

Topics in AI (CPSC 532S): Multimodal Learning with Vision, Language and Sound

Lecture 2: Introduction to Deep Learning

- Update on course registrations — 39 students registered!

- Update on course registrations — 39 students registered!

- Piazza 29 students signed up so far
 - piazza.com/ubc.ca/winterter12022/cpsc532s
 - Access code: McGurk

- Update on course registrations — 39 students registered!

- Piazza 29 students signed up so far
 - piazza.com/ubc.ca/winterter12022/cpsc532s
 - Access code: McGurk
- Assignment 0 is out (for practice only, no credit)
- Assignment 1 will be out later today (due in 1 week)

- Update on course registrations — 39 students registered!

- Piazza 29 students signed up so far
 - piazza.com/ubc.ca/winterter12022/cpsc532s
 - Access code: McGurk
- Assignment 0 is out (for practice only, no credit)
- Assignment 1 will be out later today, at least in part (due in 1 week)
- Mine and TA office hours will be posted today (mine are 12:30-1:30 pm)

Topics in AI (CPSC 532S): Multimodal Learning with Vision, Language and Sound

Lecture 1: Introduction

Grading Criteria

- Assignments (programming) 40% (total)
- Research papers 20%
- **Project** 40%

Grading Criteria

- Assignments (programming) 40% (total)
- Research papers 20%
- **Project** 40%

NO LATE SUBMISSIONS — If you don't complete the assignment, hand in what you have

- Assignment 0: Introduction to PyTorch (0%)

- Assignment 0: Introduction to PyTorch (0%)
- Assignment 2: Convolutional Neural Networks (5%) РҮТ В RCH

- Assignment 0: Introduction to PyTorch (0%)
- Assignment 1: Neural Network Introduction (5%) → python
- Assignment 2: Convolutional Neural Networks (5%) РҮТӨ́ RСН
- Assignment 3: RNN Language Modeling and Translation (10%) рүтөксн

- Assignment 0: Introduction to PyTorch (0%)
- Assignment 1: Neural Network Introduction (5%) → python
- Assignment 2: Convolutional Neural Networks (5%) РҮТӨ́ RСН
- Assignment 3: RNN Language Modeling and Translation (10%) РҮТӨКСН
- Assignment 4: Neural Model for Image Captioning / Retrieval (10%) РҮТ В ксн

- Assignment 0: Introduction to PyTorch (0%)
- Assignment 2: Convolutional Neural Networks (5%) РҮТӨКСН
- Assignment 3: RNN Language Modeling and Translation (10%) РҮТӨКСН
- Assignment 4: Neural Model for Image Captioning / Retrieval (10%) РҮТӨКСН
- Assignment 5: Advanced Architectures Graph NN and GANs (10%) PYTÖRCH

I reserve the right to **change** release and due dates for the assignments to accommodate constraints of the course, do not take the dates on web-page as "set in stone".

Research Papers (reviews and presentation, 20% of grade total)

Presentation - 10%

- You will need to present 1 paper individually or as a group (group size will be determined by # of people in class)
- Pick a paper from the syllabus individually (we will have process to pick #1, #2, #3 choices)
- Will need to prepare slides and meet with me or TA for feedback
- It is your responsibility to schedule these meetings
- I will ask you to record these presentation and we will make these available

Research Papers (reviews and presentation, 20% of grade total)

Presentation - 10%

- You will need to present 1 paper individually or as a group (group size will be determined by # of people in class)
- Pick a paper from the syllabus individually (we will have process to pick #1, #2, #3 choices)
- Will need to prepare slides and meet with me or TA for feedback
- It is your responsibility to schedule these meetings
- I will ask you to record these presentation and we will make these available

Reading Reviews - 10%

- Individually, one for most lectures after the first half of semester
- Due 11:59pm a day before class where reading assigned, submitted via Canvas

Good Presentation

- You are effectively taking on responsibility for being an instructor for part of the class (take it seriously)
- What makes a good presentation?
 - High-level overview of the problem and motivation
 - Clear statement of the problem
 - Overview of the technical details of the method, including necessary background
 - Relationship of the approach and method to others discussed in class
 - Discussion of strengths and weaknesses of the approach
 - Discussion of strengths and weaknesses of the evaluation
 - Discussion of potential extensions (published or potential)

Reading Reviews

 Designed to make sure you read the material and have thought about it prior to class (to stimulate discussion)

- Short summary of the paper (3-4 sentences)
- Main contributions (2-3 bullet points)
- Positive / negative points (2-3 bullet points each)
- What did you not understand (was unclear) about the paper (2-3 bullet points)

Final Project (40% of grade total)

- Group project (groups of 3 are encouraged, but fewer maybe possible)
- Groups are self-formed, you will not be assigned to a group
- You need to come up with a project proposal and then work on the project as a group (each person in the group gets the same grade for the project)
- Project needs to be research oriented (not simply implementing an existing paper); you can use code of existing paper as a starting point though

Project proposal + class presentation: 15% Project + final presentation (during finals week): 25%

Sample Project Ideas

- Translate an image into a cartoon or Picasso drawing better than existing approaches (e.g., experiment with loss functions, architectures)
- Generating video clips by retrieving images relevant to lyrics of songs
- Generating an image based on the sounds or linguistic description
- Compare different feature representation and role of visual attention in visual question answering
- Storyboarding movie scripts
- Grounding a language/sound in an image

... there are endless possibilities ... think creatively and have fun!

