THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 20: Graph Neural Networks (cont)



Logistics

Relatively short lecture today ... RL next class



Graph Neural Networks (GNNS)
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Main ldea: Pass massages between pairs of nodes and agglomerate

Alternative Interpretation: Pass massages between nodes to refine node
(and possibly edge) representations

* slide from Thomas Kipf, University of Amsterdam



Graph Neural Networks (GNNS)

Notation: G = (A, X)
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Main ldea: Pass massages between pairs of nodes and agglomerate

Alternative Interpretation: Pass massages between nodes to refine node
(and possibly edge) representations

* slide from Thomas Kipf, University of Amsterdam



Classification and Link Prediction with GNNs / GCNs

Input: Feature matrix X € R™ *¥ preprocessed adjacency matrix A

Hidden layer Hidden layer
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H*D = Message Passing (A, HW)

* slide from Thomas Kipf, University of Amsterdam



Classification and Link Prediction with GNNs / GCNs

Input: Feature matrix X & RN XE preprocessed adjacency matrix A

Hidden layer Hidden layer Node classification:
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H*D = Message Passing (A, HW)

* slide from Thomas Kipf, University of Amsterdam



Classification and Link Prediction with GNNs / GCNs

Input: Feature matrix X & RN XE preprocessed adjacency matrix A
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H*D = Message Passing (A, HW)

* slide from Thomas Kipf, University of Amsterdam



Classification and Link Prediction with GNNs / GCNs

Input:; Feature matrix X &
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Hidden layer

H*D = Message Passing (A, HW)

.

Z = HWY)

, preprocessed adjacency matrix A

Node classification:

softmax(zy,)
e.g. Kipf & Welling (ICLR 2017)

Graph classification:

—» softmax()_ zp)
e.g. Duvenaud et al. (NIPS 2015)

Link prediction:

_ T .
p(Aij) = o(2z; z;)
Kipf & Welling (NIPS BDL 2016)
“Graph Auto-Encoders”

* slide from Thomas Kipf, University of Amsterdam



Message Passing in GNNs

(t+1)-th message passing step/layer

([~ —~

h! h’ (OO0} Node State
Message Network
l Compute
Messages
m; = funsg(h%, h) CXX3 Message

E |

= Jfage ({m ilj € Ni}) EXX) Aggregated Message

% State Update Network
Update

Representation

h!™' = fipdate(h?, m}) OO Updated Node State

Note: \We can do all updates in parallel! (out can also be serial)

Slide from Renjie Liao



GNN Instantiations

1. Compute Messages
m’; = fusg(h’, hl)

2. Aggregate Messages
m; = Jagg ({mzz‘] < M})

3. Update Node Representations

hfﬂ — fupdate(hf;a ﬁlﬁ)

Slide from Renjie Liao



GNN Instantiations

1. Compute Messages
m’; = finsg(h%, hl)

Slide from Renjie Liao



GNN Instantiations

1. Compute Messages fumsg(hj, hi) = MLP([hj, h;])

Slide from Renjie Liao




GNN Instantiations

1. Compute Messages frnsg (5, 1) = MLP([h’, h])
mgz = fmsg(hz’a h;) fmsg(hz" h;) = h}f'
Funse (0, 1 fo7) = MLP([ ! )
Edge Feature

Slide from Renjie Liao




GNN Instantiations

1. Compute Messages fmsg(h’, h}) = MLP([h%, hj]) 4.
fmsg(h, b fej;] = MLP([h}, hf, e;]) 4

Edge Feature

2. Aggregate Messages fage ({m;j € Ni}) = 20 m, [4,5,7]
m; = Jagg ({mzz‘] < M})

Slide from Renjie Liao



GNN Instantiations

1. Compute Messages fmsg(h’, h}) = MLP([h%, hj]) 4.
m}; = finsg(hj, hi) fmse (b, B) = b S
finsg (05, hi Jej;| = MLP([hf, hf, e;i]) 4
Edge Feature
2. Aggregate Messages fage ({mf;[7 € Ni}) = 35,00, m), 4.5,7]
m; = fagg ({mj;]j € Ni}) fags ({mil5 € Ni}) = (37 Zjens mj; 6]

Slide from Renjie Liao



GNN Instantiations

1. Compute Messages
m’; = fusg(h’, hl)

2. Aggregate Messages
M; = fage ({mj;|j € Ni})

Slide from Renjie Liao

fmsg(hza hf) — h;’

fmsg(hz‘a hfa — MLP([h§7 h$7 eji])
Edge Feature

Jfage ({m 1J GN}) ZjEN mt"

fagg ({m’; |7 € Ni}) = |N| DN, M,

fage ({m 1J € N}) = mMaX;ec N m

4,57
6]
[6]




GNN Instantiations

1. Compute Messages
ji = fmsg(h}, hy)

Im

2. Aggregate Messages
mf — fagg ({mzz‘] < M})

Slide from Renjie Liao

fmsg(hza hf) — h;
fmsg(hz‘a hfa — MLP([h§7 h$7 eji])
Edge Feature

(

fage ({mf;]j € Ni}) = |J\/L D jen, My,
(
(

4,5,7]

6]




GNN Instantiations

1. Compute Messages fmsg(h’, h}) = MLP([h%, hj]) 4.
m}; = finsg(hj, hi) fmse (b, B) = b S
finsg (05, hi Jej;| = MLP([hf, hf, e;i]) 4
Edge Feature
2. Aggregate Messages fage ({mj;]j € Ni}) = 32\, mj; 4,5,7]
M = fags ({m;]j € Ni}) fage ({m5il7 € Ni}) = (a7 2 e, 05 ©]
fage ({mﬁz\J < M}) — INaXjeN; m;-z- 6.
fogs ({m,lj € N7}) = LSTM (fmt,[j e Ni]) 1O
3. Update Node Representations fupdate(ht, m!) = GRU(h!, m!) [4,7]
hi ™ = fupdate(hj, M)

