

THE UNIVERSITY OF BRITISH COLUMBIA

Topics in AI (CPSC 532S): **Multimodal Learning with Vision, Language and Sound**

Lecture 20: Graph Neural Networks (cont)

Relatively **short** lecture today ... RL next class

Graph Neural Networks (GNNs)

Main Idea: Pass massages between pairs of nodes and agglomerate

Alternative Interpretation: Pass massages between nodes to refine node (and possibly edge) representations

Graph Neural Networks (GNNs)

Main Idea: Pass massages between pairs of nodes and agglomerate

Alternative Interpretation: Pass massages between nodes to refine node (and possibly edge) representations

Notation: $\mathcal{G} = (\mathbf{A}, \mathbf{X})$

Input: Feature matrix $\mathbf{X} \in \mathbb{R}^{N imes E}$, preprocessed adjacency matrix $\hat{\mathbf{A}}$

 $\mathbf{H}^{(l+1)} = Message Passing (\mathbf{A}, \mathbf{H}^{(l)})$

Input: Feature matrix $\mathbf{X} \in \mathbb{R}^{N imes E}$, preprocessed adjacency matrix $\hat{\mathbf{A}}$

 $\mathbf{H}^{(l+1)} = Message Passing (\mathbf{A}, \mathbf{H}^{(l)})$

Node classification:

 $\operatorname{softmax}(\mathbf{z_n})$

e.g. Kipf & Welling (ICLR 2017)

 $\mathbf{H}^{(l+1)} = Message Passing (\mathbf{A}, \mathbf{H}^{(l)})$

Message Passing in GNNs

Note: We can do all updates in parallel! (but can also be serial)

Slide from Renjie Liao

(t+1)-th message passing step/layer $\bigcirc \bigcirc$ ()

1. Compute Messages $\mathbf{m}_{ji}^t = f_{\mathrm{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t)$

2. Aggregate Messages

$$\bar{\mathbf{m}}_{i}^{t} = f_{agg} \left(\{ \mathbf{m}_{ji}^{t} | j \in \mathcal{N}_{i} \} \right)$$

3. Update Node Representations $\mathbf{h}_{i}^{t+1} = f_{\text{update}}(\mathbf{h}_{i}^{t}, \bar{\mathbf{m}}_{i}^{t})$

Slide from Renjie Liao

1. Compute Messages

 $\mathbf{m}_{ji}^t = f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t)$

Slide from Renjie Liao

$f_{\text{msg}}(\mathbf{h}_{j}^{t}, \mathbf{h}_{i}^{t}) = \text{MLP}([\mathbf{h}_{j}^{t}, \mathbf{h}_{i}^{t}])$

[4]

1. Compute Messages

 $\mathbf{m}_{ji}^t = f_{\mathrm{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t)$

Slide from Renjie Liao

$$f_{\rm msg}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \text{MLP}([\mathbf{h}_j^t, \mathbf{h}_i^t])$$

$$f_{\rm msg}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \mathbf{h}_j^t$$
[5]

1. Compute Messages

 $\mathbf{m}_{ji}^t = f_{\mathrm{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t)$

Slide from Renjie Liao

$$f_{\rm msg}(\mathbf{h}_{j}^{t}, \mathbf{h}_{i}^{t}) = {\rm MLP}([\mathbf{h}_{j}^{t}, \mathbf{h}_{i}^{t}])$$

$$f_{\rm msg}(\mathbf{h}_{j}^{t}, \mathbf{h}_{i}^{t}) = \mathbf{h}_{j}^{t}$$

$$f_{\rm msg}(\mathbf{h}_{j}^{t}, \mathbf{h}_{i}^{t}, \mathbf{e}_{ji}) = {\rm MLP}([\mathbf{h}_{j}^{t}, \mathbf{h}_{i}^{t}, \mathbf{e}_{ji}])$$

$$[4]$$

Edge Feature

1. Compute Messages $\mathbf{m}_{ji}^t = f_{\mathrm{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t)$

2. Aggregate Messages $\bar{\mathbf{m}}_{i}^{t} = f_{agg} \left(\{ \mathbf{m}_{ji}^{t} | j \in \mathcal{N}_{i} \} \right)$

Slide from Renjie Liao

$$f_{\rm msg}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \text{MLP}([\mathbf{h}_j^t, \mathbf{h}_i^t])$$
[4]

$$f_{\rm msg}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \mathbf{h}_j^t$$
[5]

$$f_{\rm msg}(\mathbf{h}_{j}^{t}, \mathbf{h}_{i}^{t}, \mathbf{e}_{ji}) = MLP([\mathbf{h}_{j}^{t}, \mathbf{h}_{i}^{t}, \mathbf{e}_{ji}])$$
[4]
Edge Feature

$$f_{\text{agg}}\left(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}\right) = \sum_{j \in \mathcal{N}_i} \mathbf{m}_{ji}^t$$
[4,5,

1. Compute Messages $\mathbf{m}_{ji}^t = f_{\mathrm{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t)$

2. Aggregate Messages $\bar{\mathbf{m}}_{i}^{t} = f_{agg} \left(\{ \mathbf{m}_{ji}^{t} | j \in \mathcal{N}_{i} \} \right)$

Slide from Renjie Liao

$$f_{\rm msg}(\mathbf{h}_j^t, \mathbf{h}_i^t) = MLP([\mathbf{h}_j^t, \mathbf{h}_i^t])$$
[4]

$$f_{\rm msg}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \mathbf{h}_j^t$$
[5]

$$f_{msg}(\mathbf{h}_{j}^{t}, \mathbf{h}_{i}^{t}, \mathbf{e}_{ji}) = MLP([\mathbf{h}_{j}^{t}, \mathbf{h}_{i}^{t}, \mathbf{e}_{ji}])$$

Edge Feature

$$f_{\text{agg}}\left(\{\mathbf{m}_{ji}^{t}|j\in\mathcal{N}_{i}\}\right) = \sum_{j\in\mathcal{N}_{i}}\mathbf{m}_{ji}^{t}$$

$$f_{\text{agg}}\left(\{\mathbf{m}_{ji}^{t}|j\in\mathcal{N}_{i}\}\right) = \frac{1}{|\mathcal{N}_{i}|}\sum_{j\in\mathcal{N}_{i}}\mathbf{m}_{ji}^{t}$$
[6]

[4]

1. Compute Messages $\mathbf{m}_{ji}^t = f_{\mathrm{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t)$

2. Aggregate Messages $\bar{\mathbf{m}}_{i}^{t} = f_{agg} \left(\{ \mathbf{m}_{ji}^{t} | j \in \mathcal{N}_{i} \} \right)$

Slide from Renjie Liao

$$f_{\rm msg}(\mathbf{h}_j^t, \mathbf{h}_i^t) = MLP([\mathbf{h}_j^t, \mathbf{h}_i^t])$$
[4]

$$f_{\rm msg}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \mathbf{h}_j^t$$
[5]

$$f_{\text{msg}}(\mathbf{h}_{j}^{t}, \mathbf{h}_{i}^{t}, \mathbf{e}_{ji}) = \text{MLP}([\mathbf{h}_{j}^{t}, \mathbf{h}_{i}^{t}, \mathbf{e}_{ji}])$$