Topics in AI (CPSC 532S): Multimodal Learning with Vision, Language and Sound

Lecture 2: Introduction to Deep Learning

Introduction to Deep Learning

There is a lot packed into today's lecture (excerpts from a few lectures of CS231n)

if you want more details, check out CS231n lectures on-line

Covering: foundations and most important aspects of DNNs

Not-covering: neuroscience background of deep learning, optimization (CPSC 340 & CPSC 540), and not a lot of theoretical underpinning

Training

Set

Outputs	
total revenue USA	total revenue international
$y_1^{(1)}$	$y_2^{(1)}$
$y_1^{(2)}$	$y_2^{(2)}$
$y_1^{(3)}$	$y_2^{(3)}$

$$\hat{y}_j = \sum_i w_{ji} x_i + b_j$$

each output is a linear combination of inputs plus bias, easier to write in matrix form:

$$\hat{\mathbf{y}} = \mathbf{W}^T \mathbf{x} + \mathbf{b}$$

$$\hat{y}_j = \sum_i w_{ji} x_i + b_j$$

each output is a linear combination of inputs plus bias, easier to write in matrix form:

$$\hat{\mathbf{y}} = \mathbf{W}^T \mathbf{x} + \mathbf{b}$$

Key to accurate prediction is **learning parameters** to minimize discrepancy with historical data

$$D_{train} = \{(\mathbf{x}^{(d)}, \mathbf{y}^{(d)})\}$$

$$\hat{y}_j = \sum_i w_{ji} x_i + b_j$$

each output is a linear combination of inputs plus bias, easier to write in matrix form:

$$\hat{\mathbf{y}} = \mathbf{W}^T \mathbf{x} + \mathbf{b}$$

Key to accurate prediction is **learning parameters** to minimize discrepancy with historical data

$$D_{train} = \{(\mathbf{x}^{(d)}, \mathbf{y}^{(d)})\}$$

$$\mathcal{L}(\mathbf{W}, \mathbf{b}) = \sum_{d=1}^{|D_{train}|} \underline{l(\hat{\mathbf{y}}^{(d)}, \mathbf{y}^{(d)})}$$

$$\mathbf{W}^*, \mathbf{b}^* = \arg\min \mathcal{L}(\mathbf{W}, \mathbf{b})$$

$$\hat{y}_j = \sum_i w_{ji} x_i + b_j$$

each output is a linear combination of inputs plus bias, easier to write in matrix form:

$$\hat{\mathbf{y}} = \mathbf{W}^T \mathbf{x} + \mathbf{b}$$

Key to accurate prediction is **learning parameters** to minimize discrepancy with historical data

$$D_{train} = \{(\mathbf{x}^{(d)}, \mathbf{y}^{(d)})\}$$

$$\mathcal{L}(\mathbf{W}, \mathbf{b}) = \sum_{d=1}^{|D_{train}|} ||\hat{\mathbf{y}}^{(d)} - \mathbf{y}^{(d)}||^2$$

$$\mathbf{W}^*, \mathbf{b}^* = \arg\min \mathcal{L}(\mathbf{W}, \mathbf{b})$$

$$\mathcal{L}(\mathbf{W}, \mathbf{b}) = \sum_{d=1}^{|D_{train}|} \left| \left| \mathbf{W}^T \mathbf{x}^{(d)} + \mathbf{b} - \mathbf{y}^{(d)} \right| \right|^2$$

$$\mathbf{W}^*, \mathbf{b}^* = \arg\min \mathcal{L}(\mathbf{W}, \mathbf{b})$$

Solution:

$$\mathcal{L}(\mathbf{W}, \mathbf{b}) = \sum_{d=1}^{|D_{train}|} \left| \left| \mathbf{W}^T \mathbf{x}^{(d)} + \mathbf{b} - \mathbf{y}^{(d)} \right| \right|^2$$

$$\mathbf{W}^*, \mathbf{b}^* = \arg\min \mathcal{L}(\mathbf{W}, \mathbf{b})$$

Solution:

$$\frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial w_{ji}} = \frac{\partial}{\partial w_{ji}} \sum_{d=1}^{|D_{train}|} \left| \left| \mathbf{W}^T \mathbf{x}^{(d)} + \mathbf{b} - \mathbf{y}^{(d)} \right| \right|^2$$

$$\mathcal{L}(\mathbf{W}, \mathbf{b}) = \sum_{d=1}^{|D_{train}|} \left| \left| \mathbf{W}^T \mathbf{x}^{(d)} + \mathbf{b} - \mathbf{y}^{(d)} \right| \right|^2$$

$$\mathbf{W}^*, \mathbf{b}^* = \arg\min \mathcal{L}(\mathbf{W}, \mathbf{b})$$

Solution:

$$\frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial w_{ji}} = \frac{\partial}{\partial w_{ji}} \sum_{d=1}^{|D_{train}|} \left| \left| \mathbf{W}^T \mathbf{x}^{(d)} + \mathbf{b} - \mathbf{y}^{(d)} \right| \right|^2$$

