
Lecture 20: Graph Neural Networks (cont)

Topics in AI (CPSC 532S): 
Multimodal Learning with Vision, Language and Sound



Logistics

— Paper readings 3 & 4 — Your choices, quiz should 
be visible 

— Assignment 3 & 4 are being graded, out this week 

— Survey for final presentations is out: 

          https://www.when2meet.com/?17859912-5BHpw 
    mark time unavailable if you PHYSICALLY can’t make it 

    (e.g., another course exam) 

https://www.when2meet.com/?17859912-5BHpw


Graph Neural Networks (GNNs)

Main Idea: Pass massages between pairs of nodes and agglomerate 

Alternative Interpretation: Pass massages between nodes to refine node 
(and possibly edge) representations

* slide from Thomas Kipf, University of Amsterdam
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Classification and Link Prediction with GNNs / GCNs
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G3raphGround: Graph-based  
Language Grounding

1

Leonid SigalMohit Bajaj Lanjun Wang



Image Grounding: Beyond Object Detection  

Given the image and one or more natural language phrases, locate regions 
that correspond to those phrases. 



Image Grounding: Beyond Object Detection  

Given the image and one or more natural language phrases, locate regions 
that correspond to those phrases. 

Fundamental task for image / video understanding  
— Helps improve performance on other tasks (e.g., image captioning, VQA)
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Proposed Architecture

Each visual node is initialized = VGG16 representation (4096) -> 300 Dim + (x, y, w, h)



Proposed Architecture



Proposed Architecture

Each phrase node is initialized = Bi-directional LSTM last hidden state



Proposed Architecture

1. Compute Messages 

2. Aggregate Messages 

3. Update Node Representations



Proposed Architecture
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Experiments

Datasets 

— Flickr30K Entities: (mostly noun) Phrases parsed from image captions 

— ReferIt Game: Unambiguous single phrases  

Evaluation  

— Ratio of correctly grounded phrases to the total phrases



Qualitative Results: Flickr30K



Quantitative Results 
Flickr30k Entities:
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Quantitative Results 
Flickr30k Entities: ReferIt Game:



Ablation



Ablation



Visualizing Graph Attention



Energy-Based Learning for 
Scene Graph Generation

Mohammed Suhail

+ + +



Scene Graphs:
A graph based data structure for semantically representing image content
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Scene Graph Generation 
Pipeline
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KERN Architecture [ Chen et al, 2019 ]



KERN Architecture

Step 1: GNN for objects (nodes are objects and edges are interactions between objects)

[ Chen et al, 2019 ]



KERN Architecture

Step 2: GNN for each object pair, where nodes are objects and relations

[ Chen et al, 2019 ]

Step 1: GNN for objects (nodes are objects and edges are interactions between objects)



KERN Architecture

Step 2: GNN for each object pair, where nodes are objects and relations

[ Chen et al, 2019 ]

Update for Step 2:

Readout for Step 2:
Step 1: GNN for objects (nodes are objects and edges are interactions between objects)



KERN Architecture [ Chen et al, 2019 ]
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Visualizations