Slide from Renjie Liao



GNN Instantiations

1. Compute Messages
m’; = fusg(h’, hl)

2. Aggregate Messages
mf — fagg ({mzz‘] < M})

3. Update Node Representations

hg—l_l — fupdate(hf;a ﬁlf)

Slide from Renjie Liao

fmsg(hj, hj) = MLP([h;, hi])
fmsg(hz‘v hf) — h§'
funse (0, 1 fo,.) = MLP ([, b e,.]
Edge Feature
Jfage ({mzz‘] S M}) = ZjENi mf%z-
fags ({mj1j € Ni}) = 17 2 e, ™30
(
(

fupdate (R}, m}) = GRU(h!, m})

(X 1

fupdate (hg, m;) = MLP; (hj) + MLP; (mj)

4,5,7]

6]

4,7]

Bl



GNN Instantiations

1. Compute Messages
m’; = fusg(h’, hl)

2. Aggregate Messages
mf — fagg ({mzz‘] < M})

3. Update Node Representations

hg—l_l — fupdate(hf;a ﬁlf)

Slide from Renjie Liao

fmsg(hj, hj) = MLP([h;, hi])
fmsg(hz‘v hf) — h§'
funeg (0, B o,.) = MLP ([}, b, ;)
Edge Feature
fage ({mj;lj € Ni}) = 32 en, mj;
fags ({mj1j € Ni}) = 17 2 e, ™30
(
(

fupdate (R}, m}) = GRU(h!, m})

fupdate (hg, m;) = MLP; (hj) + MLP; (mj)
t

fupdate (hj, mj) = MLP([hj, m;])

4,5,7]




GNN R

1. Node

eadout

Readout

Yi = freadout (h;r)

2. Edge
Yij =

3. Graph

Readout
freadout (h;r7 hf)

Readout

y — freadout ({h;r})

Slide from Renjie Liao



GNN Readout

1. Node Readout
Yi — freadout(h?) freadout(h?) — MLP(h;F)

Slide from Renjie Liao



GNN Readout

1. Node

Readout

Yi = freadout (h;r)

2. Edge Readout
Yij — freadout(h;,’rv h?)

Slide from Renjie Liao

freadout (h;r) — MLP(h;F)

freadout(hfa hf) — MLP([hZ7 hf])
freadout(hfa hf 7 — MLP([hfa hrjra eij])

Edge Feature



GNN Readout

1. Node Readout
Yi = freadout(h;‘r)

2. Edge Readout
Yij — freadout(h;’rv h?)

3. Graph Readout
Y = freadout({hf})

Slide from Renjie Liao

freadout (h;r) — MLP(h;F)

freadout(hfa hf) — MLP([hZ7 hf])
freadout(h;'ra hf 7 — MLP([hfa hfa eij])

Edge Feature

freadout({hzT}) — Zz MLPl (h?)
freadons({B'}) = 32, 0 (MLPy (h]))MLP ()
freadons ({07 }(8)]= ¥, o(MLP1 (], @) MLP, (h] g)

Graph Feature



Graph Convolutional Networks (GCNS)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this
undirected graph:

O O
O O
O O

* slide from Thomas Kipf, University of Amsterdam



Graph Convolutional Networks (GCNS)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this Calculate update
undirected graph: for node in red:

O O 0o P
OO OO 0/8\>

* slide from Thomas Kipf, University of Amsterdam



Graph Convolutional Networks (GCNS)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this Calculate update
undirected graph: for node In red:

O L agF
; O C)o - 0/8\0

Update 1
rule: h§l+1) =0 hz(-l)W(()l) + Z —hgl)ng)

C..
jeEN;

N : neighbor indices  C;; : norm. constant
(fixed/trainable)

* slide from Thomas Kipf, University of Amsterdam



Graph Convolutional Networks (GCNS)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this Calculate update
undirected graph: for node in red:

O L agF
- O Oo - 0/8\0

Update |
ule: b =0 | BPW ST — W

C..
JEN; ¢

Compute Message

Aggregate Messages

Update Node Representation

N : neighbor indices  C;; : norm. constant
(fixed/trainable)

* slide from Thomas Kipf, University of Amsterdam



Graph Convolutional Networks (GCNS)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this Calculate update
undirected graph: for node in red:

O L agF
- O Oo - 0/8\0

Update |
ule: b =0 | BPW ST Wi

C..
JEN; ¢

Compute Message

Aggregate Messages

Update Node Representation

N : neighbor indices  C;; : norm. constant
(fixed/trainable)

* slide from Thomas Kipf, University of Amsterdam



Graph Convolutional Networks (GCNS)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this Calculate update
undirected graph: for node in red:

O L agF
- O Oo - 0/8\0

Update |
ule: b =0 | BPW ST Wi

C..
JEN; ¢

Compute Message

Aggregate Messages

Update Node Representation

N : neighbor indices  C;; : norm. constant
(fixed/trainable)

* slide from Thomas Kipf, University of Amsterdam



Graph Convolutional Networks (GCNS)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this Calculate update
undirected graph: for node in red:

O L agF
- O OO - 0/8\>

Update |
er 0 o (W4 3 Lnlw

C..
JEN; ¢

N : neighbor indices  C;; : norm. constant
(fixed/trainable)