$$\frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial w_{ji}} = \frac{\partial}{\partial w_{ji}} \sum_{d=1}^{|D_{train}|} \left| \left| \mathbf{W}^T \mathbf{x}^{(d)} + \mathbf{b} - \mathbf{y}^{(d)} \right| \right|^2 = 0$$

$$\mathcal{L}(\mathbf{W}, \mathbf{b}) = \sum_{d=1}^{|D_{train}|} \left| \left| \mathbf{W}^T \mathbf{x}^{(d)} + \mathbf{b} - \mathbf{y}^{(d)} \right| \right|^2$$

$$\mathbf{W}^*, \mathbf{b}^* = \arg\min \mathcal{L}(\mathbf{W}, \mathbf{b})$$

Solution:

$$\frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial w_{ji}} = \frac{\partial}{\partial w_{ji}} \sum_{d=1}^{|D_{train}|} \left| \left| \mathbf{W}^T \mathbf{x}^{(d)} + \mathbf{b} - \mathbf{y}^{(d)} \right| \right|^2$$

$$\frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial w_{ji}} = \frac{\partial}{\partial w_{ji}} \sum_{d=1}^{|D_{train}|} \left| \left| \mathbf{W}^T \mathbf{x}^{(d)} + \mathbf{b} - \mathbf{y}^{(d)} \right| \right|^2 = 0$$

after some operations \longrightarrow $\mathbf{W}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$

One-layer Neural Network

One-layer Neural Network

Input Layer

One-layer Neural Network

Question: What is a Neural Network?

Answer: Complex mapping from an input (vector) to an output (vector)

Question: What is a Neural Network?

Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping?

Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more about what specific functions next ...

Question: What is a Neural Network?

Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping?

Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more about what specific functions next ...

Question: What does a hidden unit do?

Answer: It can be thought of as classifier or a feature.

e.g., hidden unit = production cost + promotion cost e.g., p(film over budget) = sigmoid (hidden unit)

Question: What does a hidden unit do?

Answer: It can be thought of as classifier or a feature.

Question: What is a Neural Network?

Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping?

Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more about what specific functions next ...

Question: What does a hidden unit do?

Answer: It can be thought of as classifier or a feature.

Question: Why have many layers?

Answer: 1) More layers = more complex functional mapping

2) More efficient due to distributed representation

One-layer Neural Network

One-layer Neural Network

Neural network can arbitrarily approximate any **continuous** function for every value of possible inputs

Neural network can arbitrarily approximate any **continuous** function for every value of possible inputs

The guarantee is that by using enough hidden neurons we can always find a neural network whose output g(x) satisfies $|g(x)-f(x)|<\epsilon$ for an arbitrarily small ϵ

Lets start with a simple network: one hidden layer with two hidden neurons and a single output layer with one neuron (with sigmoid activations)

Lets start with a simple network: one hidden layer with two hidden neurons and a single output layer with one neuron (with sigmoid activations)

Let's look at output of this (hidden) neuron as a function of parameters (weight, bias)

Lets start with a simple network: one hidden layer with two hidden neurons and a single output layer with one neuron (with sigmoid activations)

Let's look at output of this (hidden) neuron as a function of parameters (weight, bias)

Lets start with a simple network: one hidden layer with two hidden neurons and a single output layer with one neuron (with sigmoid activations)

Let's look at output of this (hidden) neuron as a function of parameters (weight, bias)

By dialing up the weight (e.g. w=999) we can actually create a "step" function

By dialing up the weight (e.g. w=999) we can actually create a "step" function

It is easier to work with sums of step functions, so we can assume that every neuron outputs a step function.

By dialing up the weight (e.g. w=999) we can actually create a "step" function

It is easier to work with sums of step functions, so we can assume that every neuron outputs a step function.

Location of the step?

By dialing up the weight (e.g. w=999) we can actually create a "step" function

It is easier to work with sums of step functions, so we can assume that every neuron outputs a step function.

Location of the step?

$$s = -\frac{b}{w}$$

By dialing up the weight (e.g. w=999) we can actually create a "step" function

It is easier to work with sums of step functions, so we can assume that every neuron outputs a step function

Location of the step?

$$s = -\frac{b}{w}$$

The output neuron is a weighted combination of step functions (assuming bias for that layer is 0)

The output neuron is a weighted combination of step functions (assuming bias for that layer is 0)

The output neuron is a weighted combination of step functions (assuming bias for that layer is 0)

Conditions needed for proof to hold: Activation function needs to be well defined

$$\lim_{x \to \infty} a(x) = A$$

$$\lim_{x \to -\infty} a(x) = B$$

$$A \neq B$$

Conditions needed for proof to hold: Activation function needs to be well defined

$$\lim_{x \to \infty} a(x) = A$$

$$\lim_{x \to -\infty} a(x) = B$$

$$A \neq B$$

Note: This gives us another way to provably say that linear activation function cannot produce a neural network which is an universal approximator.

Universal Approximation Theorem: Single hidden layer can approximate any continuous function with compact support to arbitrary accuracy, when the width goes to infinity.

