
Lecture 22: Deep Reinforcement Learning (cont.)

Topics in AI (CPSC 532S): 
Multimodal Learning with Vision, Language and Sound



Logistics

— This is our second to last lecture (last lecture Tuesday)


— Paper presentations due tomorrow (will post them over the weekend)


— Final project presentations are December 13th, noon-3pm 


           (I will ask you to submit slides 11:59pm on the December 12th)

           I’ll invite TAs possibly a few others 


— Final project write-ups are due December 20th



Approaches to RL: Taxonomy 

Value-based RL

— Estimate the optimal action-value function

— No policy (implicit)


Policy-based RL 

— Search directly for the optima policy 

— No value function 


Model-based RL

— Build a model of the world

— Plan (e.g., by look-ahead) using model


Q⇤(s, a)

⇡⇤

Actor-critic RL

— Value function

— Policy function

Model-free RL

* slide from Dhruv Batra



Optimal Q Value Function
Optimal Q-function is the maximum achievable value

Once we have it, we can act optimally

Optimal value maximizes over all future decisions

Formally, Q* satisfied Bellman Equations

* slide from David Silver



Q-Networks

* slide from David Silver



Q-Network Learning
Remember: want to find a Q-function that satisfies the Bellman Equation: 


Loss function:


where

Forward Pass:

Backward Pass:

Gradient update (with respect to Q-function parameters θ):


* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
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Q-Network Learning
Remember: want to find a Q-function that satisfies the Bellman Equation: 


Loss function:


where

Iteratively try to make the Q-value 
close to the target value (yi) it 
should have, if Q-function 
corresponds to optimal Q* (and 
optimal policy 𝝿*)

Forward Pass:

Backward Pass:

Gradient update (with respect to Q-function parameters θ):


* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Need tuples: <s, a, r, s’>



Training the Q-Network: Experience Replay
Learning from batches of consecutive samples is problematic:


— Samples are correlated => inefficient learning

— Current Q-network parameters determines next training samples (e.g. if maximizing 
action is to move left, training samples will be dominated by samples from left-hand size) 
=> can lead to bad feedback loops


Address these problems using experience replay

— Continually update a replay memory table of transitions (st, at, rt, st+1) as game 
(experience) episodes are played

— Train Q-network on random minibatches of transitions from the replay memory, instead 
of consecutive samples 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Experience Replay
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Experience Replay
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Putting it together: Deep Q-learning with Experience Replay
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Putting it together: Deep Q-learning with Experience Replay

Initialize replay memory, Q-network
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Putting it together: Deep Q-learning with Experience Replay

Play M episodes (full games)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Putting it together: Deep Q-learning with Experience Replay

Initialize state (start geme screen

pixes) at beggining of each episode

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Putting it together: Deep Q-learning with Experience Replay

For each timestep T of the game 

(T is max steps but can return early)
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Putting it together: Deep Q-learning with Experience Replay

With small probability take random 

action (explore)
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Putting it together: Deep Q-learning with Experience Replay

Otherwise select greedy action from

current policy (implicit in Q function)
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Putting it together: Deep Q-learning with Experience Replay

Take action and observe the reward

and next state
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Putting it together: Deep Q-learning with Experience Replay

Store transition replay in memory
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Putting it together: Deep Q-learning with Experience Replay

Sample a random mini-batch from 

replay memory and perform a gradient 


descent step

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Example: Atari Playing



Example: Atari Playing



Deep RL

Value-based RL

— Use neural nets to represent Q function 


Policy-based RL 

— Use neural nets to represent the policy


Model-based RL

— Use neural nets to represent and learn the model


* slide from Dhruv Batra



Deep RL

Value-based RL

— Use neural nets to represent Q function 


Policy-based RL 

— Use neural nets to represent the policy


Model-based RL

— Use neural nets to represent and learn the model


* slide from Dhruv Batra



Policy Gradients
Formally, let’s define a class of parameterized policies:


For each policy, define its value:
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Policy Gradients
Formally, let’s define a class of parameterized policies:


For each policy, define its value:


We want to find the optimal policy


How can we do this? 
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Policy Gradients
Formally, let’s define a class of parameterized policies:


For each policy, define its value:


We want to find the optimal policy


Gradient ascent on policy parameters!