Edge Feature

$$f_{\text{agg}}\left(\{\mathbf{m}_{ji}^{t}|j\in\mathcal{N}_{i}\}\right) = \sum_{j\in\mathcal{N}_{i}}\mathbf{m}_{ji}^{t} \qquad [4,5,7]$$

$$f_{\text{agg}}\left(\{\mathbf{m}_{ji}^{t}|j\in\mathcal{N}_{i}\}\right) = \frac{1}{|\mathcal{N}_{i}|}\sum_{j\in\mathcal{N}_{i}}\mathbf{m}_{ji}^{t} \qquad [6]$$

$$f_{\text{agg}}\left(\{\mathbf{m}_{ji}^{t}|j\in\mathcal{N}_{i}\}\right) = \max_{j\in\mathcal{N}_{i}}\mathbf{m}_{ji}^{t} \qquad [6]$$

[4]

1. Compute Messages $\mathbf{m}_{ji}^t = f_{\mathrm{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t)$

2. Aggregate Messages $\bar{\mathbf{m}}_{i}^{t} = f_{\text{agg}}\left(\{\mathbf{m}_{ji}^{t} | j \in \mathcal{N}_{i}\}\right)$

Slide from Renjie Liao

$$f_{\rm msg}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \text{MLP}([\mathbf{h}_j^t, \mathbf{h}_i^t])$$
[4]

$$f_{\rm msg}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \mathbf{h}_j^t$$
[5]

$$f_{\rm msg}(\mathbf{h}_{j}^{t}, \mathbf{h}_{i}^{t}, \mathbf{e}_{ji}) = MLP([\mathbf{h}_{j}^{t}, \mathbf{h}_{i}^{t}, \mathbf{e}_{ji}])$$

$$Edge \ Feature$$
[4]

$$f_{\text{agg}}\left(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}\right) = \sum_{j \in \mathcal{N}_i} \mathbf{m}_{ji}^t$$
[4,5,

$$f_{\text{agg}}\left(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}\right) = \frac{1}{|\mathcal{N}_i|} \sum_{j \in \mathcal{N}_i} \mathbf{m}_{ji}^t \qquad [6]$$

$$f_{\text{agg}}\left(\{\mathbf{m}_{ji}^{t}|j\in\mathcal{N}_{i}\}\right) = \max_{j\in\mathcal{N}_{i}}\mathbf{m}_{ji}^{t} \qquad [6]$$
$$f_{\text{agg}}\left(\{\mathbf{m}_{ji}^{t}|j\in\mathcal{N}_{i}\}\right) = \text{LSTM}\left([\mathbf{m}_{ji}^{t}|j\in\mathcal{N}_{i}]\right) \qquad [6]$$

 $f_{\text{agg}}\left(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}\right) = \text{LSTM}\left([\mathbf{m}_{ji}^t | j \in \mathcal{N}_i]\right)$

1. Compute Messages $\mathbf{m}_{ji}^t = f_{\mathrm{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t)$

2. Aggregate Messages

$$\bar{\mathbf{m}}_{i}^{t} = f_{agg} \left(\{ \mathbf{m}_{ji}^{t} | j \in \mathcal{N}_{i} \} \right)$$

3. Update Node Representations

$$\mathbf{h}_{i}^{t+1} = f_{\text{update}}(\mathbf{h}_{i}^{t}, \bar{\mathbf{m}}_{i}^{t})$$

Slide from Renjie Liao

$$f_{\rm msg}(\mathbf{h}_j^t, \mathbf{h}_i^t) = MLP([\mathbf{h}_j^t, \mathbf{h}_i^t])$$
[4]

$$f_{\rm msg}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \mathbf{h}_j^t$$
[5]

$$f_{\rm msg}(\mathbf{h}_{j}^{t}, \mathbf{h}_{i}^{t}, \mathbf{e}_{ji}) = {\rm MLP}([\mathbf{h}_{j}^{t}, \mathbf{h}_{i}^{t}, \mathbf{e}_{ji}])$$
[4]
Edge Feature

$$f_{\text{agg}}\left(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}\right) = \sum_{j \in \mathcal{N}_i} \mathbf{m}_{ji}^t \qquad [4,5]$$

$$f_{\text{agg}}\left(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}\right) = \frac{1}{|\mathcal{N}_i|} \sum_{j \in \mathcal{N}_i} \mathbf{m}_{ji}^t \qquad [6]$$

$$f_{\text{agg}}\left(\{\mathbf{m}_{ji}^{t}|j\in\mathcal{N}_{i}\}\right) = \max_{j\in\mathcal{N}_{i}}\mathbf{m}_{ji}^{t} \qquad [6]$$
$$f_{\text{agg}}\left(\{\mathbf{m}_{ji}^{t}|i\in\mathcal{N}_{i}\}\right) = \text{LSTM}\left([\mathbf{m}_{ji}^{t}|i\in\mathcal{N}_{i}]\right) \qquad [6]$$

 $f_{\text{agg}}\left(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}\right) = \text{LSTM}\left([\mathbf{m}_{ji}^t | j \in \mathcal{N}_i]\right)$

[4,7] $f_{\text{update}}(\mathbf{h}_{i}^{t}, \bar{\mathbf{m}}_{i}^{t}) = \text{GRU}(\mathbf{h}_{i}^{t}, \bar{\mathbf{m}}_{i}^{t})$

1. Compute Messages $\mathbf{m}_{ji}^t = f_{\mathrm{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t)$

2. Aggregate Messages

$$\bar{\mathbf{m}}_{i}^{t} = f_{agg} \left(\{ \mathbf{m}_{ji}^{t} | j \in \mathcal{N}_{i} \} \right)$$

3. Update Node Representations

$$\mathbf{h}_{i}^{t+1} = f_{\text{update}}(\mathbf{h}_{i}^{t}, \bar{\mathbf{m}}_{i}^{t})$$

Slide from Renjie Liao

$$f_{\rm msg}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \text{MLP}([\mathbf{h}_j^t, \mathbf{h}_i^t])$$
[4]

$$f_{\rm msg}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \mathbf{h}_j^t$$
[5]

$$f_{\rm msg}(\mathbf{h}_{j}^{t}, \mathbf{h}_{i}^{t}, \mathbf{e}_{ji}) = MLP([\mathbf{h}_{j}^{t}, \mathbf{h}_{i}^{t}, \mathbf{e}_{ji}])$$
[4]
Edge Feature

$$f_{\text{agg}}\left(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}\right) = \sum_{j \in \mathcal{N}_i} \mathbf{m}_{ji}^t \qquad [4,5]$$

$$f_{\text{agg}}\left(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}\right) = \frac{1}{|\mathcal{N}_i|} \sum_{j \in \mathcal{N}_i} \mathbf{m}_{ji}^t \qquad [6]$$

$$f_{\text{agg}}\left(\{\mathbf{m}_{ji}^{t}|j\in\mathcal{N}_{i}\}\right) = \max_{j\in\mathcal{N}_{i}}\mathbf{m}_{ji}^{t} \qquad [6]$$
$$f_{\text{agg}}\left(\{\mathbf{m}_{ji}^{t}|i\in\mathcal{N}_{i}\}\right) = \text{LSTM}\left([\mathbf{m}_{ji}^{t}|i\in\mathcal{N}_{i}]\right) \qquad [6]$$