[Hornik et al., 1989]

Universal Approximation Theorem: Single hidden layer can approximate any continuous function with compact support to arbitrary accuracy, when the width goes to infinity.

[Hornik et al., 1989]

Universal Approximation Theorem (revised): A network of infinite depth with a hidden layer of size d + 1 neurons, where d is the dimension of the input space, can approximate any continuous function.

[Lu et al., NIPS 2017]

Universal Approximation Theorem: Single hidden layer can approximate any continuous function with compact support to arbitrary accuracy, when the width goes to infinity.

[Hornik et al., 1989]

Universal Approximation Theorem (revised): A network of infinite depth with a hidden layer of size d+1 neurons, where d is the dimension of the input space, can approximate any continuous function.

[Lu et al., NIPS 2017]

Universal Approximation Theorem (further revised): ResNet with a single hidden unit and infinite depth can approximate any continuous function.

[Lin and Jegelka, NIPS 2018]

Universal Approximation Theorem (further revised): ResNet with a single hidden unit and infinite depth can approximate any continuous function.

[Lin and Jegelka, NIPS 2018]

Neural Network represents a function using a piece-wise linear approximation

Neural Network represents a function using a piece-wise linear approximation

Expressivity (theoretic quality) of NN = the number of piece-wise linear regions

- Number of regions is a polynomial function of units per layer (breadth of NN)
- Number of regions is an exponential function of layers (depth of NN)

Neural Network represents a function using a piece-wise linear approximation

Expressivity (theoretic quality) of NN = the number of piece-wise linear regions

- Number of regions is a polynomial function of units per layer (breadth of NN)
- Number of regions is an exponential function of layers (depth of NN)

Effectiveness (practical quality) of the NN is also a function of optimization

Deep networks are generally harder to optimize

Neural Network represents a function using a piece-wise linear approximation

Expressivity (theoretic quality) of NN = the number of piece-wise linear regions

- Number of regions is a polynomial function of units per layer (breadth of NN)
- Number of regions is an exponential function of layers (depth of NN)

Effectiveness (practical quality) of the NN is also a function of optimization

Deep networks are generally harder to optimize

Note: in recent literature the # of parameters have been used as a proxy for expressiveness of NN, this is not a great practice, because it ignores topology.

One-layer Neural Network

Learning Parameters of One-layer Neural Network

$$\mathcal{L}(\mathbf{W}, \mathbf{b}) = \sum_{d=1}^{|D_{train}|} \left(\mathbf{sigmoid} \left(\mathbf{W}^T \mathbf{x}^{(d)} + \mathbf{b} \right) - \mathbf{y}^{(d)} \right)^2$$

$$\mathbf{W}^*, \mathbf{b}^* = \arg\min \mathcal{L}(\mathbf{W}, \mathbf{b})$$

Learning Parameters of One-layer Neural Network

$$\mathcal{L}(\mathbf{W}, \mathbf{b}) = \sum_{d=1}^{|D_{train}|} \left(\mathbf{sigmoid} \left(\mathbf{W}^T \mathbf{x}^{(d)} + \mathbf{b} \right) - \mathbf{y}^{(d)} \right)^2$$

$$\mathbf{W}^*, \mathbf{b}^* = \arg\min \mathcal{L}(\mathbf{W}, \mathbf{b})$$

Solution:

$$\frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial w_{ji}} = \frac{\partial}{\partial w_{ji}} \sum_{d=1}^{|D_{train}|} \left(\mathbf{sigmoid} \left(\mathbf{W}^T \mathbf{x}^{(d)} + \mathbf{b} \right) - \mathbf{y}^{(d)} \right)^2$$

$$\frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial w_{ji}} = \frac{\partial}{\partial w_{ji}} \sum_{d=1}^{|D_{train}|} \left(\mathbf{sigmoid} \left(\mathbf{W}^T \mathbf{x}^{(d)} + \mathbf{b} \right) - \mathbf{y}^{(d)} \right)^2 = 0$$

Learning Parameters of One-layer Neural Network

$$\mathcal{L}(\mathbf{W}, \mathbf{b}) = \sum_{d=1}^{|D_{train}|} \left(\mathbf{sigmoid} \left(\mathbf{W}^T \mathbf{x}^{(d)} + \mathbf{b} \right) - \mathbf{y}^{(d)} \right)^2$$

$$\mathbf{W}^*, \mathbf{b}^* = \arg\min \mathcal{L}(\mathbf{W}, \mathbf{b})$$

Solution:

$$\frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial w_{ji}} = \frac{\partial}{\partial w_{ji}} \sum_{d=1}^{|D_{train}|} \left(\mathbf{sigmoid} \left(\mathbf{W}^T \mathbf{x}^{(d)} + \mathbf{b} \right) - \mathbf{y}^{(d)} \right)^2$$

$$\frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial w_{ji}} = \frac{\partial}{\partial w_{ji}} \sum_{d=1}^{|D_{train}|} \left(\mathbf{sigmoid} \left(\mathbf{W}^T \mathbf{x}^{(d)} + \mathbf{b} \right) - \mathbf{y}^{(d)} \right)^2 = 0$$

