THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 22: Deep Reinforcement Learning (cont.)



Logistics
— This is our second to last lecture (last lecture Tuesday)
— Paper presentations due tomorrow (will post them over the weekend)
— Final project presentations are December 13th, noon-3pm
(I will ask you to sulbmit slides 11:59pm on the December 12th)

Il Invite TAs possibly a few others

— Final project write-ups are due December 20th



Approaches to RL: laxonomy

Model-free RL

Value-based RL

— Estimate the optimal action-value function @*(s, a)

— No policy (implicit) Actor-critic RL
— Value function
Policy-based RL — Policy function

— Search directly for the optima policy 7*
— No value function

Model-based RL

— Builld a model of the world

— Plan (e.qg., by look-ahead) using model

* slide from Dhruv Batra



Optimal Q Value Function

Optimal Q-function is the maximum achievable value
Q*(s,a) = max Q™ (s,a) = Q™ (s, a)
Once we have it, we can act optimally

m(s) = argmax Q" (s, a)
ad

Optimal value maximizes over all future decisions

2
Q*(s,a) = rep1 + 7y max reeio + 7" max reez + ...

di+1 dt42

= 11 T 7Y mMax Q*(St—i—l: 3t+1)
dt+1

Formally, Q" satisfied Bellman Equations

R*(s,a) =Ey [r+7 max R*(s',a") | s, a

* glide from David Silver



Q-Networks

Q(s,a,w) =~ Q*(s, a)

Q(s,a,w) Q(s,ay,w) --- Qs,a.,,w)

T

* glide from David Silver



Q-Network Learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

Q" (s,a) = E[r + ymaxQ*(s',a’) | s,a
Forward Pass:

Loss function: Li(ez’) = [(y@ — Q(S, a, 9@')2}

n|

where  y; = Elr +ymax Q*(s,a’) | s,a
a

Backward Pass:

Gradient update (with respect to Q-function parameters 0):

Vo.Li(0;) =E o+ ymax Q(s',a’;0;_1) — Q(s,a;0;))Ve,Q(s, a; 97;)-

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Q-Network Learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

Q" (s,a) = E[r + ymaxQ*(s',a’) | s,a
Forward Pass:

| o . 9 teratively try to make the Q-value
Loss function: Li(‘gi) = 1L [(yz o Q(Sa a, 92’) } Close to the target value (y)) it
w1 . should have, if Q-function
——") - *
where  Y; = J[T Y mz}x Q (S , ) ‘ S, corresponds to optimal Q* (and
a optimal policy 1)

Backward Pass:

Gradient update (with respect to Q-function parameters 0):

A

Vo,Li(6;) = E|r + ymax Q(s',a’;0;-1) — Q(s,a;0;)) Ve, Q(s, a; 0;)
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Q-Network Learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

Q" (s,a) = E[r + ymaxQ*(s',a’) | s,a
Forward Pass:

| o . 9 teratively try to make the Q-value
Loss function: Li(‘gi) = 1L [(yz o Q(Sa a, 92’) } Close to the target value (y)) it
w1 . should have, if Q-function
——") - *
where  Y; = J[T Y mz}x Q (S , ) ‘ S, corresponds to optimal Q* (and
a optimal policy 1)

Backward Pass:

Gradient update (with respect to Q-function parameters 0):

A

Vo,Li(6;) = E |r+ ymax Q(s',a";0;—1) — Q(s,a;0;)) Ve, Q(s,a; 0;)
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Q-Network Learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

Q" (s,a) = E[r + ymaxQ*(s',a’) | s,a
Forward Pass:

| o . 9 teratively try to make the Q-value
Loss function: Li(‘gi) = 1L [(y’t o Q(Sa a, 92’) } Close to the target value (y)) it
w1 . should have, if Q-function
——") - *
where  Y; = J[T Y mz}x Q (S , ) ‘ S, corresponds to optimal Q* (and
a optimal policy 1)

Backward Pass:

Gradient update (with respect to Q-function parameters 0): Need tuples: <s, a, 1, s>

A

Vo,Li(6;) = E |r+ ymax Q(s',a’;0;—1) — Q(s,a;60;)) Ve, Q(s,a; 0;)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Training the Q-Network: Experience Replay

Learning from batches of consecutive samples Is problematic:

— Samples are correlated => inefficient learning

— Current Q-network parameters determines next training samples (e.g. if maximizing
action is to move left, training samples will be dominated by samples from left-hand size)
=> can lead to bad feedback loops

Address these problems using experience replay
— Continually update a replay memory table of transitions (s, ay, 1, St.1) aS game
(experience) episodes are playeo
— Train Q-network on random minibatches of transitions from the replay memory, instead
of consecutive samples

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Experience Replay

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Experience Replay

To remove correlations, build data-set from agent's own experience

s1,a1, 2, S
52,42, I3, 53 — S, a4, r‘.Sl

53.d3.14. 54

St,dt, 't+1,St+1 —> | St,dt, Nt4+1, St+-1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Putting it together: Deep Q-learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,7do
With probability € select a random action a,
otherwise select a; = max, Q*(d(s;),a;0)
Execute action a; in emulator and observe reward r; and image z;.
Set 8,41 = 84, @y, Ty4+1 and preprocess @y1 = P(S¢+1)
Store transition (¢y, @y, 7y, ¢y41) in D
Sample random minibatch of transitions (¢;,a;,7;,¢;41) from D

o for terminal ¢,
& r;i +ymaxy Q(¢j+1,a’;0) for non-terminal ¢, ;
Perform a gradient descent step on (y; — Q(¢;, a;; #))* according to equation 3

end for
end for

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Putting it together: Deep Q-learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,7do
With probability € select a random action a,
otherwise select a; = max, Q*(d(s;),a;0)
Execute action a; in emulator and observe reward r; and image z;.
Set 8411 = 8¢, Gy, Ty+1 and preprocess @1 = P(S¢41)
Store transition (¢y, @y, 7y, ¢y41) in D
Sample random minibatch of transitions (¢;,a;,7;,¢;41) from D

e d T for terminal ¢,
Ji r;i +ymaxy Q(¢j+1,a’;0) for non-terminal ¢, ;
Perform a gradient descent step on (y; — Q(¢;, a;; #))* according to equation 3

end for
end for

Initialize replay memory, Q-network

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Putting it together: Deep Q-learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,7do
With probability € select a random action a,
otherwise select a; = max, Q*(d(s;),a;0)
Execute action a; in emulator and observe reward r; and image z;.
Set 8,41 = 84, @y, Ty4+1 and preprocess @y1 = P(S¢+1)
Store transition (¢y, @y, 7y, ¢y41) in D
Sample random minibatch of transitions (¢;,a;,7;,¢;41) from D

o for terminal ¢,
& r;i +ymaxy Q(¢j+1,a’;0) for non-terminal ¢, ;
Perform a gradient descent step on (y; — Q(¢;, a;; #))* according to equation 3

end for
end for

Play M episodes (full games)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Putting it together: Deep Q-learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights

Initialize state (start geme screen

for episode = 1, M do pixes) at beggining of each episode
Initialise sequence s; = {z; } and preprocessed sequenced ¢, = ¢(s)
fort =1,7 do

With probability € select a random action a,

otherwise select a; = max, Q*(d(s;),a;0)

Execute action a; in emulator and observe reward r; and image z;.
Set 8411 = 8¢, Gy, Ty+1 and preprocess @1 = P(S¢41)

Store transition (¢y, @y, 7y, ¢y41) in D

Sample random minibatch of transitions (¢;,a;,7;,¢;41) from D

e d T for terminal ¢,
Ji r;i +ymaxy Q(¢j+1,a’;0) for non-terminal ¢, ;
Perform a gradient descent step on (y; — Q(¢;, a;; #))* according to equation 3

end for
end for
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Putting it together: Deep Q-learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)

fort =1,7 do -
With probability € select a random action a, -or each timestep [ of the game

otherwise select a; = max, Q* (4(s;), a; ) (T Is max steps but can return early)
Execute action a; in emulator and observe reward r; and image z;.

Set 8,41 = 84, @y, Ty4+1 and preprocess @y1 = P(S¢+1)

Store transition (¢y, @y, 7y, ¢y41) in D

Sample random minibatch of transitions (¢;,a;,7;,¢;41) from D

o for terminal ¢,
& r;i +ymaxy Q(¢j+1,a’;0) for non-terminal ¢, ;
Perform a gradient descent step on (y; — Q(¢;, a;; #))* according to equation 3

end for
end for
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Putting it together: Deep Q-learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort =1,7 do - "
SR i o nliil i sraniihonns sl VVIJ[lh small probabillity take random
otherwise select a; = max, Q*(¢(s;),a;6) Aaction (explore)
Execute action a; in emulator and observe reward r; and image z;.
Set 8,41 = 84, @y, Ty4+1 and preprocess @y1 = P(S¢+1)
Store transition (¢y, @y, 7y, ¢y41) in D
Sample random minibatch of transitions (¢;,a;,7;,¢;41) from D

o for terminal ¢,
& r;i +ymaxy Q(¢j+1,a’;0) for non-terminal ¢, ;
Perform a gradient descent step on (y; — Q(¢;, a;; #))* according to equation 3

end for
end for
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Putting it together: Deep Q-learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)

fort=1,7do - -
S bkl v aaliit i el o Otherwise select greedy action from

otherwise select a; = max, Q*(¢(s;), a; 6) current policy (implicit in Q function)
Execute action a; in emulator and observe reward r; and image z;.

Set 8,41 = 84, @y, Ty4+1 and preprocess @y1 = P(S¢+1)

Store transition (¢y, @y, 7y, ¢y41) in D

Sample random minibatch of transitions (¢;,a;,7;,¢;41) from D

o for terminal ¢,
& r;i +ymaxy Q(¢j+1,a’;0) for non-terminal ¢, ;
Perform a gradient descent step on (y; — Q(¢;, a;; #))* according to equation 3

end for
end for
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Putting it together: Deep Q-learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)

fort=1,7do -
S St nalliich et s Take action and observe the reward

otherwise select a; = max, Q*(¢(s¢),a; 0) and next state

Execute action a; in emulator and observe reward r; and image x; ;
Set 8y+1 = 8¢, a4, Ty41 and preprocess @pi1 = O(S¢41)

Store transition (¢y, @y, 7y, ¢y41) in D

Sample random minibatch of transitions (¢;,a;,7;,¢;41) from D

e d T for terminal ¢,
Ji r;i +ymaxy Q(¢j+1,a’;0) for non-terminal ¢, ;
Perform a gradient descent step on (y; — Q(¢;, a;; #))* according to equation 3

end for
end for
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Putting it together: Deep Q-learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,7do
With probability € select a random actiona;  Store transition replay in memory
otherwise select a; = max, Q*(d(s;),a;0)
Execute action a; in emulator and observe reward r; and image z;.
Set 8;+1 = 84, @y, Ty+1 and preprocess ¢y1 = P(S¢+1)
Store transition (¢y, as, 74, $¢+1) in D
Sample random minibatch of transitions (¢;,a;,7;,¢;41) from D

o for terminal ¢,
& r;i +ymaxy Q(¢j+1,a’;0) for non-terminal ¢, ;
Perform a gradient descent step on (y; — Q(¢;, a;; #))* according to equation 3

end for
end for
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Putting it together: Deep Q-learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity NV
Initialize action-value function () with random weights

for episode = 1, M do

Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)

fort=1,7do

With probability € select a random action a,

Sample a random mini-batch from

otherwise select a; = max, Q*(4(s,),a;§) '€Play memory and perform a gradient
Execute action a; in emulator and observe reward r; and image z;. ; descent step

Set 8441 = 8¢, a4, Ty

1 and preprocess ¢y+1 = ¢(S¢+1)

Store transition (¢;, as, 7, ¢y11) in D
Sample random minibatch of transitions (¢;,a;, 7, ¢;+1) from D

Sety; = { "3

for terminal ¢, 4,

J
ri +ymaxy Q(¢js1,a’;0) for non-terminal ¢, ;

Perform a gradient descent step on (y; — Q(¢;, a;; #))* according to equation 3

end for
end for

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Example: Atarl Playing

Starting out - 10 minutes of training

The algorithm tries to hit the hall hack, hut
itis yet too clumsy to manage.




Example: Atarl Playing

Starting out - 10 minutes of training

The algorithm tries to hit the hall hack, hut
itis yet too clumsy to manage.