$$f_{\text{agg}}\left(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}\right) = \text{LSTM}\left([\mathbf{m}_{ji}^t | j \in \mathcal{N}_i]\right)$$

$$f_{\text{update}}(\mathbf{h}_{i}^{t}, \bar{\mathbf{m}}_{i}^{t}) = \text{GRU}(\mathbf{h}_{i}^{t}, \bar{\mathbf{m}}_{i}^{t})$$

$$f_{\text{update}}(\mathbf{h}_{i}^{t}, \bar{\mathbf{m}}_{i}^{t}) = \text{MLP}_{1}(\mathbf{h}_{i}^{t}) + \text{MLP}_{2}(\bar{\mathbf{m}}_{i}^{t})$$

$$[5]$$

1. Compute Messages $\mathbf{m}_{ji}^t = f_{\mathrm{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t)$

2. Aggregate Messages

$$\bar{\mathbf{m}}_{i}^{t} = f_{agg} \left(\{ \mathbf{m}_{ji}^{t} | j \in \mathcal{N}_{i} \} \right)$$

3. Update Node Representations

$$\mathbf{h}_{i}^{t+1} = f_{\text{update}}(\mathbf{h}_{i}^{t}, \bar{\mathbf{m}}_{i}^{t})$$

Slide from Renjie Liao

$$f_{\rm msg}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \text{MLP}([\mathbf{h}_j^t, \mathbf{h}_i^t])$$
[4]

$$f_{\rm msg}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \mathbf{h}_j^t$$
[5]

$$f_{\rm msg}(\mathbf{h}_{j}^{t}, \mathbf{h}_{i}^{t}, \mathbf{e}_{ji}) = MLP([\mathbf{h}_{j}^{t}, \mathbf{h}_{i}^{t}, \mathbf{e}_{ji}])$$
[4]
Edge Feature

$$f_{\text{agg}}\left(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}\right) = \sum_{j \in \mathcal{N}_i} \mathbf{m}_{ji}^t \qquad [4,5]$$

$$f_{\text{agg}}\left(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}\right) = \frac{1}{|\mathcal{N}_i|} \sum_{j \in \mathcal{N}_i} \mathbf{m}_{ji}^t \qquad [6]$$

$$f_{\text{agg}}\left(\{\mathbf{m}_{ji}^{t}|j\in\mathcal{N}_{i}\}\right) = \max_{j\in\mathcal{N}_{i}}\mathbf{m}_{ji}^{t} \qquad [6]$$
$$f_{\text{agg}}\left(\{\mathbf{m}_{ji}^{t}|j\in\mathcal{N}_{i}\}\right) = \text{LSTM}\left([\mathbf{m}_{ji}^{t}|j\in\mathcal{N}_{i}]\right) \qquad [6]$$

 $f_{\text{agg}}\left(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}\right) = \text{LSTM}\left([\mathbf{m}_{ji}^t | j \in \mathcal{N}_i]\right)$

$$f_{\text{update}}(\mathbf{h}_{i}^{t}, \bar{\mathbf{m}}_{i}^{t}) = \text{GRU}(\mathbf{h}_{i}^{t}, \bar{\mathbf{m}}_{i}^{t})$$

$$f_{\text{update}}(\mathbf{h}_{i}^{t}, \bar{\mathbf{m}}_{i}^{t}) = \text{MLP}_{1}(\mathbf{h}_{i}^{t}) + \text{MLP}_{2}(\bar{\mathbf{m}}_{i}^{t})$$

$$f_{\text{update}}(\mathbf{h}_{i}^{t}, \bar{\mathbf{m}}_{i}^{t}) = \text{MLP}([\mathbf{h}_{i}^{t}, \bar{\mathbf{m}}_{i}^{t}])$$

$$[6]$$

1. Node Readout

$$\mathbf{y}_i = f_{\text{readout}}(\mathbf{h}_i^T)$$

2. Edge Readout

$$\mathbf{y}_{ij} = f_{\text{readout}}(\mathbf{h}_i^T, \mathbf{h}_j^T)$$

3. Graph Readout

$$\mathbf{y} = f_{\text{readout}}(\{\mathbf{h}_i^T\})$$

Slide from Renjie Liao

1. Node Readout

 $\mathbf{y}_i = f_{\text{readout}}(\mathbf{h}_i^T)$

Slide from Renjie Liao

$f_{\text{readout}}(\mathbf{h}_i^T) = \text{MLP}(\mathbf{h}_i^T)$

1. Node Readout

$$\mathbf{y}_i = f_{\text{readout}}(\mathbf{h}_i^T)$$

$$f_{\rm readout}($$

2. Edge Readout $\mathbf{y}_{ij} = f_{\text{readout}}(\mathbf{h}_i^T, \mathbf{h}_j^T)$

Slide from Renjie Liao

$(\mathbf{h}_i^T) = \mathrm{MLP}(\mathbf{h}_i^T)$

$f_{\text{readout}}(\mathbf{h}_i^T, \mathbf{h}_j^T) = \text{MLP}([\mathbf{h}_i^T, \mathbf{h}_j^T])$ $f_{\text{readout}}(\mathbf{h}_i^T, \mathbf{h}_j^T, e_{ij}) = \text{MLP}([\mathbf{h}_i^T, \mathbf{h}_j^T, e_{ij}])$ Edge Feature

1. Node Readout

$$\mathbf{y}_i = f_{\text{readout}}(\mathbf{h}_i^T)$$
 f_{readout}

2. Edge Readout

$$\mathbf{y}_{ij} = f_{\text{readout}}(\mathbf{h}_i^T, \mathbf{h}_j^T)$$

$$f_{\text{readout}}(\mathbf{h}_i^T, \mathbf{h}_j^T, \mathbf{h}_j^T) = \text{MLP}([\mathbf{h}_i^T, \mathbf{h}_j^T])$$

$$f_{\text{readout}}(\mathbf{h}_i^T, \mathbf{h}_j^T, \mathbf{e}_{ij}) = \text{MLP}([\mathbf{h}_i^T, \mathbf{h}_j^T, \mathbf{e}_{ij}])$$
Edge Feature

3. Graph Readout $\mathbf{y} = f_{\text{readout}}(\{\mathbf{h}_i^T\})$

Slide from Renjie Liao

$$\mathbf{h}_i^T$$
) = MLP(\mathbf{h}_i^T)

 $f_{\text{readout}}(\{\mathbf{h}_i^T\}) = \sum_i \text{MLP}_1(\mathbf{h}_i^T)$ $f_{\text{readout}}(\{\mathbf{h}_i^T\}) = \sum_i \sigma(\text{MLP}_1(\mathbf{h}_i^T))\text{MLP}_2(\mathbf{h}_i^T)$ $f_{\text{readout}}(\{\mathbf{h}_i^T\}[\mathbf{g}) = \sum_i \sigma(\text{MLP}_1(\mathbf{h}_i^T, \mathbf{g}))\text{MLP}_2(\mathbf{h}_i^T, \mathbf{g})$ **Graph Feature**