* slide from Thomas Kipf, University of Amsterdam



Recap: Convolutional Neural Networks (CNNs) on Grids

Single CNN layer

with 3x3 filter: h
0

h, ..
O
A

O (B\O h,

* slide from Thomas Kipf, University of Amsterdam



Recap: Convolutional Neural Networks (CNNs) on Grids

Single CNN layer

with 3x3 filter: h
0

h, ..
O
A

O CB\O h,

h; € R" are (hidden layer) activations of a pixel/node

* slide from Thomas Kipf, University of Amsterdam



Recap: Convolutional Neural Networks (CNNs) on Grids

Single CNN layer

with 3x3 filter: h
0

hy ..
O\O'/O Update for a single pixel:
0 6 ~ » Transform messages individually W ;h;

V\O * Add everything up ZZ W;h;
O (g h;

h; € R" are (hidden layer) activations of a pixel/node

* slide from Thomas Kipf, University of Amsterdam



Recap: Convolutional Neural Networks (CNNs) on Grids

Single CNN layer

with 3x3 filter: h
0

hy ..
CKQ'/O Update for a single pixel:
0 6 ~ » Transform messages individually W ;h;

(gv\o * Add everything up ZZ W h;
O h;

h; € R" are (hidden layer) activations of a pixel/node

Full update:
b = o (WEBY + WL 4o+ WOh)

* slide from Thomas Kipf, University of Amsterdam



Graph Convolutional Networks (GCNS)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this Calculate update
undirected graph: for node in red:

O L agF
- O OO - 0/8\>

Update |
er 0 o (W4 3 Lnlw

C..
JEN; ¢

N : neighbor indices  C;; : norm. constant
(fixed/trainable)

* slide from Thomas Kipf, University of Amsterdam



Graph Convolutional Networks (GCNS)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this Calculate update
undirected graph: for node in red:

O L agF
- O Oo - 0/8\0

Update |
ule: b =0 | BPW ST Wi

C..
JEN; ¢

No self loops, or normalization:
s(AHW ')

N : neighbor indices  C;; : norm. constant
(fixed/trainable)

* slide from Thomas Kipf, University of Amsterdam



Graph Convolutional Networks (GCNS)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this Calculate update

. No self loops, or normalization:
undirected graph: for node in red: D

s(AHW'")

N : neighbor indices  C;; : norm. constant
(fixed/trainable)

* slide from Thomas Kipf, University of Amsterdam



Graph Convolutional Networks (GCNS)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this Calculate update

. No self loops, or normalization:
undirected graph: for node In red: D

s(AHW'")

O O O O 8/0 self loops:
O/ o((A +THW)
O O \o

Update
rule: h§l+1) =0 (hgl)W(()l) + Z hgl)ng))
JEN;

N : neighbor indices  C;; : norm. constant
(fixed/trainable)

* slide from Thomas Kipf, University of Amsterdam



Graph Convolutional Networks (GCNS)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this Calculate update

. No self loops, or normalization:
undirected graph: for node In red: D

s(AHW'")

O O O = 0\8/0 self loops:
N & (A +DHW)
O O \o

+ normalization:

Update 1
rule: h§l+1) =0 (hz(-l)W(()l) + Z —hﬁl)ng))

C..
jeEN;

(D72 (A +I)D 2 HW)

N : neighbor indices  C;; : norm. constant
(fixed/trainable)

* slide from Thomas Kipf, University of Amsterdam



A Brief History of Graph Neural Nets

«“Spatial methods” Relation Nets
. e, Sonn a1 SraphSAGE
CVPR 2017 amilton et al.
Original GNN GG-NN ( ) Programs as Graphs NIPS 2017)
. . Allamanis e
= Gorietal. = Li et al. prm— N1~ D S ., o
(2005) (ICLR 2016) Neural VP NRI
Gilmer et al. G ipf et al
(ICML 2017) AT \ '
Velickovié et al. ~M-2018)
(ICLR 2018)
GCN
Kipf & Wellin
(IF())LR 2017)9 “DL on graph explosion”

Other early work:

- Duvenaud et al. (NIPS 2015)

- Dai et al. (ICML 2016)

GSpng?\:N ChebNet ) ~ -Niepert etal. (ICML 2016)
_ >rap — Defferrard et al. Spectral methods - Battaglia et al. (NIPS 2016)
Bruna et al, (NIPS 2016) - Atwood & Towsley (NIPS 2016)
ICLR 2015
( ) - Sukhbaatar et al. (NIPS 2016)

(slide inspired by Alexander Gaunt’s talk on GNNSs)

* slide from Thomas Kipf, University of Amsterdam



Graph Convolutional Networks (GCNS)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this Calculate update

. No self loops, or normalization:
undirected graph: for node In red: D

s(AHW'")

O O O = 0\8/0 self loops:
N & (A +DHW)
O O \o

+ normalization:

Update 1
rule: h§l+1) =0 (hz(-l)W(()l) + Z —hﬁl)ng))

C..
jeEN;

(D72 (A +I)D 2 HW)

N : neighbor indices  C;; : norm. constant
(fixed/trainable)

* slide from Thomas Kipf, University of Amsterdam



GCN with different node types and feature dimensions

Consider this Calculate update
undirected graph: for node in red:
Wy, W, € R¥X¥
0. O Y |
W, € R**F

O O O
O O

Update 1 1
rule: h§l+1) =0 (hgl)W(()l) + Z —hgl)ng) + Z h§l)W§l>)

JEN; “ij jEN;



Graph Convolutional Networks (GCNS)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this Calculate update Desirable properties:
undirected graph: for node In red: » Weight sharing over all locations
* |nvariance to permutations

O O ()\A P » Linear complexity O(E)
O 8 » Applicable both in transductive
Q O O/' % and inductive settings

Update 1
te: bV =0 [BPWD + ST —nlYwi?