Problem: No closed form solution

$$\frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial w_{ii}} = 0$$

1. Start from random value of $\mathbf{W}_0, \mathbf{b}_0$

1. Start from random value of $\mathbf{W}_0, \mathbf{b}_0$

1. Start from random value of

For k = 0 to max number of iterations

2. Compute gradient of the loss with respect to previous (initial) parameters:

$$\left.
abla \mathcal{L}(\mathbf{W}, \mathbf{b}) \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

1. Start from random value of

For k = 0 to max number of iterations

2. Compute gradient of the loss with respect to previous (initial) parameters:

$$\nabla \mathcal{L}(\mathbf{W}, \mathbf{b})|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

1. Start from random value of $\mathbf{W}_0, \mathbf{b}_0$

For k = 0 to max number of iterations

2. Compute gradient of the loss with respect to previous (initial) parameters:

$$\nabla \mathcal{L}(\mathbf{W}, \mathbf{b})|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

$$\mathbf{W}_{k+1} = \mathbf{W}_k - \lambda \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{W}} \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

$$\mathbf{b}_{k+1} = \mathbf{b}_k - \lambda \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{b}} \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

1. Start from random value of $\mathbf{W}_0, \mathbf{b}_0$

For k=0 to max number of iterations

2. Compute gradient of the loss with respect to previous (initial) parameters:

$$\nabla \mathcal{L}(\mathbf{W}, \mathbf{b})|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

$$\mathbf{W}_{k+1} = \mathbf{W}_k - \lambda \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{W}} \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

$$\mathbf{b}_{k+1} = \mathbf{b}_k - \lambda \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{b}} \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

$$\mathcal{L}(\mathbf{W}, \mathbf{b}) = \sum_{d=1}^{|D_{train}|} \left(\operatorname{sigmoid} \left(\mathbf{W}^T \mathbf{x}^{(d)} + \mathbf{b} \right) - \mathbf{y}^{(d)} \right)^2$$

1. Start from random value of W_0, b_0

For k=0 to max number of iterations

2. Compute gradient of the loss with respect to previous (initial) parameters:

$$\left.
abla \mathcal{L}(\mathbf{W}, \mathbf{b}) \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

$$\mathbf{W}_{k+1} = \mathbf{W}_k - \lambda \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{W}} \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

$$\mathbf{b}_{k+1} = \mathbf{b}_k - \lambda \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{b}} \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

$$\mathcal{L}(\mathbf{W}, \mathbf{b}) = \sum_{d=1}^{|D_{train}|} \left(\text{sigmoid} \left(\mathbf{W}^T \mathbf{x}^{(d)} + \mathbf{b} \right) - \mathbf{y}^{(d)} \right)^2$$

 λ - is the learning rate

1. Start from random value of W_0, b_0

For k = 0 to max number of iterations

2. Compute gradient of the loss with respect to previous (initial) parameters:

$$\left.
abla \mathcal{L}(\mathbf{W}, \mathbf{b}) \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

$$\mathbf{W}_{k+1} = \mathbf{W}_k - \underline{\lambda} \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{W}} \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

$$\mathbf{b}_{k+1} = \mathbf{b}_k - \underline{\lambda} \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{b}} \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

$$\frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial w_{ji}} = \frac{\partial}{\partial w_{ji}} \sum_{d=1}^{|D_{train}|} \left(\mathbf{sigmoid} \left(\mathbf{W}^T \mathbf{x}^{(d)} + \mathbf{b} \right) - \mathbf{y}^{(d)} \right)^2$$

$$\frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial w_{ji}} = \frac{\partial}{\partial w_{ji}} \sum_{d=1}^{|D_{train}|} \left(\mathbf{sigmoid} \left(\mathbf{W}^T \mathbf{x}^{(d)} + \mathbf{b} \right) - \mathbf{y}^{(d)} \right)^2$$

Problem: For large datasets computing sum is expensive

$$\frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial w_{ji}} = \frac{\partial}{\partial w_{ji}} \sum_{d=1}^{|D_{train}|} \left(\mathbf{sigmoid} \left(\mathbf{W}^T \mathbf{x}^{(d)} + \mathbf{b} \right) - \mathbf{y}^{(d)} \right)^2$$

Problem: For large datasets computing sum is expensive

Solution: Compute approximate gradient with mini-batches of much smaller size (as little as 1-example sometimes)

$$\frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial w_{ji}} = \frac{\partial}{\partial w_{ji}} \sum_{d=1}^{|D_{train}|} \left(\mathbf{sigmoid} \left(\mathbf{W}^T \mathbf{x}^{(d)} + \mathbf{b} \right) - \mathbf{y}^{(d)} \right)^2$$

Problem: For large datasets computing sum is expensive

Solution: Compute approximate gradient with mini-batches of much smaller size (as little as 1-example sometimes)

Problem: How do we compute the actual gradient?