Deep RL

Value-based RL

— Use neural nets to represent Q function  Q(s, a; 0)

Q(s,a;0%) = Q" (s, a)

* glide from Dhruv Batra



Deep RL

Policy-based RL

— Use neural nets to represent the policy 7

* glide from Dhruv Batra



Policy Gradients

Formally, let’s define a class of parameterized policies:

For each policy, define its value;

J(O) =E Zytnhrg

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Policy Gradients

Formally, let’s define a class of parameterized policies:

For each policy, define its value;

J(0) =E Z'yt'rtkrg

>0

We want to find the optimal policy 6* = arg max J(0)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Policy Gradients

Formally, let’s define a class of parameterized policies:

For each policy, define its value;

J(O) =E Yirs|me

We want to find the optimal policy 6* = arg max J(0)

How can we do this?

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Policy Gradients

Formally, let’s define a class of parameterized policies:

For each policy, define its value;

JO) =E [ > y'r|ms

We want to find the optimal policy 6* = arg max J(0)

How can we do this?

Gradient ascent on policy parameters!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



REINFORCE algorithm

EXxpected reward:

J(0) = br ~op(730) r(7)]
= /r('r)p('r;G)d'r

Where r(z) is the reward of a trajectory 7 = (sq, ag, 7o, 81, - - -)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



REINFORCE algorithm

EXxpected reward:

J(0) = L mop(730) (7))
— /r('r)p('r;G)d'r
Where r(7) is the reward of a trajectory 7 = (g, ag, 7o, 81, - - -)

Now let’s differentiate this:  v,.J(0) = / r(17)Vep(T;0)dT

Intractable! Expectation of gradient is

oroblematic when p depends on 6

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



REINFORCE algorithm

Expected reward:

J(0) = L mop(730) (7))
— /r('r)p('r;H)d'r
Where r(7) is the reward of a trajectory 7 = (g, ag, 7o, 81, - - -)

Now let’s differentiate this:  v,.J(0) = / r(17)Vep(T;0)dT

However, we can use a nice trick: v p(r; 6) = p(r; ) Vf’f’('rg;)g) = p(7;0)Vglogp(T; 0)
p(T;
f we inject this back;
VoJ(0) = / (r(7)Vglog p(7;0)) p(T;0)dT Can estimate with Monte Carlo

sampling

= Ernp(r:0) r(7)Vglogp(T;0)]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Intuition

Gradient estimator:
VeJ(0) =~ Z r(7)Vglog mg(a|st)

t>0

Interpretation:
- If r(z) Is high, push up the probabilities of the actions seen

-1f r(z) 1s low, push down the probabilities of the actions seen

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Intuition

Gradient estimator:
VeJ(0) =~ Z r(7)Vglog mg(a|st)

t>0

Interpretation:
- If r(z) Is high, push up the probabilities of the actions seen

-1f r(z) 1s low, push down the probabilities of the actions seen

Might seem simplistic to say that it a trajectory is good then all its actions
were good. But In expectation, it averages out!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Intuition

DOWN DOWN DOWN UP

® @ @ @ \WIN
® r——0— @ LOSE
P "DOWN’. DOWN». UP »® | OSE
‘ -® UP " UP ~® WIN

* glide from Dhruv Batra



Intuition

Gradient estimator:
Ve J(0) = Z r(7)Velog mg(as|st)

t>0

Interpretation:
- If r(z) Is high, push up the probabilities of the actions seen

-If r(7) 1s low, push down the probabilities of the actions seen

Might seem simplistic to say that it a trajectory is good then all its actions
were good. But In expectation, it averages out!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



CartPole Environment

Unstable system. Poll will fall if left to own devices.
Goal: Keep the poll upright by applying +1 / -1 force (move cart left or right)
Reward: +1 for every frame for every time step pole remains upright

State: 4-D (position + velocity of cart, angle + velocity of pole)

https://medium.com/@fork.tree.ai/understanding-baseline-techniques-for-reinforce-53a1e22/79b57




CartPole Environment

Unstable system. Poll will fall if left to own devices.
Goal: Keep the poll upright by applying +1 / -1 force (move cart left or right)
Reward: +1 for every frame for every time step pole remains upright

State: 4-D (position + velocity of cart, angle + velocity of pole)

https://medium.com/@fork.tree.ai/understanding-baseline-techniques-for-reinforce-53a1e22/79b57




CartPole Environment

R

R+~YR+~v’R+~vR+... = —

Note: we can focus on short-term horizon policy by setting gamma = 0

on long-term horizon policy by setting gamma close to 1



CartPole Environment

R

R+~vR+Y"R+~+y'R+... = —

Note: we can focus on short-term horizon policy by setting gamma = 0

on long-term horizon policy by setting gamma close to 1

What happens it we delayed our reward, e.g., only receive 1 It pole is upright
after 500 time steps”



CartPole Environment

R

R+~vR+Y"R+~+y'R+... = —

Note: we can focus on short-term horizon policy by setting gamma = 0

on long-term horizon policy by setting gamma close to 1

What happens it we delayed our reward, e.g., only receive 1 It pole is upright
after 500 time steps”

")/499R



REINFORCE with Whitening Baseline

Subtract mean over rewards in a rollout and divide by the standard deviation
t
VeJ(0) ~ E r(7)Vglog mg(a|st) r(T) = E :thf‘t (1) = 2.7t — Py

t>0 Or,
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1 iteration = 1 episode + gradient update step 1 Interaction = 1 action taken in the environment



REINFORCE with Whitening Baseline

Does not solve a game, even after 1000 iterations!!

Algorithm unstable (variance is high)

Mean episode length over training iterations Mean episode length over interactions
S00 500

- N S

’

LN
n L T
-

400 400

&
o
&
o

N
-
-

Episode length
&
o

Episode length

100 100

0 200 400 600 800 1000 0 50000 100000 150000 200000 250000
lterations Interactions with environment

1 iteration = 1 episode + gradient update step 1 Interaction = 1 action taken in the environment



REINFORCE with Learned Baseline (self-critic)

VoJ(0) ~ Z r(7)Vglog mg(as|st)

t>0
Mean episode length over training iterations
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REINFORCE with Sampled Baseline

https://medium.com/@fork.tree.ai/understanding-baseline-techniques-for-reinforce-53a1e2279b57

REINFORCE
with sampled baseline

0(Sy) = Nib g:b:lGib) (sample rollouts)
0(S) = G§9 reedy) (greedy rollout) ® O O O
Ori1 =0 +a(Gy —0(S;)) Viog w(As|St, 0) ? O ?
© O O
Q
® O O O