How can we do this? 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



REINFORCE algorithm
Expected reward:

Where r(𝜏) is the reward of a trajectory

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



REINFORCE algorithm

Intractable! Expectation of gradient is 
problematic when p depends on θ 

Now let’s differentiate this:


Expected reward:

Where r(𝜏) is the reward of a trajectory

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



REINFORCE algorithm

Can estimate with Monte Carlo 
sampling

Now let’s differentiate this:


However, we can use a nice trick:


If we inject this back:


Expected reward:

Where r(𝜏) is the reward of a trajectory

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Gradient estimator:


Interpretation:

- If r(𝜏) is high, push up the probabilities of the actions seen

- If r(𝜏) is low, push down the probabilities of the actions seen


Intuition

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Gradient estimator:


Interpretation:

- If r(𝜏) is high, push up the probabilities of the actions seen

- If r(𝜏) is low, push down the probabilities of the actions seen


Might seem simplistic to say that if a trajectory is good then all its actions 
were good. But in expectation, it averages out!

Intuition
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Intuition
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Gradient estimator:


Interpretation:

- If r(𝜏) is high, push up the probabilities of the actions seen

- If r(𝜏) is low, push down the probabilities of the actions seen


Might seem simplistic to say that if a trajectory is good then all its actions 
were good. But in expectation, it averages out!

Intuition

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

However, this also suffers from high variance because credit 
assignment is really hard. Can we help the estimator?



CartPole Environment
Unstable system. Poll will fall if left to own devices. 

Goal: Keep the poll upright by applying +1 / -1 force (move cart left or right) 


Reward: +1 for every frame for every time step pole remains upright 


State: 4-D (position + velocity of cart, angle + velocity of pole)

https://medium.com/@fork.tree.ai/understanding-baseline-techniques-for-reinforce-53a1e2279b57
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Subtract mean over rewards in a rollout and divide by the standard deviation
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1 iteration = 1 episode + gradient update step 1 interaction = 1 action taken in the environment

Does not solve a game, even after 1000 iterations!!

Algorithm unstable (variance is high)

REINFORCE with Whitening Baseline
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REINFORCE with Sampled Baseline
https://medium.com/@fork.tree.ai/understanding-baseline-techniques-for-reinforce-53a1e2279b57



1 iteration = 1 episode + gradient update step 1 interaction = 1 action taken in the environment
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1 iteration = 1 episode + gradient update step 1 interaction = 1 action taken in the environment

https://medium.com/@fork.tree.ai/understanding-baseline-techniques-for-reinforce-53a1e2279b57
REINFORCE with Sampled Baseline



REINFORCE in Action: Recurrent Attention Model (REM)
Objective: Image Classification


Take a sequence of “glimpses” selectively focusing on 
regions of the image, to predict class


— Inspiration from human perception and eye movements

— Saves computational resources => scalability

— Able to ignore clutter / irrelevant parts of image

glimpse

[ Mnih et al., 2014 ]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



State: Glimpses seen so far

Action: (x,y) coordinates (center of glimpse) of where to look next in image

Reward: 1 at the final timestep if image correctly classified, 0 otherwise
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State: Glimpses seen so far

Action: (x,y) coordinates (center of glimpse) of where to look next in image

Reward: 1 at the final timestep if image correctly classified, 0 otherwise

REINFORCE in Action: Recurrent Attention Model (REM)
Objective: Image Classification


Take a sequence of “glimpses” selectively focusing on 
regions of the image, to predict class


— Inspiration from human perception and eye movements

— Saves computational resources => scalability

— Able to ignore clutter / irrelevant parts of image

glimpse

Glimpsing is a non-differentiable operation => learn policy for how to take glimpse actions using REINFORCE

Given state of glimpses seen so far, use RNN to model the state and output next action


[ Mnih et al., 2014 ]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



NN

(x1, y1)

Input image

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[ Mnih et al., 2014 ]

REINFORCE in Action: Recurrent Attention Model (REM)



NN

(x1, y1)

NN

(x2, y2)

Input image
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[ Mnih et al., 2014 ]

REINFORCE in Action: Recurrent Attention Model (REM)



NN

(x1, y1)

NN

(x2, y2)

NN

(x3, y3)

Input image
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[ Mnih et al., 2014 ]

REINFORCE in Action: Recurrent Attention Model (REM)



NN

(x1, y1)

NN

(x2, y2)

NN

(x3, y3)

NN

(x4, y4)

NN

(x5, y5)

Softmax

Input image y=2

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[ Mnih et al., 2014 ]

REINFORCE in Action: Recurrent Attention Model (REM)



* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[ Mnih et al., 2014 ]

REINFORCE in Action: Recurrent Attention Model (REM)

Has also been used in many other tasks including fine-grained image 
recognition, image captioning, and visual question-answering!
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REINFORCE in Action: Recurrent Attention Model (REM)

Has also been used in many other tasks including fine-grained image 
recognition, image captioning, and visual question-answering!



Learning To Reason: End-to-End Module Networks for VQA

[ Hu et al., 2017 ]
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Is there a red shape above a circle?