Numerical Differentiation

 $\mathbf{1}_i$ - Vector of all zeros, except for one 1 in i-th location

We can approximate the gradient numerically, using:

$$\frac{\partial f(\mathbf{x})}{\partial x_i} \approx \lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{1}_i) - f(\mathbf{x})}{h}$$

Numerical Differentiation

 $\mathbf{1}_i$ - Vector of all zeros, except for one 1 in i-th location

We can approximate the gradient numerically, using:

$$\frac{\partial f(\mathbf{x})}{\partial x_i} \approx \lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{1}_i) - f(\mathbf{x})}{h}$$

Even better, we can use central differencing:

$$\frac{\partial f(\mathbf{x})}{\partial x_i} \approx \lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{1}_i) - f(\mathbf{x} - h\mathbf{1}_i)}{2h}$$

We can approximate the gradient numerically, using:

$$\frac{\partial f(\mathbf{x})}{\partial x_i} \approx \lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{1}_i) - f(\mathbf{x})}{h}$$

Even better, we can use central differencing:

$$\frac{\partial f(\mathbf{x})}{\partial x_i} \approx \lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{1}_i) - f(\mathbf{x} - h\mathbf{1}_i)}{2h}$$

However, both of theses suffer from rounding errors and are not good enough for learning (they are very good tools for checking the correctness of implementation though, e.g., use h = 0.000001).

Numerical Differentiation

 $\mathbf{1}_i$ - Vector of all zeros, except for one 1 in i-th location

 $\mathbf{1}_{ij}$ - Matrix of all zeros, except for one 1 in (i,j)-th location

We can approximate the gradient numerically, using:

$$\frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial w_{ij}} \approx \lim_{h \to 0} \frac{\mathcal{L}(\mathbf{W} + h\mathbf{1}_{ij}, \mathbf{b}) - \mathcal{L}(\mathbf{W}, \mathbf{b})}{h}$$

$$\frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial b_j} \approx \lim_{h \to 0} \frac{\mathcal{L}(\mathbf{W}, \mathbf{b} + h\mathbf{1}_j) - \mathcal{L}(\mathbf{W}, \mathbf{b})}{h}$$

Even better, we can use central differencing:

$$\frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial w_{ij}} \approx \lim_{h \to 0} \frac{\mathcal{L}(\mathbf{W} + h\mathbf{1}_{ij}, \mathbf{b}) - \mathcal{L}(\mathbf{W} + h\mathbf{1}_{ij}, \mathbf{b})}{2h} \qquad \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial b_{i}} \approx \lim_{h \to 0} \frac{\mathcal{L}(\mathbf{W}, \mathbf{b} + h\mathbf{1}_{j}) - \mathcal{L}(\mathbf{W}, \mathbf{b} + h\mathbf{1}_{j})}{2h}$$

$$\frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial b_j} \approx \lim_{h \to 0} \frac{\mathcal{L}(\mathbf{W}, \mathbf{b} + h\mathbf{1}_j) - \mathcal{L}(\mathbf{W}, \mathbf{b} + h\mathbf{1}_j)}{2h}$$

However, both of theses suffer from rounding errors and are not good enough for learning (they are very good tools for checking the correctness of implementation though, e.g., use h = 0.000001).

Symbolic Differentiation

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$$

Input function is represented as computational graph (a symbolic tree)

Implements differentiation rules for composite functions:

Sum Rule
$$\frac{\mathrm{d}\left(f(x)+g(x)\right)}{\mathrm{d}x} = \frac{\mathrm{d}f(x)}{\mathrm{d}x} + \frac{\mathrm{d}g(x)}{\mathrm{d}x}$$

Product Rule
$$\frac{\mathrm{d}\left(f(x)\cdot g(x)\right)}{\mathrm{d}x} = \frac{\mathrm{d}f(x)}{\mathrm{d}x}g(x) + f(x)\frac{\mathrm{d}g(x)}{\mathrm{d}x}$$

Chain Rule
$$\frac{\mathrm{d}(f(g(x)))}{\mathrm{d}x} = \frac{\mathrm{d}f(g(x))}{\mathrm{d}g(x)} \cdot \frac{\mathrm{d}g(x)}{\mathrm{d}x}$$

Symbolic Differentiation

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$$

Input function is represented as computational graph (a symbolic tree)

Implements differentiation rules for composite functions:

Sum Rule
$$\frac{\mathrm{d}\left(f(x)+g(x)\right)}{\mathrm{d}x} = \frac{\mathrm{d}f(x)}{\mathrm{d}x} + \frac{\mathrm{d}g(x)}{\mathrm{d}x}$$

Product Rule
$$\frac{\mathrm{d}\left(f(x)\cdot g(x)\right)}{\mathrm{d}x} = \frac{\mathrm{d}f(x)}{\mathrm{d}x}g(x) + f(x)\frac{\mathrm{d}g(x)}{\mathrm{d}x}$$

Chain Rule
$$\frac{\mathrm{d}(f(g(x)))}{\mathrm{d}x} = \frac{\mathrm{d}f(g(x))}{\mathrm{d}x} \cdot \frac{\mathrm{d}g(x)}{\mathrm{d}x}$$

Problem: For complex functions, expressions can be exponentially large; also difficult to deal with piece-wise functions (creates many symbolic cases)

Automatic Differentiation (AutoDiff) $y = f(x_1, x_2)$

 $y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$

Intuition: Interleave symbolic differentiation and simplification

Key Idea: apply symbolic differentiation at the elementary operation level, evaluate and keep intermediate results

Automatic Differentiation (AutoDiff) $y = f(x_1, x_2) = \ln(x_1) + x_1x_2 - \sin(x_2)$

Intuition: Interleave symbolic differentiation and simplification

Key Idea: apply symbolic differentiation at the elementary operation level, evaluate and keep intermediate results

Success of **deep learning** owes A LOT to success of AutoDiff algorithms (also to advances in parallel architectures, and large datasets, ...)