REINFORCE with Sampled Baseline

https://medium.com/@fork.tree.ai/understanding-baseline-techniques-for-reinforce-53a1e2279b57
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REINFORCE with Sampled Baseline

https://medium.com/@fork.tree.ai/understanding-baseline-techniques-for-reinforce-53a1e2279b57
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REINFORCE in Action: Recurrent Attention Model (REM)

Objective: Image Classification

Take a sequence of “glimpses” selectively focusing on 3"'

regions of the iImage, to predict class
— Inspiration from human perception and eye movements

— Saves computa

lonal resources => scala

— Able to ignore ¢

utter / irrelevant parts of

ollity
image

glimpse

[ Mnih et al., 2014 |

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



REINFORCE in Action: Recurrent Attention Model (REM)

Objective: Image Classification

Take a sequence of “glimpses” selectively focusing on 3"

regions of the iImage, to predict class
— Inspiration from human perception and eye movements
— Saves computational resources => scala

— Able to ignore ¢

State: Glimpses

utter / irrelevant parts of

seen SO far

ility

image

glimpse

Action: (x,y) coordinates (center of glimpse) of where to look next in image
Reward: 1 at the final timestep It image correctly classitied, O otherwise

[ Mnih et al., 2014 |

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



REINFORCE in Action: Recurrent Attention Model (REM)

Objective: Image Classification

Take a sequence of “glimpses” selectively focusing on 3"

regions of the iImage, to predict class
— Inspiration from human perception and eye movements
— Saves computational resources => scalabllity
— Able to ignore clutter / irrelevant parts of image

glimpse

State: Glimpses seen so far
Action: (x,y) coordinates (center of glimpse) of where to look next in image
Reward: 1 at the final timestep It image correctly classitied, O otherwise

Glimpsing is a non-differentiable operation => learn policy for how to take glimpse actions using REINFORCE
Given state of glimpses seen so far, use RNN to model the state and output next action

[ Mnih et al., 2014 |

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



REINFORCE in Action: Recurrent Attention Model (REM)

Input image

[ Mnih et al., 2014 |

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



REINFORCE in Action: Recurrent Attention Model (REM)

Input image

[ Mnih et al., 2014 |

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



REINFORCE in Action: Recurrent Attention Model (REM)

(X1, Y1) (X2, Y2) (X3, V3)

@

Input image

[ Mnih et al., 2014 |

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



REINFORCE in Action: Recurrent Attention Model (REM)

(X1, Y1) (X2, Y2) (X3, Y3) (X4, Ya) (Xs, Ys)

©—> Softmax
A !
Input image

4 - T

[ Mnih et al., 2014 |

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



REINFORCE in Action: Recurrent Attention Model (REM)

3 -
> Q-

Has also been used in many other tasks including fine-grained image
recognition, iImage captioning, and visual question-answering!

[ Mnih et al., 2014 |

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford
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REINFORCE in Action: Recurrent Attention Model (REM)

3 -
> Q-

Has also been used in many other tasks including fine-grained image
recognition, iImage captioning, and visual question-answering!

[ Mnih et al., 2014 |

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Learning To Reason: End-to-End Module Networks for VQA

How many other things are of the
same size as the green matte ball?

Question encoder (RNN)

v

( Question features J
| Layout prediction m .
= (reverse Polish notation) : 4 SWEL
= How many other things are of the > _ :
& » same size as the green matte ball? g .......

-~ eee—_- 1
" > find() 2 e
: =
: : re
9 , How many other things are of the N - Module
e same size as the green matte ball? 8 network
4
o >I relocatel) é ~ find Image encoder (CNN)
> — »| 2
: t
> . .
I count(.) Question attentions Image features

[ Huetal., 2017 ]



Learning To Reason: End-to-End Module Networks for VQA

[ Hu et al., 2017 ]

attend : Image — Attention

attend[dog]
-

Takes Image and outputs attention map,
conditions on the [labell, i.e., find()




Learning To Reason: End-to-End Module Networks for VQA

[ Hu et al., 2017 ]
attend : Image — Attention re-attend : Attention — Attention
attend[dog] re-attend[above]
Convolution RelLU
-
S o
Takes image and outputs attention map, Shifts a attention based on logical

conditions on the [labell, i.e., find() relationship (e.g. above)



Learning To Reason: End-to-End Module Networks for VQA

attend : Image — Attention

attend[dog]

b‘ Convolution I

Takes Image and outputs attention map,
conditions on the [labell, i.e., find()

combine : Attention X Attention — Attention

combine[except]

Logical relations on attention
(e.q., and/or)

[Hu et al., 2017 |

re-attend : Attention — Attention

Shifts a a

re-attend[above]

tention based on logical

relati

onship (e.q. above)



Learning To Reason: End-to-End Module Networks for VQA

attend : Image — Attention

attend[dog]

b‘ Convolution I

Takes Image and outputs attention map,
conditions on the [labell, i.e., find()

combine : Attention X Attention — Attention

combine[except]

Logical relations on attention
(e.q., and/or)

[Hu et al., 2017 |

re-attend : Attention — Attention

re-attend[above]

Shifts a attention based on logical
relationship (e.g. above)

classify : Image x Attention — Label

classify[where]

Given attention and image, generate
a label



Learning To Reason: End-to-End Module Networks for VQA

[ Huetal., 2017 ]

measure : Attention — Label

measure[exists]|]

)




Learning To Reason: End-to-End Module Networks for VQA

s there a red shape above a circle”

re-attend[above]

tend|[red]

| Andreas et al., 2017 ]



Learning To Reason: End-to-End Module Networks for VQA

s there a red shape above a circle” Note: Every sample = different

computational graph (but that’s OK)
at

attend[circle]

re-attend[above]

tend|[red]

| Andreas et al., 2017 ]



Learning To Reason: End-to-End Module Networks for VQA

s there a red shape above a circle”
‘ ves

re-attend[above]

tend|[red]
: H Key Challenge: How do we go from

guestion to module layout

| Andreas et al., 2017 ]



Learning To Reason: End-to-End Module Networks for VQA

How many other things are of the
same size as the green matte ball?

Question encoder (RNN)

v

( Question features J
| Layout prediction m .
= (reverse Polish notation) : 4 SWEL
= How many other things are of the > _ :
& » same size as the green matte ball? g .......