[ Andreas et al., 2017 ]
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Is there a red shape above a circle?

[ Andreas et al., 2017 ]

Learning To Reason: End-to-End Module Networks for VQA

Note: Every sample = different 

computational graph (but that’s OK)



Is there a red shape above a circle?

[ Andreas et al., 2017 ]

Learning To Reason: End-to-End Module Networks for VQA

Key Challenge: How do we go from 

question to module layout



Learning To Reason: End-to-End Module Networks for VQA

[ Hu et al., 2017 ]



[ Pasunuru and Bansal ]

Deep RL-based Image Captioning /w REINFORCE



Deep RL-based Image Captioning

[ Ren et al. 2017 ]



Summary

Policy gradients: very general but suffer from high variance so requires a 
lot of samples. Challenge: sample-efficiency


Q-learning: does not always work but when it works, usually more sample-
efficient. Challenge: exploration


Guarantees:

— Policy Gradients: Converges to a local minima of J(𝜃), often good enough!

— Q-learning: Zero guarantees since you are approximating Bellman equation with a 
complicated function approximator


* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Lecture 22: Large Scale Visio-Lingual Models (cont.)

Topics in AI (CPSC 532S): 
Multimodal Learning with Vision, Language and Sound



Review: Transformers 
Task: produce contextualized representation of 
each (source) words 

Task: produce distribution over next 

(target) word



Visual BERT (VilBERT)

[ Lu et al., 2019 ]



Pre-training and Foundational Models 

Slide from Zhe Gan
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Slide from Zhe Gan

Recent History of Visio-Lingual Models 



UNITER: UNiversal Image-TExt Representation Learning

[ Chen et al. ECCV 2020 ]Slide from Zhe Gan



UNITER: UNiversal Image-TExt Representation Learning

[ Chen et al. ECCV 2020 ]Slide from Zhe Gan

7 dim = [x1, y1, x2, y2, w, h, w ∗ h]4096 dim 

300 dim



UNITER: UNiversal Image-TExt Representation Learning

[ Chen et al. ECCV 2020 ]Slide from Zhe Gan

300 dim 300 dim



UNITER: UNiversal Image-TExt Representation Learning

[ Chen et al. ECCV 2020 ]Slide from Zhe Gan



UNITER: UNiversal Image-TExt Representation Learning

[ Chen et al. ECCV 2020 ]Slide from Zhe Gan



UNITER: UNiversal Image-TExt Representation Learning
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— Masked Region Feature Regression (MRFR)
— Masked Region Classification (MRC)
— Masked Region Classification with KL-Divergence (MRC-kl)
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— Masked Region Classification (MRC)
— Masked Region Classification with KL-Divergence (MRC-kl)

UNITER: UNiversal Image-TExt Representation Learning

[ Chen et al. ECCV 2020 ]Slide from Zhe Gan



Downstream Task 1: Visual Question Answering

[ Antol et al., ICCV 2015 ]Slide from Zhe Gan



[ Xie et al., 2019 ]

Downstream Task 2: Visual Entailment

Slide from Zhe Gan



Downstream Task 2: Visual Entailment

Slide from Zhe Gan



Downstream Task 3: Natural Language for Visual Reasoning

[ Suhr et al., ACL 2019 ]Slide from Zhe Gan



Downstream Task 3: Natural Language for Visual Reasoning

Slide from Zhe Gan



[ Zellers et al., CVPR 2019 ]

Downstream Task 4: Visual Commonsense Reasoning
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Downstream Task 4: Visual Commonsense Reasoning
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Downstream Task 5: Referring Expression Comprehension (Grounding)
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Downstream Task 5: Referring Expression Comprehension (Grounding)



Downstream Task 6: Image-Text Retrieval
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Downstream Task 6: Image-Text Retrieval
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Downstream Task 6: Image-Text Retrieval



VILLA: Vision-and-Language Large-scale Adversarial Training



Preliminary: Adversarial Attacks

Slide from Zhe Gan
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VILLA: Vision-and-Language Large-scale Adversarial Training
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VILLA: Vision-and-Language Large-scale Adversarial Training



Visual BERT (VilBERT)

[ Lu et al., 2019 ]



12-in-1: Multi-task Vision and Language Representation

[ Lu et al., 2020 ]



Slide from Zhe Gan

Recent History of Visio-Lingual Models 



Vision Transformer [ Dosovitskiy et al., 2020 ]



BEiT: BERT Pre-Training of Image Transformers 

[ Bao et al., 2022 ]



[ Peng et al., 2022 ]

BEiT-v2



BEiT-v3: Image as a Foreign Language

[ Wang et al., 2022 ]
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BEiT-v3: Image as a Foreign Language

[ Wang et al., 2022 ]


