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Lecture 20: Graph Neural Networks (cont)
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Graph Neural Networks (GNNS)
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Main ldea: Pass massages between pairs of nodes and agglomerate

Alternative Interpretation: Pass massages between nodes to refine node
(and possibly edge) representations

* slide from Thomas Kipf, University of Amsterdam



Graph Neural Networks (GNNS)

Notation: G = (A, X)
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Main ldea: Pass massages between pairs of nodes and agglomerate

Alternative Interpretation: Pass massages between nodes to refine node
(and possibly edge) representations

* slide from Thomas Kipf, University of Amsterdam



Classification and Link Prediction with GNNs / GCNs

Input: Feature matrix X € R™ *¥ preprocessed adjacency matrix A
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H*D = Message Passing (A, HW)

* slide from Thomas Kipf, University of Amsterdam



Classification and Link Prediction with GNNs / GCNs

Input: Feature matrix X & RN XE preprocessed adjacency matrix A
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Classification and Link Prediction with GNNs / GCNs
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Classification and Link Prediction with GNNs / GCNs
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, preprocessed adjacency matrix A

Node classification:

softmax(zy,)
e.g. Kipf & Welling (ICLR 2017)

Graph classification:

—» softmax()_ zp)
e.g. Duvenaud et al. (NIPS 2015)

Link prediction:

_ T .
p(Aij) = o(2z; z;)
Kipf & Welling (NIPS BDL 2016)
“Graph Auto-Encoders”

* slide from Thomas Kipf, University of Amsterdam



G3raphGround: Graph-based
Language Grounding
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Image Grounding: Beyond Object Detection

Given the image and one or more natural language phrases, |ocate regions
that correspond to those phrases.

@

A man wearing a black-jacket has
a smile on



Image Grounding: Beyond Object Detection

Given the image and one or more natural language phrases, |ocate regions
that correspond to those phrases.

A man wearing a black-jacket has
a smile on

Fundamental task for image / video understanding

— Helps improve performance on other tasks (e.g., image captioning, VQA)
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Proposed Architecture
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Each visual node is initialized = VGG16 representation (4096) -> 300 Dim + (X, vy, w, h)



Proposed Architecture
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Proposed Architecture

Each phrase node is initialized = Bi-directional LSTM last hidden state
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Proposed Architecture
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Proposed Architecture

- wm . wm o m ww wm e m e ww wm w m ww m m w m m w — w — ————a

_.--| Visual Graph |-~~~

1
-
P}
1
'y
L
LI
17

LN
v
--..nu\nnnulu;u\u_
.~:.
A
>
N
Visual Encoder
- e e m =
¥ X X & o

RPN

llllllll

A
S
)
<
V
A
(=¥
N
Phrase Encoder
-t
A AR S
Loh 44
Q N S
b,m gha
S S
M\a V V V

M <a girl>

~
7’

<a bag>
SRR SR
<a hat>

| Phrase Graph f--------------------

L.

y carrying a bag 1s standing with g gir/ who 1s wearing a ha

A4 DO

LAb



Proposed Architecture
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Proposed Architecture
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Experiments

Datasets
— Flickr30K Entities: (mostly noun) Phrases parsed from image captions

— Referlt Game: Unambiguous single phrases

Evaluation

— Ratio of correctly grounded phrases to the total phrases



Qualitative Results: Flickr30K

(@) A man wearing a black-jacket has (b) People are walking on the street | (c) A woman in a vellow shirtis (d) A young boy is
a smile on his face. with bikes parked up to the left of walking down the sidewalk, walking on wooden
the picture. path in the middle
of trees.

(e) Two women in colorful clothing (f) Lady wearing white shirt with (g) Young girl with curly hair is (h) The bearded man
are dancing inside a circle of blue umbrella in the rain. drinking out of a plastic cup. keeps his blue Bic
other women. pen in hand while

he plays the guitar.