C..
JEN; *J

./\/; : neighbor indices  C;5 : norm. constant
(fixed/trainable)

* slide from Thomas Kipf, University of Amsterdam



GNNs with Edge Embeddings

Battaglia et al. (NIPS 2016), Gilmer et al. (ICML 2017), Kipf et al. (ICML 2018)

( Legend: [: Node embedding [ I1]: Edge embedding = : MLPJ

Note: The nodes and edges need
not to have same dimensional
representations; (the FC layers)
will take care of this

Node-to-edge (v—e€) Edge-to-node (e — )

Formally: ov—e: hl-,j) = fé([hﬁ,hé-,x(i,j)])

(2

E— . h;“ = lej([ZieNj hlz’,j)7xj])

* slide from Thomas Kipf, University of Amsterdam



GNNs with Edge Embeddings

Battaglia et al. (NIPS 2016), Gilmer et al. (ICML 2017), Kipf et al. (ICML 2018)

( Legend: [: Node embedding [ I'l: Edge embedding = : MLP)

Node-to-edge (v—e€) Edge-to-node (e — )

(

e—0 : h;“ = fql)([ZieNj hl(z’,j)’xj])

Formally: wv—e: h!, . = f/([h},h},x; ;)])

* slide from Thomas Kipf, University of Amsterdam



GNNs with Edge Embeddings

Battaglia et al. (NIPS 2016), Gilmer et al. (ICML 2017), Kipf et al. (ICML 2018)

('—egend: I Node embedding [Tl: Edge embedding = : MLP) Pros:

\ » Supports edge features
* More expressive than GCN
* As general as it gets (?)
 — * Supports sparse matrix ops

\ J \ J

Node-to-edge (v—e€) Edge-to-node (e — )

Formally: ov—e: hl-,j) = fé([hﬁ-,hé-,x(z',j)])

1

e—v: hil = le;([zfief\/} hi; 50 %))

* slide from Thomas Kipf, University of Amsterdam



GNNs with Edge Embeddings

Battaglia et al. (NIPS 2016), Gilmer et al. (ICML 2017), Kipf et al. (ICML 2018)

('—egend: I Node embedding [Tl: Edge embedding = : MLP] Pros:

w * Supports edge features

* More expressive than GCN
/ * As general as it gets (?)
| — « Supports sparse matrix ops
Cons:
g * Need to store intermediate

Node-to-edge (v—e Edge-to-node (e — v T
ge (v=e) J e=0) edge-based activations

» Difficult to implement
Formally: v—e: hy, ;) = fi([hj, h},x( ;)]) with subsampling

1
= |n practice limited to small graphs
: [+1 __ pl l
E—7 . hj — fv([ZiENj h i,j)’xj])

* slide from Thomas Kipf, University of Amsterdam



Graph Neural Networks (GNNs) with Attention

Monti et al. (CVPR 2017), Hoshen (NIPS 2017), VelickoviC et al. (ICLR 2018)

@ € v@ concat/avg @
o N

[Figure from VeliCkovi¢ et al. (ICLR 2018)]

K
AL =0 (;( S % a;«jwkﬁj)

k=1 jeN;

Multi-graph (k-type edges), a.k.a., can think of it as K attention heads

* slide from Thomas Kipf, University of Amsterdam



Graph Neural Networks (GNNs) with Attention

Monti et al. (CVPR 2017), Hoshen (NIPS 2017), VelickoviC et al. (ICLR 2018)

L
b~

VV
A\ \ softmax ;

@ @ concat/avg G

[Figure from VeliCkovi¢ et al. (ICLR 2018)]

exp (LeakyReLU (5’T (W h;||[Wh, ]))

Z Z ak th A =

K~ S e XD (LeakyReLU ( 'Wh, \\th]))

Multi-graph (k-type edges), a.k.a., can think of it as K attention heads

* slide from Thomas Kipf, University of Amsterdam



Graph Neural Networks (GNNs) with Attention

Monti et al. (CVPR 2017), Hoshen (NIPS 2017), VelickovicC et al. (ICLR 2018)

Pros:
 No need to store intermediate
éﬁ edge-based activation vectors
z (when using dot-product attn.)
P S * Slower than GCNs but faster
o \ ----—+ than GNNs with edge embeddings

[Figure from VeliCkovi¢ et al. (ICLR 2018)]
1 K exXp (LeakyReLU (5’T [WEZHWE]]))
=0l — ok WFh, Ojj = 7
K ; jezf\/i / D keN, €XP (LeakyReLU (aT ‘Wh; Hth]))

Multi-graph (k-type edges), a.k.a., can think of it as K attention heads
* slide from Thomas Kipf, University of Amsterdam



Graph Neural Networks (GNNs) with Attention

Monti et al. (CVPR 2017), Hoshen (NIPS 2017), VelickovicC et al. (ICLR 2018)

concat/avg
B et t
2"

Pros:

* No need to store intermediate
edge-based activation vectors
(when using dot-product attn.)