-~ eee—_- 1
" > find() 2 e
: =
: : re
9 , How many other things are of the N - Module
e same size as the green matte ball? 8 network
4
o >I relocatel) é ~ find Image encoder (CNN)
> — »| 2
: t
> . .
I count(.) Question attentions Image features

[ Huetal., 2017 ]



Deep RL-based Image Captioning /w REINFORCE

w*
> > > > :t
w? n
A o)
G| |Gl @l @] e e
@ +

| Pasunuru and Bansal |



Deep RL-based Image Captioning

action prediction

Policy Network Next Action
lying
sitting
lookahead eatin g
inference » .

holding a baseball bat

pretty

Value Network

¢

reward prediction

[ Ren et al. 2017 ]



Summary

Policy gradients: very general but suffer from high variance so requires a
lot of samples. Challenge: sample-efficiency

Q-learning: does not always work but when it works, usually more sample-
efficient. Challenge: exploration

Guarantees:
— Policy Gradients: Converges to a local minima of J(8), often good enough!

— Q-learning: Zero guarantees since you are approximating Bellman equation with a
complicated function approximator

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 22: Large Scale Visio-Lingual Models (cont.)



Review: [ransformers

Task: produce contextualized representation of
each (source) words

lllllllllllllllllllllllllllllllllllllllll
*

~ |, ’
2 ' Feed Forward Feed Forward
i Pt > DECODER #2
) AR, g :
O
< y P Add & Normalize
3
. oc
NSy =
D T —
O
(.
(, =

ENCODER #1

¢

0

1

'

r

"

Q ___________________________ ) R

POSITIONAL
ENCODING

X1 X2

Thinking Machines Task: produce distribution over next
(target) word




Visual BERT (VIIBERT)

P — |
Embed | ~c{Co TRM—{_TRM _F—>(huo, hus, = hur )

| !

| !

! !

_____ | !
<CLS> Man shopping for fruit _ . ! ) : [ ]
(Wo jan shopping for fmu TRM |=5{Co-TRM—— TRM H—{huwo, hp, - oy

Il || Man shopplng

DA ﬁmﬁ

V|S|on Language BERT Vision & Language BERT
<IMG> \ <MASK> | | s | P i T ] #" <MASK> ‘ <CLS> \ <MASK> MASK> for ‘< P> 3 1 e c‘»!"'%- H \ i f
= L - J \<IMG> % ‘e 2 . %},“u <CLS>|| Man LshopplngJL orJ <SEP>

(a) Masked multi-modal leamlng (b) Multi-modal alignment prediction

[ Lu et al., 2019 ]



Pre-training and Foundational Models

Large, Noisy, Cheap Data

P — Pre-training Task |
"~ I

H\Model

Fine-tune on Downstream Task

Pre-training Task I

Pre-training Task Ill

Little gir and her dog in northern
Thailand. They both seemed
interested in what we were doing

S —

/\
N~

Small, Clean, Labeled Data Model

N~

Slide from Zhe Gan



Pre-training and Foundational Models

‘man with his dog on a couch )

Large, Noisy, Cheap Data

P — Pre-training Task |
"~ I

i
!
"

!l
i

|

il

= Pre-training Task I

Model

!

and
cute st white

Pre-training Task Ill

in the

Little gir and her dog in northern
Thailand. They both seemed -
interested in what we were doing

Fine-tune on Downstream Task

~ N
N A

Small, Clean, Labeled Data Model

N~

Slide from Zhe Gan



Pre-training and Foundational Models

Large, Noisy, Cheap Data

1 — —  Pre-training Task |
(

Pre-training Task Il

Model

Pre-training Task Il

cute 1st white

in the

Little girand her og i northern ®

Thailand. They both seemed e

interested in what we were doing S— e
~ ~ N

Model Model Model Model Model Model Model Model

Model | 1 1 IV V VI VI VI IX

Slide from Zhe Gan
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Recent History of Visio-Lingual Models

BEIT-3 pal |
-—&— w/o VLP o VLMo
iceMind OFA
-—&— (OD-based VLP Florence Flamingo, CoCa
—— mPLUG, GIT2
0 - E2E VLP SimVLM
> UNIMO(Ens.) BLIP
(O .
§ VinVL ALBEF
O : CLIP-ViL
c 75 - — PixelBERT o FRNIE-ViL
2 VILLA Visual Parsing
43 VL-BERT&LXMERT OSCAR SOHO
o A MCAN [
Q3 o - BAN V!LBERT VilT
< pythia  ReGAT  VisualBERT
>
Counter
BUTD
65 =
| | | | | |
2017/8 2019/8 2021/8 2022/8

Slide from Zhe Gan



UNITER: UNiversal Image-TExt Representation Learning

“Transformer

S ST S B S e e e

_—
man with his dog on a couch

Slide from Zhe Gan [ Chen et al. ECCV 2020 |



UNITER: UNiversal Image-TExt Representation Learning

300 dim

ilmage Embedder

Image Feature | ) e T —_——
\ : ; : : Transformer

LN , ———————— | , | = _—_———= — ‘
s : ; A
ﬁéﬁ T ! ! ! T T T
FC FC
f A
RCNN || Location| S S S S SN S A S S WY S A
- y man with his dog on a couch

4096 dim /7 dim = [x1, y1, X2, y2, w, h, w = h]

Slide from Zhe Gan [ Chen et al. ECCV 2020 |



UNITER: UNiversal Image-TExt Representation Learning

300 dim 300 dim
ilmage Embedder Text Embedder
Image Feature ( ‘ —— ! ———— =) Text Feature
; : A = = Transformer = — - : ;

LN , ——— —— | —_————— | LN

v s ) s, Tt Tt T 3

FE FTC Emb| |[Emb
[R-CNN ] [Location] S S S S NS S S SN N S S S [ Token ] Position
. y man with his dog on a couch - y

Slide from Zhe Gan [ Chen et al. ECCV 2020 |



UNITER: UNiversal Image-TExt Representation Learning

ilmage Embedder Text Embedder
Image Feature ( ‘ | . : ! : ﬁ | | : : f : l ] \ Text Feature
; : | : : -Transformer : - ~ : ;
LN ! | : i 1 _ | I '_ “ [ 1 ' | | LN
I b : b . !
| ’@‘ | T T T T T T T _C’G)‘ﬁ
FC FC Emb| | Erpb\
[R-CNN ] [Location] T * T : ! T : T ! T T T T T ! T / [ Token ] Position
. y man with his dog on a couch - y
dczg
UNITER

1 '
¢ p _
- -
-~ \

man with his [MASK]--l-

Masked Language Modeling (MLM)