Quantitative Results

Flickr30k Entities:
Method Accuracy
SMPL [ /] 42.08
NonlinearSP [ ] 43.89
GroundeR [ ] 47.81
MCB [ /] 48.69
RtP [ 1] 50.89
Similarity Network [ 5] 51.05
IGOP [ ] 53.97
SPC+PPC [ 1] 55.49
SS+QRN (VGGdet) [] 55.99
CITE [ V] 59.27
SeqGROUND 61.60

CITE [ V] (finetuned) 61.89
QRC Net [] (finetuned) 65.14

G°RAPHGROUND++ 66.67
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Flickr30k Entities:
Method Accuracy
SMPL [ /] 42.08
NonlinearSP [ ] 43.89
GroundeR [ ] 47.81
MCB [ /] 48.69
RtP [ 1] 50.89
Similarity Network [ 5] 51.05
IGOP [ ] 53.97
SPC+PPC [ 1] 55.49
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CITE [ V] 59.27
SeqGROUND 61.60
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Quantitative Results

Flickr30k Entities: Referlt Game:
Method Accuracy
SMPL ["7] 42.08 Method Accuracy
NonlinearSP [ ] 43.89

GroundeR [ ] 47.81 SCRC [V] 17.93
MCB [ 7] 48 69 MCB + Reg + Spatial [ '] 20.54
RtP [ 1] 50.89 GroundeR + Spatial [ ] 26.93
Similarity Network [~ ] 51.05 Similarity Network + Spatial [ ] 31.26
IGOP [ 4] 53.97 CGRE [ ! /] 31.85
SPC+PPC [ ] 55.49 MNN + Reg + Spatial [ ] 32.21
SS+QRN (VGGdet) [] 55.99 EB+QRN (VGGcls-SPAT) [+ ] 32.21
CITE [ V] 59.27 CITE [ 9] 34.13
SeqGROUND 61.60 IGOP [+ 34.770
CITE [ ! V] (finetuned) 61.89 QRC Net [] (finetuned) 44.07
QRC Net [4] (finetuned)  65.14 G3RAPHGROUND++ 44.91

G°RAPHGROUND++ 66.67




Ablation

Method Flickr30k Referlt

GG - VisualG - FusionG 56.32 32.89
GG - VisualG 62.23 38.82

GG - FusionG 59.13 36.54

GG - PhraseG 60.82 38.12
GGFusionBase 60.41 38.65

GG - ImageContext 62.32 40.92

GG - PhraseContext 62.73 n.d.

G°RAPHGROUND (GG) 63.65 41.79
G°RAPHGROUND++ 66.67 44.91



Ablation

Method Flickr30k Referlt

GG - VisualG - FusionG 56.32 32.89
GG - VisualG 62.23 38.82

GG - FusionG 59.13 36.54

GG - PhraseG 60.82 38.12
GGFusionBase 60.41 38.65

GG - ImageContext 62.32 40.92

GG - PhraseContext 62.73 n.d.

G°RAPHGROUND (GG) 63.65 41.79
G°RAPHGROUND++ 66.67 44.91



Visualizing Graph Attention

(@) A young boy is looking at a man (b) A man is checking his blue sneakers
painted in all gold. next to two men having a
conversation.

(c) A_brown dog jumps high on a (d) A woman stands in a field near a car

field of grass. and looks through binoculars.
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Energy-Based Learning for
Scene Graph Generation

Mohammed Suhall



Scene Graphs:

A graph based data structure for semantically representing image content



Scene Graphs
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Scene Graphs
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Scene Graphs
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Scene Graphs
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Scene Graph Generation
Pipeline
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| Chen et al, 2019 |

KERN Architecture
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| Chen et al, 2019 |

v
GNN
v
GNN
v
GNN

Routing Network

01,0, @ I @ T @
v
GNN
v
GNN
v
GNN

KERN Architecture

Step 1: GNN for objects (nodes are objects and edges are interactions between objects)



KERN Architecture [ Chen et al, 2019 ]
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Step 1: GNN for objects (nodes are objects and edges are interactions between objects)

Step 2: GNN for each object pair, where nodes are objects and relations



KERN Architecture [ Chen et al, 2019 ]
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Step 2: GNN for each object pair, where nodes are objects and relations