Consider this undirected graph:

Consider this undirected graph:

Calculate update for node in red:

Consider this undirected graph:

Calculate update for node in red:

Update rule: $\mathbf{h}_{i}^{(l+1)} = \sigma \left(\mathbf{h}_{i}^{(l)} \mathbf{W}_{0}^{(l)} + \sum_{j \in \mathcal{N}_{i}} \frac{1}{c_{ij}} \mathbf{h}_{j}^{(l)} \mathbf{W}_{1}^{(l)} \right)$

 \mathcal{N}_i : neighbor indices

 c_{ij} : norm. constant (fixed/trainable)

Consider this undirected graph:

Calculate update for node in red:

Update rule: $\mathbf{h}_{i}^{(l+1)} = \sigma \left(\mathbf{h}_{i}^{(l)} \mathbf{W}_{0}^{(l)} + \sum_{j \in \mathcal{N}_{i}} \frac{1}{c_{ij}} \mathbf{h}_{j}^{(l)} \mathbf{W}_{1}^{(l)} \right)$

Compute Message

Aggregate Messages

Update Node Representation

 \mathcal{N}_i : neighbor indices

 c_{ij} : norm. constant (fixed/trainable)

Consider this undirected graph:

Calculate update for node in red:

Update rule: $\mathbf{h}_{i}^{(l+1)} = \sigma \left(\mathbf{h}_{i}^{(l)} \mathbf{W}_{0}^{(l)} + \sum_{j \in \mathcal{N}_{i}} \frac{1}{c_{ij}} \mathbf{h}_{j}^{(l)} \mathbf{W}_{1}^{(l)} \right)$

Compute Message

Aggregate Messages

Update Node Representation

 \mathcal{N}_i : neighbor indices

 c_{ij} : norm. constant (fixed/trainable)

Consider this undirected graph:

Calculate update for node in red:

Update rule: $\mathbf{h}_{i}^{(l+1)} = \sigma \left(\mathbf{h}_{i}^{(l)} \mathbf{W}_{0}^{(l)} + \sum_{j \in \mathcal{N}_{i}} \frac{1}{c_{ij}} \mathbf{h}_{j}^{(l)} \mathbf{W}_{1}^{(l)} \right)$

Compute Message

Aggregate Messages

Update Node Representation

 \mathcal{N}_i : neighbor indices

 c_{ij} : norm. constant (fixed/trainable)

Consider this undirected graph:

Calculate update for node in red:

Update rule: $\mathbf{h}_{i}^{(l+1)} = \sigma \left(\mathbf{h}_{i}^{(l)} \mathbf{W}_{0}^{(l)} + \sum_{j \in \mathcal{N}_{i}} \frac{1}{c_{ij}} \mathbf{h}_{j}^{(l)} \mathbf{W}_{1}^{(l)} \right)$

 \mathcal{N}_i : neighbor indices

 c_{ij} : norm. constant (fixed/trainable)

Single CNN layer with 3x3 filter:

 \mathbf{b}

Single CNN layer with 3x3 filter:

- \mathbf{h}_i
- $\mathbf{h}_i \in \mathbb{R}^{F}$ are (hidden layer) activations of a pixel/node

Single CNN layer with 3x3 filter:

 $\mathbf{h}_i \in \mathbb{R}^F$ are (hidden layer) activations of a pixel/node

Single CNN layer with 3x3 filter:

Full update:

 $\mathbf{h}^{(l+1)}_{\scriptscriptstyle{arLambda}}$

 $\mathbf{h}_i \in \mathbb{R}^F$ are (hidden layer) activations of a pixel/node

$$\sigma \left(\mathbf{W}_{0}^{(l)} \mathbf{h}_{0}^{(l)} + \mathbf{W}_{1}^{(l)} \mathbf{h}_{1}^{(l)} + \dots + \mathbf{W}_{8}^{(l)} \mathbf{h}_{8}^{(l)} \right)$$

Consider this undirected graph:

Calculate update for node in red:

Update rule: $\mathbf{h}_{i}^{(l+1)} = \sigma \left(\mathbf{h}_{i}^{(l)} \mathbf{W}_{0}^{(l)} + \sum_{j \in \mathcal{N}_{i}} \frac{1}{c_{ij}} \mathbf{h}_{j}^{(l)} \mathbf{W}_{1}^{(l)} \right)$

 \mathcal{N}_i : neighbor indices

 c_{ij} : norm. constant (fixed/trainable)
Consider this undirected graph:

Calculate update No self loops, or normalization: for node in red: $\sigma(\mathbf{AHW}_{1}^{(l)})$

Update rule: $\mathbf{h}_{i}^{(l+1)} = \sigma \left(\mathbf{h}_{i}^{(l)} \mathbf{W}_{0}^{(l)} + \sum_{j \in \mathcal{N}_{i}} \frac{1}{c_{ij}} \mathbf{h}_{j}^{(l)} \mathbf{W}_{1}^{(l)} \right)$

 \mathcal{N}_i : neighbor indices

 c_{ij} : norm. constant (fixed/trainable)

Consider this undirected graph:

Calculate update No self loops, or normalization: for node in red: $\sigma(\mathbf{AHW}_{1}^{(l)})$ $\sum_{j \in \mathcal{N}_i} \mathbf{h}_j^{(l)} \mathbf{W}_1^{(l)}$

 \mathcal{N}_i : neighbor indices

 c_{ij} : norm. constant (fixed/trainable)

Consider this undirected graph:

Calculate update No self loops, or normalization: for node in red: $\sigma(\mathbf{AHW}_{1}^{(l)})$ + self loops: $\sigma((\mathbf{A} + \mathbf{I})\mathbf{H}\mathbf{W}_1^{(l)})$

Update rule: $\mathbf{h}_{i}^{(l+1)} = \sigma \left(\mathbf{h}_{i}^{(l)} \mathbf{W}_{0}^{(l)} + \sum_{j \in \mathcal{N}_{i}} \mathbf{h}_{j}^{(l)} \mathbf{W}_{1}^{(l)} \right)$

 \mathcal{N}_i : neighbor indices

 c_{ij} : norm. constant (fixed/trainable)

Consider this undirected graph:

Calculate update for node in red:

 $\mathbf{h}_{i}^{(l+1)} = \sigma \left(\mathbf{h}_{i}^{(l)} \mathbf{W}_{0}^{(l)} + \sum_{j \in \mathcal{N}_{i}} \frac{1}{c_{ij}} \mathbf{h}_{j}^{(l)} \mathbf{W}_{1}^{(l)} \right)$ Update rule:

No self loops, or normalization: $\sigma(\mathbf{AHW}_{1}^{(l)})$

> + self loops: $\sigma((\mathbf{A} + \mathbf{I})\mathbf{H}\mathbf{W}_{1}^{(l)})$

+ normalization:

 $\sigma([\mathbf{D}^{-\frac{1}{2}}(\mathbf{A}+\mathbf{I})\mathbf{D}^{-\frac{1}{2}}]\mathbf{H}\mathbf{W}_{1}^{(l)})$

 \mathcal{N}_i : neighbor indices

 c_{ij} : norm. constant (fixed/trainable)