 Slower than GCNs but faster
than GNNs with edge embeddings

Cons:
P O L * (Most likely) less expressive than
Wh; Wh; GNNs with edge embeddings
[Figure from Veligkovié et al. (ICLR 2018)] » Can be more difficult to optimize
| K exp (LeakyReLU (é'T [WEZHWE]])>
=0l — ok WFh, Qij = e
K ; j;i J D keN, €XD (LeakyReLU (aT ‘Wh; Hth]))

Multi-graph (k-type edges), a.k.a., can think of it as K attention heads

* slide from Thomas Kipf, University of Amsterdam
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Add & Norm

Input
Embedding

Slide from Renjie Liao

f

Inputs

GNN Relationship to Transformers

Output
Probabilities

t

Softmax

i

Linear

3

— Attention can be viewed as the weighted
adjacency matrix of a fully connected graph!

— Transformers (esp. encoder) can be viewed as

r

I
Add & Norm

Forwar d

A

GNNs applied to fully connected graphs!

Add & Norm

Multi-Head
Attention

2 4+

Add & Norm

Masked
Multi-Head
Attention

\_

Lt 2

Q)

Output
Embedding

f

Outputs
(shifted right)

Image Credit: [9] & https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0



https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

GNN Relationship to Transformers

— Apply the adjacency matrix as a mask to the attention and renormalize it, is like
Graph Attention Networks (GAT) [10]

— Encoder connectivities/distances as bias of the attention [11]

oo
-

Slide from Renjie Liao

Hi

NOW are you

Hi

how

dare

you

Image Credit: [9] & https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0



https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

So far ... we mainly focused on graph filtering
Goal: Refine node (or possibly) edge feature

A A 7

A c {07 1}n><n7X c Rnxd A € {O, 1}n><n7Xf c Rnxd




We can also do graph pooling

Goal: Generate a smaller graph that captures original graphs information

s A
G- —f

A {07 1}n><n7X c RnXd A—p c {O, 1}np><np’Xp c IRnxd7 n, <n

Graph Pooling




Global pooling vs. Graph Pooling

freadout ({h;r}) — 27 MLP; (h;r)



Global pooling vs. Graph Pooling

Issue: Global pooling over a (large) graph will lose information

Toy example: we use 1-dim node embeddings
Node embeddings for G1 = {-1, -2, 0, 1, 2}

Node embeddings for G2 = {-10, -20, 0, 10, 20}

Clearly G1 and G2 (have very different node embeddings)



Global pooling vs. Graph Pooling

Issue: Global pooling over a (large) graph will lose information

Toy example: we use 1-dim node embeddings
Node embeddings for G1 = {-1, -2, 0, 1, 2}

Node embeddings for G2 = {-10, -20, 0, 10, 20}

Clearly G1 and G2 (have very different node embeddings)

if we do global ReLU(Sum()) pooling:
Prediction for G1 =0

Prediction for G2 = 0O

We cannot differentiate G1 and G2



Global pooling vs. Graph Pooling

A solution: Let’s aggregate all the node embeddings hierarchically

Toy example: \We will aggregate via ReLU(Sum()). We first separately aggregate the
first 2 nodes and last 3 nodes. Then we aggregate again to make the final prediction.

G1 node embeddings: {-1, -2, 0, 1, 2}
Round 1: ReLU(Sum({-1, -2})) = 0, ReLU(Sum({0,1,2})) = 3
Round 2: ReLU(Sum({0,3})) = 3

G2 node embeddings: {-10, =20, 0O, 10, 20}
Round 1: ReLU(Sum({—-10, —=20})) = 0, ReLU(Sum({0,10, 20})) = 30
Round 2: ReLU(Sum({O, 30})) =30

Now we can tell the difference!



DiffPool — Differentiable Graph Pooling

Original Pooled network Pooled network Pooled network Graph
network at level 1 at level 2 at level 3 classification

Adjacency matrix A € RV*YN

Feature matrix X € RN >



DiffPool — Differentiable Graph Pooling

Assignment matrix § € R™*V

Original Pooled network Pooled network Pooled network Graph
network at level 1 at level 2 at level 3 classification

Adjacency matrix A € RV*YN

Feature matrix X € RN >



DiffPool — Differentiable Graph Pooling

Assignment matrix § € R™*&

Original Pooled network Pooled network Pooled network Graph
network at level 1 at level 2 at level 3 classification

Adjacency matrix A € RN XN Coarsened adjacent matrix A’ = SAS! ¢ R™*X"

RNXF

Feature matrix X € Coarsened feature matrix X' = SX € R™*¥



DiffPool — Differentiable Graph Pooling

Assignment matrix § ¢ R?*V S = Softmax(W - GNN>(X,A)); W € RV
Original Pooled network Pooled network Pooled network Graph
network at level 1 at level 2 at level 3 classification

b e

- -
mRRNA R csssnR T - - -
-—

- - - - B

-
—————
———————
-
- - -

—
-
--__—_
-
- -

Adjacency matrix A € RYV*HN
Feature matrix X € RN >




DiffPool — Differentiable Graph Pooling

Assignment matrix § ¢ R?*V S = Softmax(W - GNN>(X,A)); W € RV
Original Pooled network Pooled network Pooled network Graph
network at level 1 at level 2 at level 3 classification

b e

Adjacency matrix A € RNVXN Coarsened adjacent matrix A’ = SAS! ¢ R™*X"

Feature matrix X € R ¥ Coarsened feature matrix X' =S - GNN; (X, A)



Graph Pooling

DiffPool SagPool
input input
graph graph
attention
é - Q -
output
I graph
|— ——
SortPool Top-k Pool
Input output features —1—— ] x
graph 7 e . . — e
sort : : top-k node
GCNN vertices : : selezlon from
‘ E learned projection
O : prune A
E A v e —



Deeper GNNs (more layers)

Depth in GNNs increases receptive field and model capacity
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Deeper GNNs (more layers)

Depth in GNNs increases receptive field and model capacity



Deeper GNNs (more layers)