cat dog

doorrailing

near

on

on

near

glass
on

near

cat dog

doorrailing

looking at

in front of

in fro
nt o

f

glass on

near
standing 

on



motorcycle

on on

on

plate street

car

helmet

on

seat

wheel2

on

plate
on

box pole
on

motorcycle

on back of parked on

on

plate street

car

helmet

on

seat

wheel2

on

plate
has

box pole
mounted on

be
hin

dwheel1

on

wheel1

on



motorcycle

on on

on

plate street

car

helmet

on

seat

wheel2

on

plate
on

box pole
on

motorcycle

on back of parked on

on

plate street

car

helmet

on

seat

wheel2

on

plate
has

box pole
mounted on

be
hin

dwheel1

on

wheel1

on

person1 person4

person0 streeton

onon
near

behind
person1 person4

person0 streetwalking on

walking  
on

walking onwith

behind

person1

person2

girl

horse

shirt
wearing

on
street

on

on

behind
wheel

has

person1

person2

girl

horse

shirt
wearing

on
street

standing on

riding

behind
wheel

has

woman shirt

pant

elephant trunk

glasses

wearing

wearingwearing

has

on

woman shirt

pant

elephant trunk

glasses

wearing

wearing

has

behind

has

elephant

glasses

has

coat

cabinet table

door

coat

door

on

Zero Shot Zero Shotstand

near

above

near

near

on

coat

cabinet table

doorstand

near

on

near

near

onover over

cat dog

doorrailing

near

on

on

near

glass
on

near

cat dog

doorrailing

looking at

in front of

in fro
nt o

f

glass on

near
standing 

on



Conclusions
— Deep learning on graphs works and is very effective! 

— Exciting area: lots of new applications and extensions (hard to keep up) 

Open problems: 
— Theory 

— Scalable, stable generative models 

— Learning on large, evolving data 

— Multi-modal and cross-model learning (e.g., sequence2graph) * slide from Thomas Kipf, University of Amsterdam



Lecture 21: Deep Reinforcement Learning

Topics in AI (CPSC 532S): 
Multimodal Learning with Vision, Language and Sound



Types of Learning

Supervised training 
— Learning from the teacher   
— Training data includes desired output 

Unsupervised training 
— Training data does not include desired output

Reinforcement learning 
— Learning to act under evaluative feedback (rewards)

* slide from Dhruv Batra



What is Reinforcement Learning

Agent-oriented learning — learning by 
interacting with an environment to achieve a goal 

— More realistic and ambitious than other kinds of machine 
learning 

Learning by trial and error, with only delayed 
evaluative feedback (reward) 

— The kind go machine learning most like natural learning 
— Learning that can tell for itself when it is right or wrong

* slide from David Silver



Example: Hajime Kimura’s RL Robot

Before After

* slide from Rich Sutton
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Human Objectives

Jurgen Schmidhuber

“AGI will surpass humans’ in 2050, enabling robots to have fun, fall in love — 
and colonize the galaxy”

Don’t worry about it — “They will pay as much  
attention to us as we do to ants”



Human Objectives

Jurgen Schmidhuber

“I think it is just the product of a few principles that will be considered very 
simple in hindsight, so simple that even kids will be able to understand and 
build intelligent, continually learning, more and more general problem solvers.”



Human Objectives

High Level Objectives: Maximize Happiness, 
Don’t Die 

What would be an emergent behavior would evolve  
if we have these high level objectives? Jurgen Schmidhuber

“I think it is just the product of a few principles that will be considered very 
simple in hindsight, so simple that even kids will be able to understand and 
build intelligent, continually learning, more and more general problem solvers.”



Peril of AGI

AGI does not need to be evil to act nefariously  

High level objective: Help human race to live and prosper 

Emergent behavior: AGI self-preservation and greed 



Challenges of RL

— Evaluative feedback (reward) 
— Sequentiality, delayed consequences 
— Need for trial and error, to explore as well as exploit 
— Non-stationarity 
— The fleeting nature of time and online data 

* slide from Rich Sutton



How does RL work?

* slide from David Silver



Robot Locomotion

Objective: Make the robot move forward 

State: Angle and position of the joints 
Action: Torques applied on joints 
Reward: 1 at each time step upright + 
forward movement

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Atari Games

Objective: Complete the game with the highest score 

State: Raw pixel inputs of the game state 
Action: Game controls e.g. Left, Right, Up, Down 
Reward: Score increase/decrease at each time step

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Go Game (AlphaGo)

Objective: Win the game! 

State: Position of all pieces 
Action: Where to put the next piece down 
Reward: 1 if win at the end of the game, 0 
otherwise

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Markov Decision Processes 
— Mathematical formulation of the RL problem 

Defined by:  
  : set of possible states 
  : set of possible actions 
  : distribution of reward given (state, action) pair 
  : transition probability i.e. distribution over next state given (state, action) pair 
  : discount factor

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



At times step t=0, environment samples initial state 
For time t=0 until done: 
      Agent selects action (deterministically or stochastically) 
      Environment samples the reward 
      Environment samples the next state 
      Agent receives reward and next state 