Slide from Zhe Gan [ Chen et al. ECCV 2020 |



UNITER: UNiversal Image-TExt Representation Learning

ilmage Embedder Text Embedder
. & == — = — — = )
mage Feature , - | . - | . . ~ v : . Text Feature
; : | ; ; Transformer : : | : :
LN ! | : [ _ | , ', ) [ _' ' | , LN
| .é). | : A ‘ 4 T T T T ! ! i Lé')ﬁ
FC FC Emb| |Emb
A T A
[R-CNNHLocation] S NS S SN S NN S SN S S S S [ Token ] Position
- y man with his dog on a couch -\ y

s
’ N é —

UNITER UNI'I;ER+

| J T T +J
man with his dog --

4 4 4 4 4
gl man with his [MASK]---

Masked Language Modeling (MLM) Masked Region Modeling (MRM)

Slide from Zhe Gan [ Chen et al. ECCV 2020 |



UNITER: UNiversal Image-TExt Representation Learning

ilmage Embedder UNITER Model Text Embedder
Image Feature (= . : f | : ﬁ | j : : . : . ‘ \ Text Feature
; : v ; * -Transformer ﬁ | | : :
LN I | : '. : | - | : l J : | « Ll\l
B A b . . 1
A T T T TE T T 3
FC FC Emb Emb
! ! ! i
[R-CNN ][Location] 1 1 * _ ! T : ! ! T T T T T T T / [ Token ] Position
N y man with his dog on a couch - y

UNITER

9.__ * + A J

man wnth his dog

L

Word Reglon Allgnment (WRA)
Image-Text Matchlng (ITM)

Masked Language Modeling (MLM) Masked Region Modeling (MRM)

Slide from Zhe Gan [ Chen et al. ECCV 2020 |



UNITER: UNiversal Image-TExt Representation Learning

ilmage Embedder UNITER Model Text Embedder
. &= === == == == = )
mage Feature | : | | ; | 4 ; | | ; . Text Feature
; : v ; * -Transformer : | | : :
LN I | : '. : | - | : L Q : | ‘ LN
: : 4 . f ! ‘
v T T TH TE T T 3
FC FC Emb Emb
o & —_
[R-CNN ][Location] 1 1 * _ ! T : : ! T T T T T T T / [ Token ] Position
. y man with his dog on a couch -\ y
0/1
r dOAg \ r — "\‘ R ! | ? ? A‘ )
UNITER UNITER
R e———— oo i y————————————— _—
B man with his [MASK] - L&l g man with his dog man with his dog [CLS]

Word Region Alignment (WRA)

Masked Language Modeling (MLM) Masked Region Modeling (MRM)
Image-Text Matching (ITM)

— Masked Region Feature Regression (MRFR)
— Masked Region Classification (MRC)

— Masked Region Classification with KL-Divergence (MRC-kI)

Slide from Zhe Gan [ Chen et al. ECCV 2020 |



UNITER: UNiversal Image-TExt Representation Learning

Pre-training Tasks

MLM + ITM + MRC

MLM + ITM 4+ MRFR

MLM + ITM 4+ MRC-kl

MLM + ITM + MRC-kl + MRFR

dog

A

Masked Language Modeling (MLM)

Slide from Zhe Gan
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A A A
man with his [MASK] - - ﬁ.

Meta-Sum VQA

' |
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UNITER
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@ man with his dég

Masked Region Modeling (MRM)
— Masked Region Feature Regression (MRFR)

— Masked Region Classification (MRC)

— Masked Region Classification with KL-Divergence (MRC-kI)

l l | )

o T, S, S
man with his dog [CLS]

Word Region A.Il_ignment (WRA)
Image-Text Matching (ITM)

[ Chen et al. ECCV 2020 |



Downstream Task 1: Visual Question Answering

~ black A
UNITER

are

What color are her eyes?

Slide from Zhe Gan " Antol et al., ICCV 2015 ]



Downstream Task 2: Visual Entailment

Slide from Zhe Gan

Premise

Two woman are holding
packages.

The sisters are hugging
goodbye while holding to
go packages after just
eating lunch.

The men are fighting
outside a deli.

Hypothesis

Entailment

Neutral

Contradiction

Answer

[ Xie et al., 2019 |



Downstream Task 2: Visual Entailment

Entail/Neutral/Contradict
!

4 | h

UNITER
r T T T L

[CLS] tvs'/o wor'nan are

Two woman are holding
packages.

Slide from Zhe Gan



Downstream Task 3: Natural Language for Visual Reasoning

s Fropwemn L ey
P e
;J .ﬁ‘,ﬁi - o \‘,'.‘ o R 0 sl ”ﬁ > y S

The left image contains twice the number of dogs as the right One image shows exactly two brown acorns in back-to-back caps
Image, and at least two dogs in total are standing. on green foliage.

Slide from Zhe Gan | Suhr et al., ACL 2019 |



Downstream Task 3: Natural Language for Visual Reasoning

True / False

— T —

— concatenate -
! !
4 | ) é | )
UNITER UNITER
Lttt Lttt
the left image the left image

The left image
Image, and at least two dogs in total are standing.

Slide from Zhe Gan



Downstream Task 4: Visual Commonsense Reasoning

[personi]

Slide from Zhe Gan

res .

~
.

-~

.
*
s -

.
-
.
Ll
.
-— -~

_—

o

g Whyis [person4a] pointing at [person n]?

a) He is telling [person3’ ] that [person1 ﬂ] ordered the pancakes.

b) He just told a joke.
c) He is feeling accusatory towards [personT n ).
d) Heis giving [personi ﬂ] directions.

| choose (a) because:

a) [personT 1Y | has the pancakes in front of him.
b) [person4d I

pr e RN G
c) [person3 &4

d) [person3 %] is delivering food to the table, and she might not

know whose order is whose.

| Zellers et al., CVPR 2019 |



Downstream Task 4: Visual Commonsense Reasoning

Why is [person4a] pointing at [person ﬂ]?

a) He is telling [personS@] that [person1 ﬂ] ordered the pancakes.

b) He just told a joke. )
c) He is feeling accusatory towards [personT ].

d) Heis giving [personi ﬂ] directions.