A Brief History of Graph Neural Nets

(slide inspired by Alexander Gaunt's talk on GNNs)

Consider this undirected graph:

Calculate update for node in red:

 $\mathbf{h}_{i}^{(l+1)} = \sigma \left(\mathbf{h}_{i}^{(l)} \mathbf{W}_{0}^{(l)} + \sum_{j \in \mathcal{N}_{i}} \frac{1}{c_{ij}} \mathbf{h}_{j}^{(l)} \mathbf{W}_{1}^{(l)} \right)$ Update rule:

No self loops, or normalization: $\sigma(\mathbf{AHW}_{1}^{(l)})$

> + self loops: $\sigma((\mathbf{A} + \mathbf{I})\mathbf{H}\mathbf{W}_{1}^{(l)})$

+ normalization:

 $\sigma([\mathbf{D}^{-\frac{1}{2}}(\mathbf{A}+\mathbf{I})\mathbf{D}^{-\frac{1}{2}}]\mathbf{H}\mathbf{W}_{1}^{(l)})$

 \mathcal{N}_i : neighbor indices

 c_{ij} : norm. constant (fixed/trainable)

GCN with **different** node types and feature dimensions

Consider this undirected graph:

Calculate update for node in red: $\mathbf{W}_0, \mathbf{W}_1 \in \mathbb{R}^{\mathbf{F} imes \mathbf{F}}$ $\mathbf{W}_2 \in \mathbb{R}^{\mathbf{F} imes \mathbf{F}'}$ Update rule: $\mathbf{h}_{i}^{(l+1)} = \sigma \left(\mathbf{h}_{i}^{(l)} \mathbf{W}_{0}^{(l)} + \sum_{j \in \mathcal{N}_{i}} \frac{1}{c_{ij}} \mathbf{h}_{j}^{(l)} \mathbf{W}_{1}^{(l)} + \sum_{j \in \mathcal{N}_{i}} \frac{1}{c_{ij}} \mathbf{h}_{j}^{(l)} \mathbf{W}_{2}^{(l)} \right)$

Consider this undirected graph:

Calculate update for node in red:

Update rule: $\mathbf{h}_{i}^{(l+1)} = \sigma \left(\mathbf{h}_{i}^{(l)} \mathbf{W}_{0}^{(l)} + \sum_{j \in \mathcal{N}_{i}} \frac{1}{c_{ij}} \mathbf{h}_{j}^{(l)} \mathbf{W}_{1}^{(l)} \right)$

Desirable properties:

- Weight sharing over all locations
- Invariance to permutations
- Linear complexity O(E)
- Applicable both in transductive and inductive settings

 \mathcal{N}_i : neighbor indices

 c_{ij} : norm. constant (fixed/trainable)

Note: The nodes and edges need not to have same dimensional representations; (the FC layers) will take care of this

$$[i,j)]) \ \mathbf{x}_{(i,j)}, \mathbf{x}_{j}])$$

$$\mathbf{n}_{(i,j)}^l])$$

:	MLP)
)		
	al	
	f_v^i	

Pros:

- Supports edge features
- More expressive than GCN
- As general as it gets (?)
- Supports sparse matrix ops

$$(i,j)]) \ \mathbf{x}_{(i,j)}^{l}, \mathbf{x}_{j}])$$

:	MLP	
_		-

 f_v^l

Pros:

- Supports edge features
- More expressive than GCN
- As general as it gets (?)
- Supports sparse matrix ops

Cons:

- Need to store intermediate edge-based activations
- Difficult to implement • with subsampling
- In practice limited to small graphs

[Figure from Veličković et al. (ICLR 2018)]

$$\vec{h}'_i = \sigma \left(\frac{1}{K} \sum_{k=1}^K \sum_{j \in \mathcal{N}_i} \alpha^k_{ij} \mathbf{W}^k \vec{h}_j \right)$$

Multi-graph (k-type edges), a.k.a., can think of it as K attention heads

[Figure from Veličković et al. (ICLR 2018)]

$$\vec{h}_{i}' = \sigma \left(\frac{1}{K} \sum_{k=1}^{K} \sum_{j \in \mathcal{N}_{i}} \alpha_{ij}^{k} \mathbf{W}^{k} \vec{h}_{j} \right) \qquad \alpha_{ij} = \frac{\exp \left(\text{LeakyReLU} \left(\vec{\mathbf{a}}^{T} [\mathbf{W} \vec{h}_{i} \| \mathbf{W} \vec{h}_{j}] \right) \right)}{\sum_{k \in \mathcal{N}_{i}} \exp \left(\text{LeakyReLU} \left(\vec{\mathbf{a}}^{T} [\mathbf{W} \vec{h}_{i} \| \mathbf{W} \vec{h}_{k}] \right) \right)}$$

Multi-graph (k-type edges), a.k.a., can think of it as K attention heads

[Figure from Veličković et al. (ICLR 2018)]

$$\vec{h}_{i}' = \sigma \left(\frac{1}{K} \sum_{k=1}^{K} \sum_{j \in \mathcal{N}_{i}} \alpha_{ij}^{k} \mathbf{W}^{k} \vec{h}_{j} \right) \qquad \alpha_{ij} = \frac{\exp \left(\text{LeakyReLU} \left(\vec{\mathbf{a}}^{T} [\mathbf{W} \vec{h}_{i} \| \mathbf{W} \vec{h}_{j}] \right) \right)}{\sum_{k \in \mathcal{N}_{i}} \exp \left(\text{LeakyReLU} \left(\vec{\mathbf{a}}^{T} [\mathbf{W} \vec{h}_{i} \| \mathbf{W} \vec{h}_{k}] \right) \right)}$$

Multi-graph (k-type edges), a.k.a., can think of it as K attention heads

Pros:

- No need to store intermediate edge-based activation vectors (when using dot-product attn.)
- Slower than GCNs but faster than GNNs with edge embeddings

[Figure from Veličković et al. (ICLR 2018)]

$$\vec{h}_{i}' = \sigma \left(\frac{1}{K} \sum_{k=1}^{K} \sum_{j \in \mathcal{N}_{i}} \alpha_{ij}^{k} \mathbf{W}^{k} \vec{h}_{j} \right) \qquad \alpha_{ij} = \frac{\exp \left(\text{LeakyReLU} \left(\vec{\mathbf{a}}^{T} [\mathbf{W} \vec{h}_{i} \| \mathbf{W} \vec{h}_{j}] \right) \right)}{\sum_{k \in \mathcal{N}_{i}} \exp \left(\text{LeakyReLU} \left(\vec{\mathbf{a}}^{T} [\mathbf{W} \vec{h}_{i} \| \mathbf{W} \vec{h}_{k}] \right) \right)}$$

Multi-graph (k-type edges), a.k.a., can think of it as K attention heads

Pros:

- No need to store intermediate edge-based activation vectors (when using dot-product attn.)
- Slower than GCNs but faster than GNNs with edge embeddings

Cons:

- (Most likely) less expressive than GNNs with edge embeddings
- Can be more difficult to optimize

GNN Relationship to Transformers

Slide from Renjie Liao

- Attention can be viewed as the weighted adjacency matrix of a fully connected graph!
- Transformers (esp. encoder) can be viewed as
 GNNs applied to fully connected graphs!