Markov Decision Processes 



Markov Decision Processes 
— Mathematical formulation of the RL problem 

— Life is trajectory:  

Defined by:  
  : set of possible states 
  : set of possible actions 
  : distribution of reward given (state, action) pair 
  : transition probability i.e. distribution over next state given (state, action) pair 
  : discount factor

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Markov Decision Processes 
— Mathematical formulation of the RL problem 

— Life is trajectory:  

— Markov property: Current state completely characterizes the state of the 
world 

Defined by:  
  : set of possible states 
  : set of possible actions 
  : distribution of reward given (state, action) pair 
  : transition probability i.e. distribution over next state given (state, action) pair 
  : discount factor

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Components of the RL Agent

Policy 
— How does the agent behave? 

Value Function 
— How good is each state and/or state-action pair? 

Model 
— Agent’s representation of the environment  

* slide from Dhruv Batra



Policy

— The policy is how the agent acts 
— Formally, map from states to actions:

Deterministic policy:
Stochastic policy:

* slide from Dhruv Batra
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Simple example: 

A = You are on the street car approaching 
B = You are on the street no car approaching 

Action 1 = Cross the street 
Action 2 = Stop



Policy

— The policy is how the agent acts 
— Formally, map from states to actions:

Deterministic policy:
Stochastic policy:

* slide from Dhruv Batra

1 2

A 0.1 0.9

B 0.8 0.2

Simple example: 

A = You are on the street car approaching 
B = You are on the street no car approaching 

Action 1 = Cross the street 
Action 2 = Stop



The Optimal Policy

What is a good policy?
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The Optimal Policy

What is a good policy? 

Maximizes current reward? Sum of all future rewards? 

Discounted future rewards! 

Formally: 

with

* slide from Dhruv Batra

1. Why do we need expectation?

2. Why do we need gamma (discount factor)?



Components of the RL Agent

Policy 
— How does the agent behave? 

Value Function 
— How good is each state and/or action pair? 

Model 
— Agent’s representation of the environment  

* slide from Dhruv Batra



Value Function

A value function is a prediction of future reward 

“State Value Function" or simply “Value Function” 
— How good is a state? 
— Am I screwed? Am I winning this game? 

“Action Value Function” or Q-function 
— How good is a state action-pair? 
— Should I do this now?

* slide from Dhruv Batra



Value Function and Q-value Function
Following a policy produces sample trajectories (or paths)  s0, a0, r0, s1, a1, r1, … 

— The value function (how good is the state) at state s, is the expected 
cumulative reward from state s (and following the policy thereafter): 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Value Function and Q-value Function
Following a policy produces sample trajectories (or paths)  s0, a0, r0, s1, a1, r1, … 

— The value function (how good is the state) at state s, is the expected 
cumulative reward from state s (and following the policy thereafter): 

— The Q-value function (how good is a state-action pair) at state s and action a, 
is the expected cumulative reward from taking action a in state s (and following 
the policy thereafter):

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Components of the RL Agent

Policy 
— How does the  agent behave? 

Value Function 
— How good is each state and/or action pair? 

Model 
— Agent’s representation of the environment  

* slide from Dhruv Batra



Model

Model predicts what the world will do next 

* slide from David Silver



Model

Model predicts what the world will do next 

* slide from David Silver



Components of the RL Agent

Policy 
— How does the  agent behave? 

Value Function 
— How good is each state and/or action pair? 

Model 
— Agent’s representation of the environment  

* slide from Dhruv Batra



Maze Example

Reward: -1 per time-step 
Actions: N, E, S, W 
States: Agent’s location

* slide from David Silver



Maze Example: Policy 

Arrows represent a policy           for 
each state

⇡(s)
s

* slide from David Silver



Maze Example: Value 

Numbers represent value            of 
each state s

v⇡(s)

* slide from David Silver



Maze Example: Model

Grid layout represents transition model

Numbers represent the immediate 
reward for each state (same for all 
states)

* slide from David Silver



Components of the RL Agent

Policy 
— How does the agent behave? 

Value Function 
— How good is each state and/or action pair? 