Depth in GNNs increases receptive field and model capacity



Deeper GNNs (more layers)

However, unlike in CNNs, deeper GNN models generally do not work well

Depth in GNNs increases receptive field and model capacity



Deeper GNNs (more layers)

Accuracy
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Deeper GNNs (more layers) — Oversmoothing

L atent node vectors get closer to each other as the number of GCN layers
Increases, this makes it difficult to distinguish nodes in deeper GCNS

0.30 - . . . ° : * . 00 o’,‘.o
* o ® o | o : o . a * T
. o ° 4 0.20 ° . ° * . o ‘:. . & °
. :: r 0.05 - . o = . o 0.04 1 .
(a) 1-layer (b) 2-layer (c) 3-layer (d) 4-layer (e) S-layer

Figure 2: Vertex embeddings of Zachary’s karate club network with GCNs with 1,2,3.,4,5 layers.

Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning. AAAI 2018



Deeper GNNs (more layers) — Oversmoothing

Recall GCN propagation equation:

(D72 (A +I)D 2 HW)

Lets assume we have no non-linearity

lim M®v & uy
k—inft

1 1 [
M=D:A+I)D 2 v =h;W}"

where uy s an eigenvector corresponding to largest eigenvalue of M



GNN Oversmoothing

Oversmoothing is theoretically proven

— Deeper GCN converge to a solution where connected nodes will have similar
latent vectors

— Such convergence in GCN happens very quickly (exponential to the depth),
regardless of the initial node vectors

Similar results can be derived for other generic “vanilla” GNNs



GNN Oversmoothing

Combining a proper normalizer and a residual node update formulation
addresses oversmoothing (in many cases)

— Normalization (PairNOrm) PairNorm: Tackling Oversmoothing in GNNs. ICLR 2020

1
— — Z (Center)
n :

X

< C

X; = . = sv/n - e (Scale)

NS VIKel2

— Residual update

C;
FjEN; L]

1
B = 5 [ WD 4 N —h(l wb a LUt — Z _h(,l>ng>
Z JEN; Cij



Deeper GNNs (more layers)
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GNN Scalability

Node-wise local neighborhood sampling

— Sample a set of neighborhoods instead of using the entire local neightbborhood

L-th layer

(L-1)-th layer 1-hop neighbors

2-hop neighbors

1-st layer

® 606 ---... ® © 00 ©® 0 O L-hop neighbors

* Inductive Representation learning on Large Graphs (NIPS’17)



GNN Scalability

Node-wise local neighborhood sampling

— Sample a set of neighborhoods instead of using the entire local neightbborhood

L-th layer

1-hop neighbors

./ o ./4 [N —

(L-1)-th layer

1-st layer

® 606 ---... ® © 00 ©® 0 O L-hop neighbors

* Inductive Representation learning on Large Graphs (NIPS’17)



GNN Scalability

Node-wise local neighborhood sampling

— Sample a set of neighborhoods instead of using the entire local neightbborhood

L-th layer

1-hop neighbors

x @®  2-hop neighbors

(L-1)-th layer

1-st layer

® 606 ---... ® © 00 ©® 0 O L-hop neighbors

* Inductive Representation learning on Large Graphs (NIPS’17)



GNN Scalability

Node-wise local neighborhood sampling

— Sample a set of neighborhoods instead of using the entire local neightbborhood

Subgraph-wise sampling
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GNN Scalability

Node-wise local neighborhood sampling

— Sample a set of neighborhoods instead of using the entire local neightbborhood

Subgraph-wise sampling

1. Select a subgraph r\

2. Run the GNN only on the
subgraph




GNN Scalability

Node-wise local neighborhood sampling

— Sample a set of neighborhoods instead of using the entire local neightbborhood

Subgraph-wise sampling

1. Select a subgraph r\

2. Run the GNN only on the
subgraph

3. Repeat



GNN Scalability

Node-wise local neighborhood sampling

— Sample a set of neighborhoods instead of using the entire local neightbborhood

Subgraph-wise sampling

Clustering algorithms (Cluster GCN)

1. Run a clustering algorithm

2. Select subgraph/cluster

3. Run full-batch GNN on the
small subgraph




GNN Scalability

Node-wise local neighborhood sampling

— Sample a set of neighborhoods instead of using the entire local neightbborhood
Subgraph-wise sampling

Clustering algorithms (Cluster GCN)

Block diagonal approximation of A

O
. ® 2%
e .' o o
B i
o—¢ o P o aledy
) oo sgq’%g’y/&’:o{:
e OO%(%OC)?) @)
P42
° o _—9 0
o 20 ;:.!c? : Vo 5 .
% %" 2. ERR S0
ke < Ve
....... @) O .
* Some edges are lost/ —
ignored

* GNNis now splitinto
different batches/clusters



GNN Scalability

Node-wise local neighborhood sampling

— Sample a set of neighborhoods instead of using the entire local neightbborhood
Subgraph-wise sampling

Clustering algorithms (Cluster GCN)

Original partitions Epoch 1 Epoch T

Figure 3: The proposed stochastic multiple partitions
scheme. In each epoch, we randomly sample g clusters (g = 2
is used in this example) and their between-cluster links to
form a new batch. Same color blocks are in the same batch.