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$$

Each **node** is an input, intermediate, or output variable

Computational graph (a DAG) with variable ordering from topological sort.

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$$

Each **node** is an input, intermediate, or output variable

Computational graph (a DAG) with variable ordering from topological sort.

Computational graph is governed by these equations

$$v_0 = x_1$$
 $v_1 = x_2$
 $v_2 = \ln(v_0)$
 $v_3 = v_0 \cdot v_1$
 $v_4 = \sin(v_1)$
 $v_5 = v_2 + v_3$
 $v_6 = v_5 - v_4$
 $y = v_6$

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$$

Each **node** is an input, intermediate, or output variable

Computational graph (a DAG) with variable ordering from topological sort.

Lets see how we can **evaluate a function** using computational graph (DNN inferences)

Computational graph is governed by these equations

$$v_0 = x_1$$
 $v_1 = x_2$
 $v_2 = \ln(v_0)$
 $v_3 = v_0 \cdot v_1$
 $v_4 = \sin(v_1)$
 $v_5 = v_2 + v_3$
 $v_6 = v_5 - v_4$
 $y = v_6$

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$$

Each **node** is an input, intermediate, or output variable

Computational graph (a DAG) with variable ordering from topological sort.

Lets see how we can **evaluate a function** using computational graph (DNN inferences)

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$$

Each **node** is an input, intermediate, or output variable

Computational graph (a DAG) with variable ordering from topological sort.

Lets see how we can **evaluate a function** using computational graph (DNN inferences)

f(2,5)
2

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$$

Each **node** is an input, intermediate, or output variable

Computational graph (a DAG) with variable ordering from topological sort.

Lets see how we can **evaluate a function** using computational graph (DNN inferences)

	f(2,5)
$v_0 = x_1$	2
$v_1 = x_2$	5
$v_2 = \ln(v_0)$	
$v_3 = v_0 \cdot v_1$	
$v_4 = sin(v_1)$	
$v_5 = v_2 + v_3$	
$v_6 = v_5 - v_4$	
$y = v_6$	

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$$

Each **node** is an input, intermediate, or output variable

Computational graph (a DAG) with variable ordering from topological sort.

Lets see how we can **evaluate a function** using computational graph (DNN inferences)

	f(2,5)
$v_0 = x_1$	2
$v_1 = x_2$	5
$v_2 = \ln(v_0)$	ln(2) = 0.693
$v_3 = v_0 \cdot v_1$	
$v_4 = \sin(v_1)$	
$v_5 = v_2 + v_3$	
$v_6 = v_5 - v_4$	
$y = v_6$	

Automatic Differentiation (AutoDiff)

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$$

Each **node** is an input, intermediate, or output variable

Computational graph (a DAG) with variable ordering from topological sort.

Lets see how we can **evaluate a function** using computational graph (DNN inferences)

		f(2,5)
	$v_0 = x_1$	2
	$v_1 = x_2$	5
	$v_2 = \ln(v_0)$	ln(2) = 0.693
	$v_3 = v_0 \cdot v_1$	$2 \times 5 = 10$
	$v_4 = \sin(v_1)$	sin(5) = 0.959
	$v_5 = v_2 + v_3$	0.693 + 10 = 10.693
	$v_6 = v_5 - v_4$	10.693 + 0.959 = 11.652
1	$y = v_6$	11.652

Automatic Differentiation (AutoDiff)

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$$

Each **node** is an input, intermediate, or output variable

Computational graph (a DAG) with variable ordering from topological sort.

Lets see how we can **evaluate a function** using computational graph (DNN inferences)

		f(2,5)
	$v_0 = x_1$	2
	$v_1 = x_2$	5
	$v_2 = \ln(v_0)$	ln(2) = 0.693
	$v_3 = v_0 \cdot v_1$	$2 \times 5 = 10$
	$v_4 = \sin(v_1)$	sin(5) = 0.959
	$v_5 = v_2 + v_3$	0.693 + 10 = 10.693
	$v_6 = v_5 - v_4$	10.693 + 0.959 = 11.652
1	$y = v_6$	11.652

Automatic Differentiation (AutoDiff)

	f(2,5)
$v_0 = x_1$	2
$v_1 = x_2$	5
$v_2 = \ln(v_0)$	ln(2) = 0.693
$v_3 = v_0 \cdot v_1$	$2 \times 5 = 10$
$v_4 = \sin(v_1)$	sin(5) = 0.959
$v_5 = v_2 + v_3$	0.693 + 10 = 10.693
$v_6 = v_5 - v_4$	10.693 + 0.959 = 11.652
$y = v_6$	11.652

Forward Evaluation Trace:

	f(2,5)
$\overline{v_0 = x_1}$	2
$v_1 = x_2$	5
$v_2 = \ln(v_0)$	ln(2) = 0.693
$v_3 = v_0 \cdot v_1$	$2 \times 5 = 10$
$v_4 = sin(v_1)$	sin(5) = 0.959
$v_5 = v_2 + v_3$	0.693 + 10 = 10.693
$v_6 = v_5 - v_4$	10.693 + 0.959 = 11.652
$y = v_6$	11.652

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$$

Lets see how we can **evaluate a derivative** using computational graph (DNN learning)

$$\left. \frac{\partial f(x_1, x_2)}{\partial x_1} \right|_{(x_1 = 2, x_2 = 5)}$$

We will do this with **forward mode** first, by introducing a derivative of each variable node with respect to the input variable.