GNN Relationship to Transformers

 Apply the adjacency matrix as a mask to the attention and renormalize it, is like Graph Attention Networks (GAT) [10]

- Encoder connectivities/distances as bias of the attention [11]

Hi how are you

Hi	0	1	0	1
how	1	0	0	0
are	0	0	0	1
you	1	0	1	0

So far ... we mainly focused on graph filtering

Goal: Refine node (or possibly) edge feature

$\mathbf{A} \in \{0,1\}^{n \times n}, \mathbf{X} \in \mathbb{R}^{n \times d}$

 $\mathbf{A} \in \{0,1\}^{n \times n}, \mathbf{X}_f \in \mathbb{R}^{n \times d}$

We can also do graph pooling

Goal: Generate a smaller graph that captures original graphs information

 $\mathbf{A} \in \{0,1\}^{n \times n}, \mathbf{X} \in \mathbb{R}^{n \times d}$

$\mathbf{A}_p \in \{0,1\}^{n_p \times n_p}, \mathbf{X}_p \in \mathbb{R}^{n \times d}, n_p < n$

$f_{\text{readout}}(\{\mathbf{h}_i^T\}) = \sum_i \text{MLP}_1(\mathbf{h}_i^T)$

Issue: Global pooling over a (large) graph will lose information

Toy example: we use 1-dim node embeddings Node embeddings for $G1 = \{-1, -2, 0, 1, 2\}$ Node embeddings for $G_2 = \{-10, -20, 0, 10, 20\}$

Clearly G1 and G2 (have very different node embeddings)

Issue: Global pooling over a (large) graph will lose information

Toy example: we use 1-dim node embeddings Node embeddings for $G1 = \{-1, -2, 0, 1, 2\}$ Node embeddings for $G_2 = \{-10, -20, 0, 10, 20\}$

Clearly G1 and G2 (have very different node embeddings)

If we do global ReLU(Sum()) pooling: Prediction for G1 = 0Prediction for $G^2 = 0$

We cannot differentiate G1 and G2

A solution: Let's aggregate all the node embeddings **hierarchically**

G1 node embeddings: $\{-1, -2, 0, 1, 2\}$ Round 1: ReLU(Sum($\{-1, -2\}$)) = 0, ReLU(Sum($\{0, 1, 2\}$)) = 3 Round 2: ReLU(Sum($\{0,3\}$)) = 3

*G*2 node embeddings: {-10, -20, 0, 10, 20} Round 1: $ReLU(Sum(\{-10, -20\})) = 0$, $ReLU(Sum(\{0, 10, 20\})) = 30$ Round 2: ReLU(Sum($\{0, 30\}$)) =**30**

- Toy example: We will aggregate via ReLU(Sum()). We first separately aggregate the first 2 nodes and last 3 nodes. Then we aggregate again to make the final prediction.

Now we can tell the difference!

Diff**Pool** — Differentiable Graph Pooling

Adjacency matrix $\mathbf{A} \in \mathbb{R}^{N \times N}$ Feature matrix $\mathbf{X} \in \mathbb{R}^{N \times F}$

Adjacency matrix $\mathbf{A} \in \mathbb{R}^{N imes N}$ Feature matrix $\mathbf{X} \in \mathbb{R}^{N imes F}$

Adjacency matrix $\mathbf{A} \in \mathbb{R}^{N imes N}$ Feature matrix $\mathbf{X} \in \mathbb{R}^{N imes F}$ Coarsened feature matrix $\mathbf{X}' = \mathbf{S}\mathbf{X} \in \mathbb{R}^{n imes F}$

Coarsened adjacent matrix $\mathbf{A}' = \mathbf{S}\mathbf{A}\mathbf{S}^T \in \mathbb{R}^{n \times n}$

Diff**Pool** — Differentiable Graph Pooling

Adjacency matrix $\mathbf{A} \in \mathbb{R}^{N imes N}$ Feature matrix $\mathbf{X} \in \mathbb{R}^{N imes F}$ Coarsened feature matrix $\mathbf{X}' = \mathbf{S}\mathbf{X} \in \mathbb{R}^{n imes F}$

Coarsened adjacent matrix $\mathbf{A}' = \mathbf{S}\mathbf{A}\mathbf{S}^T \in \mathbb{R}^{n imes n}$

Diff**Pool** — Differentiable Graph Pooling

Adjacency matrix $\mathbf{A} \in \mathbb{R}^{N imes N}$ Feature matrix $\mathbf{X} \in \mathbb{R}^{N imes F}$

Coarsened adjacent matrix $\mathbf{A}' = \mathbf{S}\mathbf{A}\mathbf{S}^T \in \mathbb{R}^{n imes n}$ Coarsened feature matrix $\mathbf{X}' = \mathbf{S} \cdot GNN_1(\mathbf{X}, \mathbf{A})$

Graph Pooling

DiffPool

SortPool

However, unlike in CNNs, deeper GNN models generally do not work well

Deeper GNNs (more layers) — Oversmoothing

Latent node vectors get closer to each other as the number of GCN layers increases, this makes it difficult to distinguish nodes in deeper GCNs

Figure 2: Vertex embeddings of Zachary's karate club network with GCNs with 1,2,3,4,5 layers.

Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning. AAAI 2018

Deeper GNNs (more layers) — Oversmoothing

Recall **GCN** propagation equation:

Lets assume we have no non-linearity

$$\mathbf{M} = \mathbf{D}^{-\frac{1}{2}} (\mathbf{A} + \mathbf{I}) \mathbf{D}^{-\frac{1}{2}} \qquad \mathbf{v} = \mathbf{h}_i \mathbf{W}_1^{(l)}$$

where \mathbf{u}_1 is an **eigenvector** corresponding to largest **eigenvalue** of \mathbf{M}

$\sigma([\mathbf{D}^{-\frac{1}{2}}(\mathbf{A}+\mathbf{I})\mathbf{D}^{-\frac{1}{2}}]\mathbf{H}\mathbf{W}_{1}^{(l)})$

 $\lim_{k\to \inf} \mathbf{M}^k \mathbf{v} \propto \mathbf{u}_1$

GNN Oversmoothing

Oversmoothing is theoretically proven

 Deeper GCN converge to a solution where connected nodes will have similar latent vectors

- Such convergence in GCN happens very quickly (exponential to the depth), regardless of the initial node vectors

Similar results can be derived for other generic "vanilla" GNNs

GNN Oversmoothing

Combining a proper normalizer and a residual node update formulation addresses oversmoothing (in many cases)

- Normalization (PairNorm) PairNorm: Tackling Oversmoothing in GNNs. ICLR 2020

$$\tilde{\mathbf{x}}_{i}^{c} = \tilde{\mathbf{x}}_{i} - \frac{1}{n} \sum_{i=1}^{n} \tilde{\mathbf{x}}_{i}$$
$$\dot{\mathbf{x}}_{i} = s \cdot \frac{\tilde{\mathbf{x}}_{i}^{c}}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} \|\tilde{\mathbf{x}}_{i}^{c}\|_{2}^{2}}}$$