How do we use GNN / GCN for real
problems’”



Classification and Link Prediction with GNNs / GCNs

Input: Feature matrix X € R™ *¥ preprocessed adjacency matrix A

Hidden layer Hidden layer
r | | \
<. -
J— -
. o
Input o o ® o Output
- | . . ( \
. o . .
. b oy | o ) .
« . . . .
o« ® [ " e o —>-—' ® © —>. . | §
o . .
O o ® o ( ) ® o ( ) . | |
N y, \ j
X — H (O) | . Z : H (N)
. o
« < )
o« ® )
. o
AN )
\ | | /

* slide from Thomas Kipf, University of Amsterdam



Classification and Link Prediction with GNNs / GCNs

Input: Feature matrix X & RN XE preprocessed adjacency matrix A

Hidden layer Hidden layer Node classification:
4 ) 4 )
. . softmax(zy,)
9] o
T/ . T/ . e.g. Kipf & Welling (ICLR 2017)
[ @
Input ® o © o Output
4 . ) Q PY - N
o
. o /7 RelU | o /" ReLU X
R e B S e =2 BRI S
e e e el
\_ J \_ J
o] ® P . o P
e ° o ®
@ \ . ) \ .
- J - _/

* slide from Thomas Kipf, University of Amsterdam



Classification and Link Prediction with GNNs / GCNs

Input: Feature matrix X & RN XE preprocessed adjacency matrix A

Hidden layer Hidden layer NOde CIaSSiﬁcation:
4 N\ 4 N\
. . softmax(zy, )
| N T/ e.g. Kipf & Welling (ICLR 2017)
o @}
Input ® o ® o Output B -
” ¢ ’ ’ g S Graph classification:
. o /7 RelU | o /" ReLU X
= R o R e O L e I softmax() . Zp)
o ® o . ® o :
e o) o) T e.g. Duvenaud et al. (NIPS 2015)
: )
X =HO - . Z =HWY
- ® P L ® P
o ° o °
’ ® % ’ ® D%
\ J \ J

* slide from Thomas Kipf, University of Amsterdam



Classification and Link Prediction with GNNs / GCNs

Input: Feature matrix X & RN XE preprocessed adjacency matrix A

Hidden layer

Hidden layer

.

Z = HWY)

Node classification:

softmax(zy,)
e.g. Kipf & Welling (ICLR 2017)

Graph classification:

—» softmax()_ zp)
e.g. Duvenaud et al. (NIPS 2015)

Link prediction:

_ T .
p(Aij) = o(2z; z;)
Kipf & Welling (NIPS BDL 2016)
“Graph Auto-Encoders”

* slide from Thomas Kipf, University of Amsterdam



Semi-supervised Classification on Graphs

Setting:
Some nodes are labeled (black circle)
All other nodes are unlabeled e o

O O o o
Task: O ° o< \i\g o
Predict node label of unlabeled nodes ® o .0 o :®

» 0 O ¢ O
» O
O o @
® g

* slide from Thomas Kipf, University of Amsterdam



Semi-supervised Classification on Graphs

Setting:

Some nodes are labeled (black circle)
All other nodes are unlabeled o 9®

)

Task: O ° P < °

Predict node label of unlabeled nodes ® o © o —_
-

Evaluate loss on labeled nodes only:

F
E E set of labeled node indices
leyr f=1 Y label matrix

Z, GCN output (after softmax)

* slide from Thomas Kipf, University of Amsterdam



Semi-supervised Classification on Graphs

1.0}

0.5

0.0}

-1.0}

-1.0

-0.5

0.0

0.5 1.0

* slide from Thomas Kipf, University of Amsterdam



Semi-supervised Classification on Graphs

1.0}

0.5

0.0}

-1.0}

-1.0

-0.5

0.0

0.5 1.0

* slide from Thomas Kipf, University of Amsterdam



Protein Interface Prediction

Node (residue): a sub-structure
consists of amino acids

S Ligand protein graph

Receptor protein graph

Binding sites: specific nodes interact between ligand and receptor

(UL
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Protein Interface Prediction

Node features only:  zi= a(WC F N\ >y Wiz, + b)
JEN;

Node features + edge features: Zz':U(WC%' N Z W'z N > WA, b)
Nl Ni| =

Node features + edge features. 2z = a( Z W;z; - > WA+ b)
|N| W\ =

Neighbor nodes j are ordered by distances from the node |



Protein Interface Prediction

Method Convolutional Layers

1 2 3 4
No Convolution 0.812 (0.007) 0.810(0.006) 0.808 (0.006) 0.796 (0.006)
Diffusion (DCNN) (2 hops) [5] 0.790 (0.014) - — —
Diffusion (DCNN) (5 hops) [S]) 0.828 (0.018) - — —
Single Weight Matrix (MFEN [9]) 0.865 (0.007) 0.871 (0.013) 0.873 (0.017) 0.869 (0.017)
Node Average (Equation|1 0.864 (0.007) 0.882 (0.007) 0.891 (0.005) 0.889 (0.005)
Node and Edge Average quation@ 0.876 (0.005) 0.898 (0.005) 0.895 (0.006) 0.889 (0.007)
DTNN [21] | 0.867 (0.007) 0.880 (0.007) 0.882 (0.008) 0.873(0.012)
Order Dependent (Equation 3]) 0.854 (0.004) 0.873 (0.005) 0.891 (0.004) 0.889 (0.008)



Recommender Systems

—————————————

Uy, i), (g, is)

3, i1), (U3, ig)

=
(=N
-

o,
p—

Y J
~
=

N

-
T,

w

N

UOT}OBIJJUI WI9JI-IasN
~ ~ ~ ~ ~
o
il Sl it Al
H20Iq NNO

Aggregation — n)  Update — ht(,lﬂ) E

u

T — e e e e e e s s —

Typical framework of GNN in user-item collaborative filtering

Graph Neural Networks in Recommender Systems: A Survey, Wu et al
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Recommender Systems

s 1110 IS
| | | |
| B B ‘ \ ‘
| O\
/ W R R
U-I GNN block Social GNN block

(a) The framework of GNN on the bipartite graph (b) The framework of GNN on the unified graph
and social network graph separately. of user-item interactions and social network.