Model 
— Agent’s representation of the environment  

* slide from Dhruv Batra



Approaches to RL: Taxonomy 

Value-based RL 
— Estimate the optimal action-value function 
— No policy (implicit) 

Policy-based RL  
— Search directly for the optima policy  
— No value function  

Model-based RL 
— Build a model of the world 
— Plan (e.g., by look-ahead) using model 

Q⇤(s, a)

⇡⇤

Model-free RL

* slide from Dhruv Batra



Approaches to RL: Taxonomy 

Value-based RL 
— Estimate the optimal action-value function 
— No policy (implicit) 

Policy-based RL  
— Search directly for the optima policy  
— No value function  

Model-based RL 
— Build a model of the world 
— Plan (e.g., by look-ahead) using model 

Q⇤(s, a)

⇡⇤

Actor-critic RL 
— Value function 
— Policy function

Model-free RL

* slide from Dhruv Batra



Deep RL

Value-based RL 
— Use neural nets to represent Q function  

Policy-based RL  
— Use neural nets to represent the policy 

Model-based RL 
— Use neural nets to represent and learn the model 

* slide from Dhruv Batra



Approaches to RL

Value-based RL 
— Estimate the optimal action-value function 
— No policy (implicit)

Q⇤(s, a)

* slide from Dhruv Batra



Optimal Value Function
Optimal Q-function is the maximum achievable value

* slide from David Silver
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Once we have it, we can act optimally
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Optimal value maximizes over all future decisions
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Optimal Value Function
Optimal Q-function is the maximum achievable value

Once we have it, we can act optimally

Optimal value maximizes over all future decisions

Formally, Q* satisfied Bellman Equations

* slide from David Silver



Solving for the Optimal Policy
Value iteration algorithm: Use Bellman equation as an iterative update 

Qi will converge to Q* as i -> infinity

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
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Solving for the Optimal Policy
Value iteration algorithm: Use Bellman equation as an iterative update 

Qi will converge to Q* as i -> infinity

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. 
game pixels, computationally infeasible to compute for entire state space!

What’s the problem with this?
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Solving for the Optimal Policy
Value iteration algorithm: Use Bellman equation as an iterative update 

Qi will converge to Q* as i -> infinity

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. 
game pixels, computationally infeasible to compute for entire state space!

What’s the problem with this?

Solution:  use a function approximator to estimate Q(s,a). E.g. a neural network! 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Q-Networks

* slide from David Silver



Case Study: Playing Atari Games

Objective: Complete the game with the highest score 

State: Raw pixel inputs of the game state 
Action: Game controls e.g. Left, Right, Up, Down 
Reward: Score increase/decrease at each time step

[ Mnih et al., 2013; Nature 2015 ]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Q-Network Architecture

Current state st: 84x84x4 stack of last 4 frames  
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

             : neural network  
with weights

[ Mnih et al., 2013; Nature 2015 ]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Q-Network Architecture

Current state st: 84x84x4 stack of last 4 frames  
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

             : neural network  
with weights

Input: state st
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Current state st: 84x84x4 stack of last 4 frames  
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4
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FC-256

FC-4 (Q-values)

             : neural network  
with weights

familiar conv 
and fc layers 
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Current state st: 84x84x4 stack of last 4 frames  
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

             : neural network  
with weights

Last FC layer has 4-d 
output (if 4 actions), 
corresponding to Q(st, a1), 
Q(st, a2), Q(st, a3), Q(st,a4)
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[ Mnih et al., 2013; Nature 2015 ]

Number of actions between 4-18 
depending on Atari game

A single feedforward pass to compute 
Q-values for all actions from the current 
state => efficient!
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where

Forward Pass:

Backward Pass: 
Gradient update (with respect to Q-function parameters θ): 
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Q-Network Learning
Remember: want to find a Q-function that satisfies the Bellman Equation:  

Loss function: 

where

Iteratively try to make the Q-value 
close to the target value (yi) it 
should have, if Q-function 
corresponds to optimal Q* (and 
optimal policy 𝝿*)

Forward Pass:

Backward Pass: 
Gradient update (with respect to Q-function parameters θ): 
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