "a group of young men riding skis"

"skiers pose for a picture while outside in the woods" "a group of people cross country skiing in the woods"

Downstream Task 6: Image-Text Retrieval

Preliminary: Adversarial Attacks

+ 0.005 x

Natural Language Processing:

Original: What is the oncorhynchus also called? A: chum salmon **Changed:** What's the oncorhynchus also called? A: keta

(b) Example for (WP is \rightarrow WP's)

[1] Explaining and harnessing adversarial examples. arXiv:1412.6572 [2] Semantically equivalent adversarial rules for debugging nlp models. ACL (2018)

Neural Networks are prone to label-preserving adversarial examples

Preliminary: Adversarial Training

A min-max game to harness adversarial examples

$$\min_{\theta} \mathbb{E}_{(x,y)\sim\widehat{\mathcal{D}}}\left[\max_{\delta\in S} \mathcal{L}(x+\delta,y;\theta)\right]$$

- Use adversarial examples as additional training samples

 - examples
- What doesn't kill you makes you stronger!

Explaining and harnessing adversarial examples. arXiv:1412.6572

• On one hand, we try to find perturbations that maximize the empirical risk On the other hand, the model tries to make correct predictions on adversarial

- Ingredient #1: Adversarial pre-training + finetuning Ingredient #2: Perturbations in the embedding space Ingredient #3: Enhanced adversarial training algorithm

• Training objective:

 $\min_{\boldsymbol{\theta}} \mathbb{E}_{(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt}, \boldsymbol{y}) \sim \mathcal{D}} \left[\mathcal{L}_{std}(\boldsymbol{\theta}) + \mathcal{R} \right]$

 Cross-entropy loss on clean data: $\mathcal{L}_{std}(\boldsymbol{\theta}) = L(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt}), \boldsymbol{y})$

$$\mathcal{R}_{at}(\boldsymbol{\theta}) + \alpha \cdot \mathcal{R}_{kl}(\boldsymbol{\theta}) \Big]$$

• Training objective:

 $\min_{\boldsymbol{\theta}} \mathbb{E}_{(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt}, \boldsymbol{y}) \sim \mathcal{D}} \left| \mathcal{L}_{std}(\boldsymbol{\theta}) + \mathcal{R} \right|$

Cross-entropy loss on adversarial embeddings:

 $\mathcal{R}_{at}(\boldsymbol{\theta}) = \max_{\substack{||\boldsymbol{\delta}_{img}|| \leq \epsilon}} L(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img} + \boldsymbol{\delta}_{img}, \boldsymbol{x}_{txt}), \boldsymbol{y}) + \max_{\substack{||\boldsymbol{\delta}_{txt}|| \leq \epsilon}} L(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt} + \boldsymbol{\delta}_{txt}), \boldsymbol{y})$

$$\mathcal{R}_{at}(\boldsymbol{\theta}) + \alpha \cdot \mathcal{R}_{kl}(\boldsymbol{\theta}) \Big]$$

• Training objective:

$$\min_{\boldsymbol{\theta}} \mathbb{E}_{(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt}, \boldsymbol{y}) \sim \mathcal{D}} \Big[\mathcal{L}_{std}(\boldsymbol{\theta}) + \mathcal{R}_{at}(\boldsymbol{\theta}) + \alpha \cdot \mathcal{R}_{kl}(\boldsymbol{\theta}) \Big]$$

KL-divergence loss for fine-grained adversarial regularization

$$\mathcal{R}_{kl}(\boldsymbol{\theta}) = \max_{\substack{||\boldsymbol{\delta}_{img}|| \leq \epsilon}} L_{kl}(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img} + \boldsymbol{\delta}_{img}, \boldsymbol{x}_{txt}), f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt})) + \max_{\substack{||\boldsymbol{\delta}_{img}|| \leq \epsilon}} L_{kl}(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt} + \boldsymbol{\delta}_{txt}), f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt})),$$