Slide from Zhe Gan
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UNITER
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.. ? He just told ... [CLS] — b)

N [ 79
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Downstream Task 5: Referring Expression Comprehension (Grounding)

woman washing dishes

Slide from Zhe Gan



A
Downstream Task 5: Referring Expression Comprehension (Grounding)

T

woman washing dishes

Slide from Zhe Gan



Downstream Task 6: Image-Text Retrieval

“a girl with a cat on grass” 2]

S~

Slide from Zhe Gan



Downstream Task 6: Image-Text Retrieval

“four people with ski poles in their hands in the snow”
“four skiers hold on to their poles in a shnowy forest”

“a group of young men riding skis”
“skiers pose for a picture while outside in the woods”
“a group of people cross country skiing in the woods”

Slide from Zhe Gan



Downstream Task 6: Image-Text Retrieval

UNITER

Slide from Zhe Gan



VILLA: Vision-and-Language Large-scale Adversarial [raining



Preliminary: Adversarial Attacks

* Neural Networks are prone to label-preserving adversarial examples

“airliner”

Computer Vision:

Original: What is the oncorhynchus Original: How long is the Rhine?
Natural Language also called? A: chum salmon A: 1,230 km
Processing: Changed: What’s the OIlCOI‘hynChllS Changed: How long is the Rhine??
also called? A: keta A: more than 1,050,000
(b) Example for (WP is— WP’s) (c) Example for (?—??)

[1] Explaining and harnessing adversarial examples. arXiv:1412.6572
[2]1 Semanticallv eauivalent adversarial rules for debuaaina nlb models. ACL (2018)

Slide from Zhe Gan



Preliminary: Adversarial Iraining

* A min-max game to harness adversarial examples

“airliner”

min [E |[maxL(x+J,y;0)
0 (x,y)~D L IES )

* Use adversarial examples as additional training samples
* On one hand, we try to find perturbations that maximize the empirical risk

* On the other hand, the model tries to make correct predictions on adversarial
examples

* What doesn't kill you makes you stronger!

Explaining and harnessing adversarial examples. arXiv:1412.6572

Slide from Zhe Gan



VILLA: Vision-and-Language Large-scale Adversarial [raining

* Ingredient #1: Adversarial pre-training + finetuning
* Ingredient #2: Perturbations in the embedding space
* Ingredient #3: Enhanced adversarial training algorithm

ol Il B - 58

4 .
4 )
Adversarial Pre-training:
§ :> O Masked Language Modeling (MLM)
= O Image-Text Matching (ITM) O ...
— \_ 4
<
o
—
| § /Adversarial Finetuning: .
M g-. oVQA oVCR oNLVR2
1 3 >| oVisual Entailment
Word Embedding Regional Feature | ® oReferring Expression Comprehension
— Adversarial Perturbation [CLS] A dog lying on the grass next to a frisbee [SEP] _ \olmage—Text AGHIEEL e J

Slide from Zhe Gan



VILLA: Vision-and-Language Large-scale Adversarial [raining

* Training objective:

i E(g,,., 2., 4)~D | Lsta(8) + Rar(6) + a - Rua(6)]

* Cross-entropy loss on clean data:
Estd(g) = L(fe(mimga ?tht)a y)

» A [MASK] lying on the grass next to a frisbee ) |:> +«—dog

Probability Ground-truth
vector label

Slide from Zhe Gan



VILLA: Vision-and-Language Large-scale Adversarial [raining

* Training objective:

i Ea,,, 20, 4)~p | Lstd(8) + Rat(6) + o+ Ryt(6)

* Cross-entropy loss on adversarial embeddings:

max _ L(fo(Timg + Gimg, Tiat),y) + ||5ma|)|<< L(fo(Timg, Tizt + 0tzt),Y)

» A[MASK] lying on the grass next to a frisbee) |:> +—dog

A [MASK] lying on the grass next to a frisbee

) = i

Slide from Zhe Gan



VILLA: Vision-and-Language Large-scale Adversarial [raining

* Training objective:

mein “‘:(wimg,mwt’y),\,p [Estd(g) + Rat(H) 5 ik 5 4 Rkl(g)]

* KL-divergence loss for fine-grained adversarial regularization

Rkl(e) — ||6I~na|)|(<e Lkl (fe(mimg g 5img> wt:pt)a f9 (wimgv mt:z:t))

-+ ||5mai}|(< Lkl(fg(a?img, Lirt 1 5ta:t)7 fe(mimga mtﬂ?t)) 7
txt|| €

where L (p,q) = KL(pl|q) + KL(q||p)

* Not only label-preserving, but the confidence level of the prediction
between clean data and adversarial examples should also be close

Slide from Zhe Gan



VILLA: Vision-and-Language Large-scale Adversarial [raining

) A[MASK] lying on the grass next to a frisbee) |:>

@ KL Divergence
ﬁ KL Divergence

) A [MASK] lying on the grass next to a frisbee) |:>

A [MASK] lying on the grass next to a frisbee
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VILLA: Vision-and-Language Large-scale Adversarial [raining

e Established new state of the art on all the tasks considered
* Gain: +0.85 o0n VQA, +2.9 on VCR, +1.49 on NLVR2, +0.64 on SNLI-VE

2
Method VQA VCR NLVR SNLI-VE
test-dev  test-std Q—A QA—R Q—AR dev  test-P val test

ViLBERT 70.55 70.92 7242 (73.3) 7447 (74.6) 54.04 (54.8) - - - -
Visual BERT 70.80 71.00 70.8 (71.6) 13:2015%2) 32.2(>2.A4) 67.4 67.0 - -
LXMERT 72.42 72.54 - - - 74.90 74.50 - -
Unicoder-VL - - 72.6 (73.4) 74.5 (74.4) 54.4 (54.9) - - - -
12-in-1 13.D - - - - - 78.87 - 76.95
VL-BERTgASE 71.16 - 73.8 (-) 74.4 (-) 55.2 (-) - - - -
Oscargase 73.16 73.44 - - - 78.07 78.36 - -
UNITERgASE 72.770 7291 7456 (75.0) 77.03(77.2) 57.76(58.2) 77.18 77.85 78.59 78.28
VILLAgBASE 73.59 73.67 75.54 (76.4) 78.78 (79.1) 59.75(60.6) 78.39 79.30 79.47 79.03
VL-BERT arge  71.79 F2.20 D31 713.8) 77.9 (78.4) 58.9 (59.7) - - - -
Oscarp ArGE 73.61 73.82 79.12 80.37

UNITER ARGE 73.82 74.02| 77.22(77.3) 80.49 (80.8) [62.59 (62.8)] 79.12 | 79.98 | 79.39 | 79.38
VILLA{ ARGE 74.69 74.87) 78.45(78.9) 82.57 (82.8) |65.18 (65.7)) 79.76 | 81.47 | 80.18 | 80.02