KERN Architecture

Methods SGGen SGCls PredCls
R@50 R@100 R@50 R@100 R@50 R@100 | Mean
VRD [19] 0.3 0.5 11.8 14.1 27.9 35.0 14.9
IMP [30] 3.4 4.2 21.7 24.4 44.8 53.0 25.3
Constraint IMP+ [30, 33] 20.7 24.5 34.6 354 59.3 61.3 39.3
FREQ [33] 23.5 27.6 32.4 34.0 59.9 64.1 40.3
SMN [33] 27.2 30.3 35.8 36.5 65.2 67.1 43.7
Ours 27.1 29.8 36.7 37.4 65.8 67.6 44.1
AE [23] 9.7 11.3 26.5 30.0 68.0 75.2 36.8
IMP+ [30, 33] 22.0 27.4 43.4 47.2 75.2 83.6 49.8
No constraint FREQ [33] 25.3 30.9 40.5 43.7 71.3 81.2 48.8
SMN [33] 30.5 35.8 44.5 47.7 81.1 88.3 54.7
Ours 30.9 35.8 45.9 49.0 81.9 88.9 55.4

Table 2. Comparison of the R@50 and R@100 in % with and without constraint on the three tasks of the VG dataset. We compute Mean
R by averaging R@50 and R@ 100 over the three tasks.

Methods SGGen SGCls PredCls

mR@50 mR@100 | mR@50 mR@100 | mR@50 mR@100 | Mean

Ours w/o rk & w/o ok 5.1 5.8 6.1 6.5 10.5 11.5 7.6

Ours w/o rk 52 59 6.5 6.9 11.1 12.0 7.9
Ours 6.4 7.3 94 10.0 17.7 19.2 11.7
R@50 R@100 R@50 R@100 R@50 R@100 | Mean

Ours w/o rk & w/o ok 25.2 27.9 33.9 34.8 58.7 61.0 40.3
Ours w/o rk 25.5 28.0 34.3 35.2 59.2 61.5 40.6
Ours 27.1 29.8 36.7 37.4 65.8 67.6 44.1

Table 3. Comparison of the mR @50, mR@ 100 (above) and the R@50, R@ 100 (below) with constraint in % of our full model, our model

without relationship correlation (w/o rc), and our model without relationship correlation and object correlation (w/o rc & oc). We compute
Mean mR by averaging mR @50 and mR @ 100 over the three tasks and mean R in the same way.

| Chen et al, 2019 |
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Graph RCNN
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Conclusions

— Deep learning on graphs works and is very effective!

— Exciting area: lots of new applications and extensions (hard to keep up)

Relational reasoning Multi-Agent RL GCN for recommendation on 16 billion edge graph!
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[Leskovec lab, Stanford] BAD RECOMMENDATION

Open problems:

— Theory
— Scalable, stable generative models
— Learning on large, evolving data

— Multi-modal and cross-model learning (e.g., sequence2graph) * slide from Thomas Kipf, University of Amsterdam
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Types of Learning

Supervised training
— Learning from the teacher

— [raining data includes desired output

Unsupervised training
— Training data does not include desired output

Reinforcement learning
— Learning to act under evaluative feedback (rewards)

* glide from Dhruv Batra



What is Reinforcement Learning

Agent-oriented learning — learning by
INnteracting with an environment to achieve a goal

— More realistic and ambitious than other kinds of machine
learning

L earning by trial and error, with only delayed
evaluative feedback (reward)

— The kind go machine learning most like natural learning
— Learning that can tell for itselt when it Is right or wrong

Engineering

<L

Computer Science

Neuroscience

Psychology

|
ontrol
~hi
- U\ " .
Dperations 3 .
Resears onditioni

* slide from David Silver



Example: Hajime Kimura’s RL Robot

Before After

* glide from Rich Sutton



Example: Hajime Kimura’s RL Robot

Before After

* glide from Rich Sutton



Example: Hajime Kimura’s RL Robot

Before After

* glide from Rich Sutton



Human ODbjectives

Jurgen Schmidhuber



Human ODbjectives

“AGI will surpass humans’ in 2050, enabling robots to have fun, fall in love —
and colonize the galaxy”

Jurgen Schmidhuber



Human ODbjectives

“AGI will surpass humans’ in 2050, enabling robots to have fun, fall in love —
and colonize the galaxy”

Don’t worry about it — “They will pay as much
attention to us as we do to ants”

Jurgen Schmidhuber



Human ODbjectives

‘| think 1t Is just the product of a few principles that will be considered very
simple In hindsight, so simple that even kids will be able to understand and
build intelligent, continually learning, more and more general problem solvers.”