 $||\mathbf{o}_{txt}|| \geq c$ where $L_{kl}(p,q) = \mathrm{KL}(p||q) + \mathrm{KL}(q||p)$

Not only label-preserving, but the confidence level of the prediction between clean data and adversarial examples should also be close

- Established new state of the art on all the tasks considered
- Gain: +0.85 on VQA, +2.9 on VCR, +1.49 on NLVR2, +0.64 on SNLI-VE

Method	VQA		VCR			NLVR ²		SNLI-VE	
Method	test-dev	test-std	Q→A	$QA \rightarrow R$	$Q \rightarrow AR$	dev	test-P	val	test
ViLBERT	70.55	70.92	72.42 (73.3)	74.47 (74.6)	54.04 (54.8)	-	-	-	-
VisualBERT	70.80	71.00	70.8 (71.6)	73.2 (73.2)	52.2 (52.4)	67.4	67.0	-	
LXMERT	72.42	72.54	_			74.90	74.50	-	- 1
Unicoder-VL	_	_	72.6 (73.4)	74.5 (74.4)	54.4 (54.9)	_	_		
12-in-1	73.15		-	-	_	-	78.87	-	76.95
VL-BERT BASE	71.16	-	73.8 (-)	74.4 (-)	55.2 (-)	-	-	-	-
Oscar _{BASE}	73.16	73.44	-	-	-	78.07	78.36	-	-
UNITER BASE	72.70	72.91	74.56 (75.0)	77.03 (77.2)	57.76 (58.2)	77.18	77.85	78.59	78.28
VILLABASE	73.59	73.67	75.54 (76.4)	78.78 (79.1)	59.75 (60.6)	78.39	79.30	79.47	79.03
VL-BERTLARGE	71.79	72.22	75.5 (75.8)	77.9 (78.4)	58.9 (59.7)	12	-		_
Oscar _{LARGE}	73.61	73.82			_	79.12	80.37		
UNITERLARGE	73.82	74.02	77.22 (77.3)	80.49 (80.8)	62.59 (62.8)	79.12	79.98	79.39	79.38
VILLALARGE	74.69	74.87	78.45 (78.9)	82.57 (82.8)	65.18 (65.7)	79.76	81.47	80.18	80.02

(a) Results on VQA, VCR, NLVR², and SNLI-VE.

Visual BERT (VilBERT)

(a) Masked multi-modal learning

(b) Multi-modal alignment prediction

[Lu et al., 2019]

12-in-1: Multi-task Vision and Language Representation

		Vocab-based VQA (G1)		Image Retrieval (G2)		Referring Expression (G3)					Verification (G4)			
		VQAv2	GQA	VG QA	COCO	Flickr30k	COCO	COCO+	COCOg	V7W	GW	NLVR ²	SNLI-VE	# narams
	Clean	test-dev	test-dev	val	test(R1)	test(R1)	test	test	test	test	test	testP	test	(# models)
1 Single-Task (ST)		71.82	58.19	34.38	65.28	61.14	78.63	71.11	72.24	80.51	62.81	74.25	76.72	3B (12)
2 Single-Task (ST)	✓	71.24	59.09	34.10	64.80	61.46	78.17	69.47	72.21	80.51	62.53	74.25	76.53	3B (12)
3 Group-Tasks (GT	") 🗸	72.03	59.60	36.18	65.06	66.00	80.23	72.79	75.30	81.54	64.78	74.62	76.52	1B (4)
4 All-Tasks (AT)	✓	72.57	60.12	36.36	63.70	63.52	80.58	73.25	75.96	82.75	65.04	78.44	76.78	270M (1)
5 All-Tasks _{w/o G4}	1	72.68	62.09	36.74	64.88	64.62	80.76	73.60	75.80	83.03	65.41	-	-	266M (1)
$ 6 \text{GT} \xrightarrow{\text{finetune}} \text{ST} $	✓	72.61	59.96	35.81	66.26	66.98	79.94	72.12	75.18	81.57	64.56	74.47	76.34	3B (12)
7 AT $\xrightarrow{\text{finetune}}$ ST	1	72.92	60.48	36.56	65.46	65.14	80.86	73.45	76.00	83.01	65.15	78.87	76.73	3B (12)
8 AT $\xrightarrow{\text{finetune}}$ ST		73.15	60.65	36.64	68.00	67.90	81.20	74.22	76.35	83.35	65.69	78.87	76.95	3B (12)