Graph Neural Networks in Recommender Systems: A Survey, Wu et al



Recommender Systems

douanbas 1o1ABYaQ J9SN

(b) Sequence graph.

[Buzz LightyearJ

actor actor

(c) Social relationship between users.

Graph Neural Networks in Recommender Systems: A Survey, Wu et al

director genre
[John Lasseter} { Toy Story .

actor producer

[Walt Disney}

(d) Knowledge graph
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Image Grounding: Beyond Object Detection

Given the image and one or more natural language phrases, |ocate regions
that correspond to those phrases.

@

A man wearing a black-jacket has
a smile on



Image Grounding: Beyond Object Detection

Given the image and one or more natural language phrases, |ocate regions
that correspond to those phrases.

A man wearing a black-jacket has
a smile on

Fundamental task for image / video understanding

— Helps improve performance on other tasks (e.g., image captioning, VQA)



Proposed Architecture
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Proposed Architecture
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Experiments

Datasets
— Flickr30K Entities: (mostly noun) Phrases parsed from image captions

— Referlt Game: Unambiguous single phrases

Evaluation

— Ratio of correctly grounded phrases to the total phrases



Qualitative Results: Flickr30K

(@) A man wearing a black-jacket has (b) People are walking on the street | (c) A woman in a vellow shirtis (d) A young boy is
a smile on his face. with bikes parked up to the left of walking down the sidewalk, walking on wooden
the picture. path in the middle
of trees.

(e) Two women in colorful clothing (f) Lady wearing white shirt with (g) Young girl with curly hair is (h) The bearded man
are dancing inside a circle of blue umbrella in the rain. drinking out of a plastic cup. keeps his blue Bic
other women. pen in hand while

he plays the guitar.



Quantitative Results

Flickr30k Entities:
Method Accuracy
SMPL [ /] 42.08
NonlinearSP [ ] 43.89
GroundeR [ ] 47.81
MCB [ /] 48.69
RtP [ 1] 50.89
Similarity Network [ 5] 51.05
IGOP [ ] 53.97
SPC+PPC [ 1] 55.49
SS+QRN (VGGdet) [] 55.99
CITE [ V] 59.27
SeqGROUND 61.60

CITE [ V] (finetuned) 61.89
QRC Net [] (finetuned) 65.14

G°RAPHGROUND++ 66.67
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Quantitative Results

Flickr30k Entities: Referlt Game:
Method Accuracy
SMPL ["7] 42.08 Method Accuracy
NonlinearSP [ ] 43.89

GroundeR [ ] 47.81 SCRC [V] 17.93
MCB [ 7] 48 69 MCB + Reg + Spatial [ '] 20.54
RtP [ 1] 50.89 GroundeR + Spatial [ ] 26.93
Similarity Network [~ ] 51.05 Similarity Network + Spatial [ ] 31.26
IGOP [ 4] 53.97 CGRE [ ! /] 31.85
SPC+PPC [ ] 55.49 MNN + Reg + Spatial [ ] 32.21
SS+QRN (VGGdet) [] 55.99 EB+QRN (VGGcls-SPAT) [+ ] 32.21
CITE [ V] 59.27 CITE [ 9] 34.13
SeqGROUND 61.60 IGOP [+ 34.770
CITE [ ! V] (finetuned) 61.89 QRC Net [] (finetuned) 44.07
QRC Net [4] (finetuned)  65.14 G3RAPHGROUND++ 44.91

G°RAPHGROUND++ 66.67




Ablation

Method Flickr30k Referlt

GG - VisualG - FusionG 56.32 32.89
GG - VisualG 62.23 38.82

GG - FusionG 59.13 36.54

GG - PhraseG 60.82 38.12
GGFusionBase 60.41 38.65

GG - ImageContext 62.32 40.92

GG - PhraseContext 62.73 n.d.

G°RAPHGROUND (GG) 63.65 41.79
G°RAPHGROUND++ 66.67 44.91



Ablation

Method Flickr30k Referlt

GG - VisualG - FusionG 56.32 32.89
GG - VisualG 62.23 38.82

GG - FusionG 59.13 36.54

GG - PhraseG 60.82 38.12
GGFusionBase 60.41 38.65

GG - ImageContext 62.32 40.92

GG - PhraseContext 62.73 n.d.

G°RAPHGROUND (GG) 63.65 41.79
G°RAPHGROUND++ 66.67 44.91



Visualizing Graph Attention

(@) A young boy is looking at a man (b) A man is checking his blue sneakers
painted in all gold. next to two men having a
conversation.

(c) A_brown dog jumps high on a (d) A woman stands in a field near a car

field of grass. and looks through binoculars.
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Scene Graphs:

A graph based data structure for semantically representing image content



Scene Graphs
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Scene Graph Generation
Pipeline
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KERN Architecture

Routing Network
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Graph RCNN
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Graph RCNN
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Visualizations
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Conclusions

— Deep learning on graphs works and is very effective!

— Exciting area: lots of new applications and extensions (hard to keep up)

Relational reasoning Multi-Agent RL GCN for recommendation on 16 billion edge graph!
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Open problems:

— Theory
— Scalable, stable generative models
— Learning on large, evolving data

— Multi-modal and cross-model learning (e.g., sequence2graph) * slide from Thomas Kipf, University of Amsterdam
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