- **Residual** update

$$\mathbf{h}_{i}^{(l+1)} = \sigma \left(\mathbf{h}_{i}^{(l)} \mathbf{W}_{0}^{(l)} + \sum_{j \in \mathcal{N}_{i}} \frac{1}{c_{ij}} \mathbf{h}_{j}^{(l)} \mathbf{W}_{1}^{(l)} \right)$$

(Center)

(Scale)

$$\rightarrow \mathbf{h}_{i}^{(l+1)} = \sigma \left(\sum_{j \in \mathcal{N}_{i}} \frac{1}{c_{ij}} \mathbf{h}_{j}^{(l)} \mathbf{W}_{1}^{(l)} \right) + \mathbf{h}_{i}^{(l)}$$

Deeper GNNs (more layers)

Node-wise **local neighborhood** sampling

• Inductive Representation learning on Large Graphs (NIPS'17)

Node-wise **local neighborhood** sampling

• Inductive Representation learning on Large Graphs (NIPS'17)

Node-wise **local neighborhood** sampling

• Inductive Representation learning on Large Graphs (NIPS'17)

Node-wise **local neighborhood** sampling

Subgraph-wise sampling

Node-wise **local neighborhood** sampling

Subgraph-wise sampling

1. Select a subgraph

Node-wise **local neighborhood** sampling

Subgraph-wise sampling

1. Select a subgraph

Node-wise **local neighborhood** sampling

Subgraph-wise sampling

Node-wise **local neighborhood** sampling

Subgraph-wise sampling

Clustering algorithms (Cluster GCN)

- 1. Run a clustering algorithm
- 2. Select subgraph/cluster
- 3. Run full-batch GNN on the small subgraph

Node-wise **local neighborhood** sampling

Subgraph-wise sampling

Clustering algorithms (Cluster GCN)

- Some edges are lost/ ignored
- GNN is now split into different batches/clusters

- Sample a set of neighborhoods instead of using the entire local neighborhood

Block diagonal approximation of A

Node-wise **local neighborhood** sampling

Subgraph-wise sampling

Clustering algorithms (**Cluster GCN**)

Figure 3: The proposed stochastic multiple partitions scheme. In each epoch, we randomly sample q clusters (q = 2is used in this example) and their between-cluster links to form a new batch. Same color blocks are in the same batch.

How do we use GNN / GCN for real problems?

Input: Feature matrix $\mathbf{X} \in \mathbb{R}^{N imes E}$, preprocessed adjacency matrix $\hat{\mathbf{A}}$

 $\mathbf{H}^{(l+1)} = \sigma \left(\hat{\mathbf{A}} \mathbf{H}^{(l)} \mathbf{W}^{(l)} \right)$

Input: Feature matrix $\mathbf{X} \in \mathbb{R}^{N imes E}$, preprocessed adjacency matrix $\hat{\mathbf{A}}$

 $\mathbf{H}^{(l+1)} = \sigma \left(\hat{\mathbf{A}} \mathbf{H}^{(l)} \mathbf{W}^{(l)} \right)$

Node classification:

 $\operatorname{softmax}(\mathbf{z_n})$

e.g. Kipf & Welling (ICLR 2017)

 $\mathbf{H}^{(l+1)} = \sigma \left(\hat{\mathbf{A}} \mathbf{H}^{(l)} \mathbf{W}^{(l)} \right)$

Setting:

Some nodes are labeled (black circle) All other nodes are unlabeled

Task:

Predict node label of unlabeled nodes

Setting:

Some nodes are labeled (black circle) All other nodes are unlabeled

Task:

Predict node label of unlabeled nodes

Evaluate loss on labeled nodes only:

$$\mathcal{L} = -\sum_{l \in \mathcal{Y}_L} \sum_{f=1}^F Y_{lf} \ln Z_{lf}$$

- \mathcal{Y}_L set of labeled node indices
- \mathbf{Y} label matrix
- Z GCN output (after softmax)

50

Node features only: $z_i = \sigma \left(W^{\mathsf{c}} x_i + \frac{1}{|\mathcal{N}_i|} \sum_{i \in \mathcal{N}_i} W^{\mathsf{N}} x_j + b \right)$

Node features + **edge** features: $z_i = \sigma \left(W^{\mathsf{C}} x_i + \frac{1}{|\mathcal{N}_i|} \sum_{i \in \mathcal{N}_i} W^{\mathsf{N}} x_j + \frac{1}{|\mathcal{N}_i|} \sum_{j \in \mathcal{N}_i} W^{\mathsf{E}} A_{ij} + b \right)$

Node features + **edge** features: $z_i = \sigma \left(W^{\mathsf{C}} x_i + \frac{1}{|\mathcal{N}_i|} \sum_{j \in \mathcal{N}_i} W^{\mathsf{N}}_j x_j + \frac{1}{|\mathcal{N}_i|} \sum_{j \in \mathcal{N}_i} W^{\mathsf{E}}_j A_{ij} + b \right)$

Neighbor nodes j are ordered by distances from the node i

Method	
	1
No Convolution	0.812 (0
Diffusion (DCNN) (2 hops) [5]	0.790 (0
Diffusion (DCNN) (5 hops) [5])	0.828 (0
Single Weight Matrix (MFN [9])	0.865 (0
Node Average (Equation 1)	0.864 (0
Node and Edge Average (Equation 2)	0.876 (0
DTNN [21]	0.867 (0
Order Dependent (Equation 3)	0.854 (0

Convolutional Layers			
	2	3	4
0.007)	0.810 (0.006)	0.808 (0.006)	0.796 (0.006)
0.014)	—	—	—
).018)	_	_	_
0.007)	0.871 (0.013)	0.873 (0.017)	0.869 (0.017)
0.007)	0.882 (0.007)	0.891 (0.005)	0.889 (0.005)
0.005)	0.898 (0.005)	0.895 (0.006)	0.889 (0.007)
0.007)	0.880 (0.007)	0.882(0.008)	0.873 (0.012)
0.004)	0.873 (0.005)	0.891 (0.004)	0.889 (0.008)

Recommender Systems

Typical framework of GNN in user-item collaborative filtering

Graph Neural Networks in Recommender Systems: A Survey, Wu et al

Recommender Systems

(a) The framework of GNN on the bipartite graph and social network graph separately.

Graph Neural Networks in Recommender Systems: A Survey, Wu et al

(b) The framework of GNN on the unified graph of user-item interactions and social network.

Recommender Systems

(a) User-item bipartite graph.

(c) Social relationship between users.

Graph Neural Networks in Recommender Systems: A Survey, Wu et al

(d) Knowledge graph

G³raphGround: Graph-based Language Grounding

Mohit Bajaj

Lanjun Wang

Leonid Sigal

Image Grounding: Beyond Object Detection

Given the **image** and one or more **natural language phrases**, locate regions that correspond to those phrases.

A man wearing a black-jacket has a smile on his face.

Image Grounding: Beyond Object Detection

Given the image and one or more natural language phrases, locate regions that correspond to those phrases.

Fundamental task for image / video understanding - Helps improve performance on other tasks (e.g., image captioning, VQA)

A man wearing a black-jacket has a smile on his face.