[Lu et al., 2020]

Recent History of Visio-Lingual Models

Slide from **Zhe Gan**

Vision Transformer

[Dosovitskiy et al., 2020]

BEIT: BERT Pre-Training of Image Transformers

[Bao et al., 2022]

BEiT-v2

[Peng et al., 2022]

Masked Data Modeling

Masked Data Modeling

(a) Vision Encoder

Masked Image Modeling Image Classification (IN1K) Semantic Segmentation (ADE20K) Object Detection (COCO)

(b) Language Encoder

Masked Language Modeling

(d) Dual Encoder

Image-Text Retrieval (Flickr30k, COCO)

[Wang et al., 2022]

.

Image Captioning (COCO)

	MSCOCO (5K test set)							Flickr30K (1K test set)						
Model	Image \rightarrow Text			Text \rightarrow Image			Image \rightarrow Text			Text \rightarrow Image				
	R@ 1	R@5	R@10	R@ 1	R@5	R@10	R@ 1	R@5	R@10	R@ 1	R@5	R@ 10		
Fusion-encoder me	odels													
UNITER [CLY ⁺ 20]	65.7	88.6	93.8	52.9	79.9	88.0	87.3	98.0	99.2	75.6	94.1	96.8		
VILLA [GCL ⁺ 20]	-	-	-	-	-	-	87.9	97.5	98.8	76.3	94.2	96.8		
Oscar [LYL ⁺ 20]	73.5	92.2	96.0	57.5	82.8	89.8	-	-	-	-	-	-		
VinVL [ZLH ⁺ 21]	75.4	92.9	96.2	58.8	83.5	90.3	-	-	-	-	-	-		
Dual encoder + Fi	ision e	encode	r rerank	cing										
ALBEF [LSG ⁺ 21]	77.6	94.3	97.2	60.7	84.3	90.5	95.9	99.8	100.0	85.6	97.5	98.9		
BLIP [LLXH22]	82.4	95.4	97.9	65.1	86.3	91.8	97.4	99.8	99.9	87.6	97.7	99.0		
Dual-encoder mod	els													
ALIGN [JYX ⁺ 21]	77.0	93.5	96.9	59.9	83.3	89.8	95.3	99.8	100.0	84.9	97.4	98.6		
FILIP [YHH ⁺ 21]	78.9	94.4	97.4	61.2	84.3	90.6	96.6	100.0	100.0	87.1	97.7	99.1		
Florence [YCC ⁺ 21]	81.8	95.2	-	63.2	85.7	-	97.2	99.9	-	87.9	98.1	-		
BEIT-3	84.8	96.5	98.3	67.2	87.7	92.8	98.0	100.0	100.0	90.3	98.7	99.5		

Model	Extra OD Data	Maximum Image Size	COCO test-devAP ^{box} AP ^{mask}		
ViT-Adapter [CDW+22]	-	1600	60.1	52.1	
DyHead [DCX ⁺ 21]	ImageNet-Pseudo Labels	2000	60.6	-	
Soft Teacher [XZH ⁺ 21]	Object365	-	61.3	53.0	
GLIP [LZZ^+21]	FourODs	-	61.5	-	
$GLIPv2 [ZZH^+22]$	FourODs	-	62.4	-	
Florence [YCC ⁺ 21]	FLOD-9M	2500	62.4	-	
SwinV2-G [LHL ⁺ 21]	Object365	1536	63.1	54.4	
Mask DINO [LZX+22]	Object365	1280	-	54.7	
DINO [ZLL+22]	Object365	2000	63.3	-	
BEIT-3	Object365	1280	63.7	54.8	