Jurgen Schmidhuber



Human ODbjectives

‘| think 1t Is just the product of a few principles that will be considered very
simple In hindsight, so simple that even kids will be able to understand and
build intelligent, continually learning, more and more general problem solvers.”

High Level Objectives: Maximize Happiness,
Don’t Die

What would be an emergent behavior would evolve

f we have these high level objectives”

Jurgen Schmidhuber



Peril of AGI

AGI| does not need to be evil to act nefariously

High level objective: Help human race to live and prosper

Emergent behavior: AGI self-preservation and greed



Challenges of RL

— Evaluative feedback (reward)

— Seqguentiality, delayed consequences
— Need for trial and error, to explore as well as exploit
— Non-stationarity

— The fleeting nature of time and online data

* slide from Rich Sutton



How does RL work?

observation f“‘ o W ‘.‘—‘- 2 ; /)' action > At eq Ch St ep t th e 3 gent
T3 % g t » Executes action ay
» Receives observation oy

» Recelves scalar reward r;

» [ he environment:

» Recelves action ar
» Emits observation o;41
» Emits scalar reward ryq

* slide from David Silver



Robot | ocomotion

| Objective: Make the robot move forward

- Actlon Torques applied on joints
Reward: 1 at each time step upright +

*— forward movement

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Go Game (AlphaGo)

P e i R e
© = N W & U1 &v N @0 ©

= N W & U SN

A B CDEFGH )]  KLMNOPUOQRST
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e
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//\

>

(
2

N

\IJ

A BCDEFGH )] KLMNOPU QRST

P R R R
© = N W & U &v N @@ ©

= N W s TSN @

Objective: Win the game!

State: Position of all pieces

Action: \Where to put the next piece down
Reward: 1 if win at the end of the game, O
otherwise

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Markov Decision Processes

— Mathematical formulation of the RL problem
Defined Dy:

S : set of possible states

A : set of possible actions

R : distribution of reward given (state, action) pair
P

Y :

transition probability i.e. distribution over next state given (state, action) pair
discount factor

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Markov Decision Processes

At times step t=0, environment samples initial state

For time t=0 until done:
Agent selects action (deterministically or stochastically)
Environment samples the reward
Environment samples the next state

Agent receives reward and next state



Markov Decision Processes

— Mathematical formulation of the RL problem
Defined Dy:

S : set of possible states

A : set of possible actions

R : distribution of reward given (state, action) pair
P

Y :

transition probability i.e. distribution over next state given (state, action) pair
discount factor

— Life is trajectory: ...S:, As, Ret1, Sev1, Asr1, Reao, Stao, ...

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Markov Decision Processes

— Mathematical formulation of the RL problem
Defined Dy:

S : set of possible states

A : set of possible actions

R : distribution of reward given (state, action) pair
P:

Y

transition probability i.e. distribution over next state given (state, action) pair
discount factor

— Life is trajectory: ...S:, As, Ret1, Sev1, Asr1, Reao, Stao, ...

— Markov property: Current state completely characterizes the state of the
worlo

p(r,s'|s,a) = Prob|Rt11 =r,5t11 =5 | St =5,Ar = a

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Components of the RL Agent

Policy

— How does the agent behave”

Value Function
— How good is each state and/or state-action pair?

Model

— Agent’s representation of the environment

* glide from Dhruv Batra



Policy

— The policy Is how the agent acts

— Formally, map from states to actions:

Deterministic policy: a = 7(s)
Stochastic policy: w(als) = P|A; = a|S; = 5]

* glide from Dhruv Batra



Policy

— [he policy Is how the agent acts =9

State Action

— Formally, map from states to actions: A > 2
B > 1

Deterministic policy: a = 7(s)
Stochastic policy: w(als) = P|A; = a|S; = 5]

Simple example:

A = You are on the street car approaching
B = You are on the street no car approaching

Action 1 = Cross the street
Action 2 = Stop

* glide from Dhruv Batra



Policy

— [he policy Is how the agent acts =9

State Action

— Formally, map from states to actions: A > 2
B > 1

Deterministic policy: a = 7(s)
Stochastic policy: w(als) = P|A; = a|S; = 5]

Simple example: 1 )

A = You are on the street car approaching
B = You are on the street no car approaching

A 0.1 0.9

B 0.8 0.2

Action 1 = Cross the street
Action 2 = Stop

* glide from Dhruv Batra



The Optimal Policy

What is a good policy”?