Proposed Architecture

Proposed Architecture

Experiments

Datasets

- **Referit Game**: Unambiguous single phrases

Evaluation

Ratio of correctly grounded phrases to the total phrases

- Flickr30K Entities: (mostly noun) Phrases parsed from image captions

Qualitative Results: Flickr30K

(a) A man wearing a black-jacket has a smile on his face.

(b) **People** are walking on the street , with **bikes** parked up to the left of the picture.

(e) Two women in colorful clothing are dancing inside a circle of other women.

(f) Lady wearing white shirt with blue umbrella in the rain.

A woman in a yellow shirt is (c) walking down the sidewalk.

(d) A young boy is walking on wooden path in the middle of trees.

Young girl with curly hair is (g) drinking out of a plastic cup.

(h) The bearded man keeps his blue Bic pen in hand while he plays the guitar.

Quantitative Results

Flickr30k Entities:

Method	ethod Accuracy	
SMPL [27]	42.08	
NonlinearSP [26]	43.89	
GroundeR [23]	47.81	
MCB [7]	48.69	
RtP [21]	50.89	
Similarity Network [25]	51.05	
IGOP [34]	53.97	
SPC+PPC [20]	55.49	
SS+QRN (VGGdet) [4]	55.99	
CITE [19]	59.27	
SeqGROUND	61.60	
CITE [19] (finetuned)	61.89	
QRC Net [4] (finetuned)	65.14	
G³RAPHGROUND++	66.67	

Quantitative Results

Flickr30k Entities:

Method	Accuracy
SMPL [27]	42.08
NonlinearSP [26]	43.89
GroundeR [23]	47.81
MCB [7]	48.69
RtP [21]	50.89
Similarity Network [25]	51.05
IGOP [34]	53.97
SPC+PPC [20]	55.49
SS+QRN (VGGdet) [4]	55.99
CITE [19]	59.27
SeqGROUND	61.60
CITE [19] (finetuned)	61.89
QRC Net [4] (finetuned)	65.14
G³RAPHGROUND++	66.67

Quantitative Results

Flickr30k Entities:

Method	Accuracy
SMPL [27]	42.08
NonlinearSP [26]	43.89
GroundeR [23]	47.81
MCB [7]	48.69
RtP [21]	50.89
Similarity Network [25]	51.05
IGOP [34]	53.97
SPC+PPC [20]	55.49
SS+QRN (VGGdet) [4]	55.99
CITE [19]	59.27
SeqGROUND	61.60
CITE [19] (finetuned)	61.89
QRC Net [4] (finetuned)	65.14
G³RAPHGROUND++	66.67

ReferIt Game:

Method	Accuracy
SCRC [9]	17.93
MCB + Reg + Spatial [3]	26.54
GroundeR + Spatial [23]	26.93
Similarity Network + Spatial [25]	31.26
CGRE [17]	31.85
MNN + Reg + Spatial [3]	32.21
EB+QRN (VGGcls-SPAT) [4]	32.21
CITE [19]	34.13
IGOP [34]	34.70
QRC Net [4] (finetuned)	44.07
G ³ raphGround++	44.91

Ablation

Method

GG - VisualG - Fusi GG - VisualG GG - FusionG GG - PhraseG GG - ImageConte GG - ImageConte GG - PhraseConte

G³RAPHGROUND

++	66.67	44.91
(GG)	63.65	41.79
ext	62.73	<i>n.a</i> .
ext	62.32	40.92
;	60.41	38.65
	60.82	38.12
	59.13	36.54
	62.23	38.82
ionG	56.32	32.89
	Flickr30k	ReferIt

Ablation

Method

GG - VisualG - Fusi GG - VisualG GG - FusionG GG - PhraseG GG - ImageConte GG - ImageConte GG - PhraseConte

G³RAPHGROUND

++	66.67	44.91	
(GG)	63.65	41.79	-
ext	62.73	<i>n.a</i> .	
ext	62.32	40.92	
;	60.41	38.65	
	60.82	38.12	
	59.13	36.54	←
	62.23	38.82	
ionG	56.32	32.89	
	Flickr30k	ReferIt	

Visualizing Graph Attention

<u>A young boy</u> is looking at <u>a man</u> (a) painted in <u>all gold</u>.

<u>A brown dog</u> jumps high on a (c) field of grass.

(b) <u>A man</u> is checking <u>his blue sneakers</u> next to <u>two men</u> having a conversation.

(d) <u>A woman</u> stands in a field near <u>a car</u> and looks through binoculars.

THE UNIVERSITY OF BRITISH COLUMBIA

Energy-Based Learning for Scene Graph Generation

Mohammed Suhail

+ + +

A graph based data structure for semantically representing image content

Lamp post

Scene Graph Generation Pipeline

KERN Architecture

Graph RCNN

Graph RCNN

Visualizations

Conclusions

Deep learning on graphs works and is very effective! _____

- Exciting area: lots of new applications and extensions (hard to keep up)

Car exiting

Visual range

Relational reasoning

Multi-Agent RL

Open problems:

- Theory
- Scalable, stable generative models
- Learning on large, evolving data
- Multi-modal and cross-model learning (e.g., sequence2graph)

GCN for recommendation on 16 <u>billion</u> edge graph!

* slide from Thomas Kipf, **University of Amsterdam**

References

[1] Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M. and Monfardini, G., 2008. The graph neural network model. IEEE transactions on neural networks, 20(1), pp.61-80.

[2] Goller, C. and Kuchler, A., 1996, June. Learning task-dependent distributed representations by backpropagation through structure. In Proceedings of International Conference on Neural Networks (ICNN'96) (Vol. 1, pp. 347-352). IEEE.

[3] Ackley, D.H., Hinton, G.E. and Sejnowski, T.J., 1985. A learning algorithm for Boltzmann machines. Cognitive science, 9(1), pp.147-169.

[4] Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O. and Dahl, G.E., 2017, July. Neural message passing for quantum chemistry. In International conference on machine learning (pp. 1263-1272). PMLR.
[5] Morris, C., Ritzert, M., Fey, M., Hamilton, W.L., Lenssen, J.E., Rattan, G. and Grohe, M., 2019, July. Weisfeiler and leman go neural: Higher-order graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 4602-4609).
[6] Hamilton, W.L., Ying, R. and Leskovec, J., 2017, December. Inductive representation learning on large graphs. In Proceedings of the 31st International Conference on Neural Information Processing Systems (pp. 1025-1035).

31st International Conference on Neural Information Processing Sy [7] Li V. Tarlaw, D. Droalsachmidt M. and Zamal, D. 2015. Cata

[7] Li, Y., Tarlow, D., Brockschmidt, M. and Zemel, R., 2015. Gated graph sequence neural networks. arXiv preprint arXiv:1511.05493.
[8] Liao, R., Brockschmidt, M., Tarlow, D., Gaunt, A.L., Urtasun, R. and Zemel, R., 2018. Graph partition neural networks for semi-supervised classification. arXiv preprint arXiv:1803.06272.

[9] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł. and Polosukhin, I., 2017. Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).

[10] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P. and Bengio, Y., 2017. Graph attention networks. arXiv preprint arXiv:1710.10903.

[11] Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y. and Liu, T.Y., 2021. Do Transformers Really Perform Bad for Graph Representation?. arXiv preprint arXiv:2106.05234.