(a) Results on VQA, VCR, NLVR?, and SNLI-VE.
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Visual BERT (VIIBERT)
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[ Lu et al., 2019 ]



12-In-1: Multi-task Vision and Language Representation

Vocab-based VQA (G1) Image Retrieval (G2) Referring Expression (G3) Verification (G4)

VQAV2 GQA VGQA COCO Flickr30k COCO COCO+ COCOg VIW GW NLVR? SNLI-VE

# params  All Tasks
Clean test-dev test-dev  val test(R1) test(R1) test test test test  test testP test (¥ models) Average
1 Single-Task (ST) 71.82 58.19 3438 6528  61.14 78.63 71.11 7224 80.51 62.81 7425 76,72 3B (12) 67.25
2 Single-Task (ST) 7124  59.09 34.10 64.80  61.46 78.17 69.47 7221 80.51 6253 7425 76,53 3B (12) 67.03
3 Group-Tasks (GT) v 72.03 59.60 36.18  65.06  66.00 80.23 7279 7530 81.54 6478 7462 7652 1B(@4)  68.72
4 All-Tasks (AT) v/ 7257 60.12 3636 6370  63.52 80.58 7325 7596 8275 65.04 78.44 7678 270M (1) 69.08
5 All-Tasksy/oGga v 7268 62.09 3674 6488  64.62 80.76 73.60 75.80 83.03 65.41 _ i 266M (1) -
6 GT Lmetune, ¢ / 7261 5996 35.81 6626  66.98 79.94 7212 75.18 8157 6456 7447 7634 3B (12) 68.81
7 AT fnetune, o, / 7292 6048 3656 6546  65.14 80.86 73.45 76.00 83.01 65.15 7887 7673 3B (12) 69.55
g AT lnetune, g 7315 60.65 36.64 68.00 67.90 81.20 7422 7635 8335 65.69 78.87 7695 3B (12) 70.24

[Luetal., 2020 ]



Recent History of Visio-Lingual Models
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Vision [ranstformer
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BEIT: BER| Pre-Iraining of Image Iranstormers
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BEIT-Vv2
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BEIT-v3: Image as a rForeign Language

Masked Data Modeling =+ jmmmmmmoo-- i _________
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[ Wang et al., 2022 |



BEIT-v3: Image as a Foreign Language

Add & Normalize
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[ Wang et al., 2022 |



BEIT-v3: Image as a rForeign Language

Masked Data Modeling =+ jmmmmmmoo-- i _________

T

Switching Modality Experts :
|
V-FFN  L-FFN  VLFFN
Vision ~ Language vL
I

_ Expert Expert Expert
BEIT-3 | TR
(Multiway Transformer) S
T T T Shared Multi-Head

Texts Image-Text Self-Attention

Images ,
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Multimodal Input

[ Wang et al., 2022 |



BEIT-v3: Image as a Foreign Language

Masked Data Modeling .--_--_------C_-IT\D-‘ -------- .
1 Switching Modality Experts I
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(a) Vision Encoder
Masked Image Modeling
Image Classification (IN1K)

Semantic Segmentation (ADE20K)
Object Detection (COCO)

[ Wang et al., 2022 |



BEIT-v3: Image as a rForeign Language

Masked Data Modeling ,-___-_.----95_‘ _________
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(b) Language Encoder
Masked Language Modeling

[ Wang et al., 2022 |



BEIT-v3: Image as a Foreign Language

Masked Data Modeling .--_--_------C_-IT?-‘ -------- .
1 Switching Modality Experts I
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(c) Fusion Encoder
Masked Vision-Language Modeling
Vision-Language Tasks (VQA, NLVR2)

[ Wang et al., 2022 |



BEIT-v3: Image as a Foreign Language

Masked Data Modeling .--_--_------C_-IT?-‘ -------- !
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(d) Dual Encoder
Image-Text Retrieval (Flickr30k, COCO)

[ Wang et al., 2022 |



BEIT-v3: Image as a Foreign Language
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(e) Image-to-Text Generation
Image Captioning (COCO)

[ Wang et al., 2022 |



MSCOCO (5K test set)
Image — Text

Model

Text — Image

BEIT-v3: Image as a rForeign Language

Flickr30K (1K test set)

Image — Text

Text — Image

R@1 R@5 R@10 R@1 R@5 R@10 | R@]l R@5 R@10 R@1 R@5 R@10

Fusion-encoder models

UNITER [CLY "20] 65.7 88.6 93.8 529 799 880 | 873 98.0 99.2 75.6 94.1 96.8
VILLA [GCL™T20] - - - - - - 879 975 988 763 942 96.8
Oscar [LYL"20] 73.5 922 960 57.5 82.8 89.8 - - - - - -
VinVL [ZLH"21] 754 929 96.2 58.8 83.5 90.3 - - - - - -
Dual encoder + Fusion encoder reranking
ALBEF [LSGT21] 77.6 943 972 60.7 8.3 90.5 | 959 99.8 100.0 85.6 97.5 989
BLIP [LLXH22] 824 954 979 65.1 8.3 918 | 974 998 999 &7.6 97.7 99.0
Dual-encoder models
ALIGN [JYX"21] 77.0 935 969 599 833 89.8 | 953 99.8 100.0 849 974 98.6
FILIP[YHH21] 78.9 944 974 61.2 84.3 90.6 | 96.6 100.0 100.0 87.1 97.7 99.1
Florence [YCC"21] 81.8 95.2 - 63.2 85.7 - 97.2 99.9 - 87.9 98.1 -
BEIT-3 848 965 98.3 67.2 87.7 928 | 98.0 100.0 100.0 90.3 98.7 99.5

[ Wang et al., 2022 ]



BEIT-v3: Image as a rForeign Language

Maximum COCO test-dev

Model Extra OD Data Image Size AP™*  APpmask
ViT-Adapter [CDW 722] - 1600 60.1 52.1
DyHead [DCX " 21] ImageNet-Pseudo Labels 2000 60.6 -
Soft Teacher [XZH21] Object365 - 61.3 53.0
GLIP [LZZ " 21] FourODs - 61.5 -
GLIPv2 [ZZH T 22] FourODs - 62.4 .
Florence [YCC™21] FLOD-9M 2500 62.4 -
SwinV2-G [LHL 21 Object365 1536 63.1 544
Mask DINO [LZX " 22] Object365 1280 - 54.7
DINO [ZLL*22] Object365 2000 63.3 -
BEIT-3 Object365 1280 63.7 54.8

[ Wang et al., 2022 |