* glide from Dhruv Batra



The Optimal Policy

What is a good policy”?

Maximizes current reward”? Sum of all future rewards??

* glide from Dhruv Batra



The Optimal Policy

What is a good policy”?

Maximizes current reward”? Sum of all future rewards??

Simple example:

A = You are on the street car approaching
B = You are on the street no car approaching

AC
AC

lon 1 = Cross the street
on 2 = Stop

* glide from Dhruv Batra



The Optimal Policy

What is a good policy”?
Maximizes current reward”? Sum of all future rewards”?

Discounted future rewards!

* glide from Dhruv Batra



The Optimal Policy

What is a good policy”?

Maximizes current reward”? Sum of all future rewards??

Discounted future rewards!

Formally: 7" = argmaxE [Z fytrt|7r}

t>0

with 8o ~ p(SO)a Ay ~ W("St)ast

1 7 p("sts at)

* glide from Dhruv Batra



The Optimal Policy

What is a good policy”?

Maximizes current reward”? Sum of all future rewards??

Discounted future rewards!

Formally: 7" = argmaxE [Z Yore|m

t>0

with 8o ~ p('SO)a Ay ~ 7T('|St)ast

1 7 p("sts a't)

} 1. Why do we need expectation?

* glide from Dhruv Batra



The Optimal Policy

What is a good policy”?

Maximizes current reward”? Sum of all future rewards??

Discounted future rewards!

Formally: 7" = argmaxE [Z fytrt|7r}

t>0

with 8o ~ p('SO)a Ay ~ 7T('|St)ast

1 7 p("sts a't)

1. Why do we need expectation?

2. Why do we need gamma (discount factor)?

* glide from Dhruv Batra



Components of the RL Agent

V Policy

— How does the agent behave”

Value Function
— How good is each state and/or action pair?

Model

— Agent’s representation of the environment

* glide from Dhruv Batra



Value Function

A value function Is a prediction of future reward

“State Value Function” or simply “Value Function”’
— How good is a state?
— Am | screwed”? Am | winning this game?

“Action Value Function” or Q-function
— How good is a state action-pair?
— Should | do this now?

* glide from Dhruv Batra



Value Function and Q-value Function

Following a policy produces sample trajectories (or paths) so, ao, ro, S1, ai, r1, ...

— The value function (how good is the state) at state s, is the expected
cumulative reward from state s (and following the policy thereafter):

VT(s) = |:Z'7 r¢|S0 = 8 7T:|

t>0

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Value Function and Q-value Function

Following a policy produces sample trajectories (or paths) so, ao, ro, S1, ai, r1, ...

— The value function (how good is the state) at state s, is the expected
cumulative reward from state s (and following the policy thereafter):

VT(s) = |:Z'7 r¢|S0 = 8 7T:|

— The Q-value function (how good is a state-action pair) at state s and action a,
s the expected cumulative reward from taking action a in state s (and following
the policy thereafter):

t>0

Q" (s,a) =E |:Z 'yt'rtlso = 8,a9 = Q, 7r:|

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Components of the RL Agent

V Policy

— How does the agent behave?

\/ Value Function

— How good is each state and/or action pair?

Model

— Agent’s representation of the environment

* glide from Dhruv Batra



Model

Model predicts what the world will do next

observation action

O, a;

reward ry

* glide from David Silver



Model

Model predicts what the world will do next

observation

O,

:;‘In "... N St 4
' X N Sy o '
\ . 5 ‘l/ - :
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N ' | < - = !
] o= 3 " \}
g { B —>
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reward I ry
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Components of the RL Agent

V Policy

— How does the agent behave?

\/ Value Function

— How good is each state and/or action pair?

\/ Model

— Agent’s representation of the environment

* glide from Dhruv Batra



Maze =xample

Start

Reward: -1 per time-step
Actions: N, E, S, W
States: Agent’s location

Goal

* glide from David Silver



Maze =xample: Policy

<

Start

¢ <« Arrows represent a policy W(S) for
— ¢ each state S

Goal

* glide from David Silver



Maze =xample:

Start

-16

14

-15

-16

-24

-23

-13

-17

-18

-22

-12

-19

-20

-21

Value

11

-12

-22

-10

Goal

Numbers represent value V() of

each state S

* glide from David Silver



Maze Example: Model

Grid layout represents transition model

Start -1 -1 -1 -1
1 -1 1 | |
Numbers represent the immediate
! reward for each state (same for all
1| - states)
-1 | -1 | Goal

* glide from David Silver



Components of the RL Agent

Policy

— How does the agent behave”

Value Function
— How good is each state and/or action pair?

Model

— Agent’s representation of the environment

* glide from Dhruv Batra



Approaches to RL: Taxonomy

Model-free RL

Value-based RL

— Estimate the optimal action-value function @*(s, a)

— No policy (implicit)

Policy-based RL

— Search directly for the optima policy 7*
— No value function

Model-based RL

— Builld a model of the world

— Plan (e.g., by look-ahead) using model

* slide from Dhruv Batra



Approaches to RL: laxonomy

Model-free RL

Value-based RL

— Estimate the optimal action-value function @*(s, a)

— No policy (implicit) Actor-critic RL
— Value function
Policy-based RL — Policy function

— Search directly for the optima policy 7*
— No value function

Model-based RL

— Builld a model of the world

— Plan (e.qg., by look-ahead) using model

* slide from Dhruv Batra



Deep RL

Value-based RL

— Use neural nets to represent Q function  Q(s, a; )
Q(s,a;0") =~ Q*(s,a)
Policy-based RL

— Use neural nets to represent the policy 7

Model-based RL

— Use neural nets to represent and learn the model

* glide from Dhruv Batra



Approaches to RL

Value-based RL

— Estimate the optimal action-value function Q*(s, a)

— No policy (implicit)

* glide from Dhruv Batra



Optimal Value Function

Optimal Q-function is the maximum achievable value

QR*(s,a) = max Q" (s,a) = Q™ (s, a)

* glide from David Silver



Optimal Value Function

Optimal Q-function is the maximum achievable value
Q*(s,a) = max Q™ (s,a) = Q™ (s, a)
Once we have it, we can act optimally

7" (s) = argmax Q(s, a)
ad

* glide from David Silver



Optimal Value Function

Optimal Q-function is the maximum achievable value
Q*(s,a) = max Q™ (s,a) = Q™ (s, a)
Once we have it, we can act optimally

m(s) = argmax Q" (s, a)
ad

Optimal value maximizes over all future decisions

* 2
Q7 (s,3) = rre1 + 7y Max rpeio +7v° max rpiz + ...
at+1 dt42

= 11 T 7Y mMax Q*(St—i—l: 3t+1)
dt+1

* glide from David Silver



Optimal Value Function

Optimal Q-function is the maximum achievable value
Q*(s,a) = max Q™ (s,a) = Q™ (s, a)
Once we have it, we can act optimally

m(s) = argmax Q" (s, a)
ad

Optimal value maximizes over all future decisions

2
Q*(s,a) = rep1 + 7y max reeio + 7" max reez + ...

di+1 dt42

= 11 T 7Y mMax Q*(St—i—l: 3t+1)
dt+1

Formally, Q" satisfied Bellman Equations

R*(s,a) =Ey [r+7 max R*(s',a") | s, a

* glide from David Silver



Solving for the Optimal Policy

Value iteration algorithm: Use Bellman equation as an iterative update

Q’i-l-l(saa’) =L 'r—l—fyma}.in(s',a')\s,a
i a _

Q; will converge to Q" as i -> infinity

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Solving for the Optimal Policy

Value iteration algorithm: Use Bellman equation as an iterative update

Qi—l-l(saa) =K T—I—’YII]&}.XQ?;(S,,(L,)‘S,G,

Q; will converge to Q* as i -> infinity

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Solving for the Optimal Policy

Value iteration algorithm: Use Bellman equation as an iterative update

Q’H-l(saa) =K T—I—’Ym?}'XQi(S,aa',)‘Saa

Q; will converge to Q* as i -> infinity

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.qg.
game pixels, computationally infeasible to compute for entire state space!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Solving for the Optimal Policy

Value iteration algorithm: Use Bellman equation as an iterative update

Qi—l-l(saa) =K ’T’—I-’YmE}.XQi(S,,CL,)‘S,a,

Q; will converge to Q* as i -> infinity

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.qg.
game pixels, computationally infeasible to compute for entire state space!

Solution: use a function approximator to estimate Q(s,a). E.g. a neural network!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Q-Networks

Q(s,a,w) =~ Q*(s, a)

Q(s,a,w) Q(s,ay,w) --- Qs,a.,,w)

T

* glide from David Silver



Case Study: Playing Atari Games Mnih ef al.. 2013; Nature 2015 ]

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Q-Network Architecture [ Mnih et al., 2013; Nature 2015 |

Q(s,a;0): neural network
with weights 6

FC-4 (Q-values)
FC-256

1] —

Current state si; 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Q-Network Architecture [ Mnih et al., 2013; Nature 2015 |

Q(s,a;0): neural network
with weights 6

FC-4 (Q-values)
FC-256

T - L G o ey AN

”1- <— |Input: state s;

Current state si; 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Q-Network Architecture [ Mnih et al., 2013; Nature 2015 |

Q(s,a;0): neural network
with weights 6

FC-4 (Q-values)
FC-256

<« familiar conv
and fc layers

1] —

Current state si; 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Q-Network Architecture

Q(s,a;0): neural network
with weights 6

FC-4 (Q-values)

| Mnih et al., 2013; Nature 2015 |

<«— | ast FC layer has 4-d

FC-256

output (if 4 actions),

Jll-

corresponding to Q(st, a1),
Q(st, a2), Q(st, az), Q(st,a4)

Current state si; 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Q-Network Architecture

Q(s,a;0): neural network
with weights 6

FC-4 (Q-values)

[ Mnih et al., 2013; Nature 2015 ]

<«— | ast FC layer has 4-d

FC-256

output (if 4 actions),

a § =3 — 8]

corresponding to Q(st, a1),
Q(st, a2), Q(st, az), Q(st,a4)

Number of actions between 4-18

depending on Atari game

Current state si; 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Q-Network Architecture

Q(s,a;0): neural network
with weights 6

FC-4 (Q-values)

[ Mnih et al., 2013; Nature 2015 ]

<«— | ast FC layer has 4-d

FC-256

output (if 4 actions),

A single feedforward pass to compute

Q-values for all actions from the current
state => efficient!

R F =3 _—— | [ |
'-

corresponding to Q(st, a1),
Q(st, a2), Q(st, az), Q(st,a4)

Number of actions between 4-18

depending on Atari game

Current state si; 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Q-Network Learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

Q" (s,a) = E[r + ymaxQ*(s',a’) | s,a

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Q-Network Learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

Q" (s,a) = E[r + ymaxQ*(s',a’) | s,a

Forward Pass:

Loss function: Li(ez‘) = [(y@ — Q(S, a, ei)Q}

where  y; = Elr +ymax Q*(s,a’) | s,a
a

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Q-Network Learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

Q" (s,a) = E[r + ymaxQ*(s',a’) | s,a
Forward Pass:

Loss function: Li(ez’) = [(y@ — Q(S, a, 9@')2}

n|

where  y; = Elr +ymax Q*(s,a’) | s,a
a

Backward Pass:

Gradient update (with respect to Q-function parameters 0):

Vo.Li(0;) =E o+ ymax Q(s',a’;0;_1) — Q(s,a;0;))Ve,Q(s, a; 97;)-

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Q-Network Learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

Q" (s,a) = E[r + ymaxQ*(s',a’) | s,a
Forward Pass:

| o . 9 teratively try to make the Q-value
Loss function: Li(‘gi) = 1L [(yz o Q(Sa a, 92’) } Close to the target value (y)) it
w1 . should have, if Q-function
——") - *
where  Y; = J[T Y mz}x Q (S , ) ‘ S, corresponds to optimal Q* (and
a optimal policy 1)

Backward Pass:

Gradient update (with respect to Q-function parameters 0):

A

Vo,Li(6;) = E|r + ymax Q(s',a’;0;-1) — Q(s,a;0;)) Ve, Q(s, a; 0;)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Example: Atarl Playing

Starting out - 10 minutes of training

The algorithm tries to hit the hall hack, hut
itis yet too clumsy to manage.
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