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$$

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$$

Forw	ard Derivative Trace:	$\left \frac{\partial f(x_1, x_2)}{\partial x_1} \right _{(x_1 = 2, x_2 = 5)}$
	$\frac{\partial v_0}{\partial x_1}$	

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$$

Forw	ard Derivative Trace:	$\left \frac{\partial f(x_1, x_2)}{\partial x_1} \right _{(x_1 = 2, x_2 = 5)}$
	$\frac{\partial v_0}{\partial x_1}$	1

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$$

Forw	ard Derivative Trace:	$\left \frac{\partial f(x_1, x_2)}{\partial x_1} \right _{(x_1 = 2, x_2 = 5)}$
	$egin{array}{c} rac{\partial v_0}{\partial x_1} \ rac{\partial v_1}{\partial x_1} \ \hline rac{\partial v_1}{\partial x_1} \end{array}$	1

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$$

Forw	vard Derivative Trace:	$\left \frac{\partial f(x_1, x_2)}{\partial x_1} \right _{(x_1 = 2, x_2 = 5)}$
	$egin{array}{c} rac{\partial v_0}{\partial x_1} \ rac{\partial v_1}{\partial x_1} \end{array}$	1
	∂x_1	

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$$

Forward Derivative Trace:		$\partial f(x_1, x_2)$	
		$\left \frac{\partial f(x_1, x_2)}{\partial x_1} \right $	$(x_1=2, x_2=5)$
	$\frac{\partial v_0}{\partial x_1}$	1	
	$\frac{\partial v_1}{\partial x_1}$)
	$\frac{\partial v_2}{\partial x_1}$		

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$$

Forw	ard Derivative Trace:	$\left \frac{\partial f(x_1, x_2)}{\partial x_1} \right _{(x_1 = 2, x_2 = 5)}$
	$\frac{\partial v_0}{\partial x_1}$	1
	$\frac{\partial v_1}{\partial x_1}$	0
	$\frac{\partial v_2}{\partial x_1}$	
	Chain Rule	
V		

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$$

		\ - / -	_ (_ /	
Forw	vard Derivative Trace:	$\frac{\partial f(s)}{\partial s}$	$\frac{x_1, x_2}{\partial x_1}\Big _{(x_1=2)}$	$2,x_2=5)$
	$egin{array}{c} rac{\partial v_0}{\partial x_1} \ rac{\partial v_1}{\partial x_1} \end{array}$		1	
	$rac{\partial v_2}{\partial x_1} = rac{1}{v_0} rac{\partial v_0}{\partial x_1}$ Chain Rule			

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$$

_		
Forw	vard Derivative Trace:	$\left \frac{\partial f(x_1, x_2)}{\partial x_1}\right $
		$\left \frac{\partial \mathcal{J}(x_1) \partial \mathcal{I}}{\partial x_1} \right _{(x_1=2, x_2=5)}$
	$\frac{\partial v_0}{\partial x_1}$	1
	$\frac{\partial v_1}{\partial x_1}$	0
	$\frac{\partial v_2}{\partial x_1} = \frac{1}{v_0} \frac{\partial v_0}{\partial x_1}$	1/2 * 1 = 0.5
	Chain Rule	

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$$

Forw	vard Derivative Trace:	$\left \frac{\partial f(x_1, x_2)}{\partial x_1} \right _{(x_1 = 2, x_2 = 5)}$
	$ \frac{\partial v_0}{\partial x_1} \\ \frac{\partial v_1}{\partial x_1} $	1
	$\frac{\partial v_2}{\partial x_1} = \frac{1}{v_0} \frac{\partial v_0}{\partial x_1}$ $\frac{\partial v_3}{\partial x_1}$	1/2 * 1 = 0.5

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$$

Forward Evaluation Trace:

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$$

Forward Derivative Trace:

Forward Evaluation Trace:

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$$

Forward Derivative Trace:

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$$

Forward Derivative Trace:		$\partial f(x_1,x_2)$
	$\frac{\partial v_0}{\partial x_1}$	1
	$\frac{\partial v_1}{\partial x_1}$	0
	$\frac{\partial v_2}{\partial x_1} = \frac{1}{v_0} \frac{\partial v_0}{\partial x_1}$	1/2 * 1 = 0.5
	$\frac{\partial v_3}{\partial x_1} = \frac{\partial v_0}{\partial x_1} \cdot v_1 + v_0 \cdot \frac{\partial v_1}{\partial x_1}$	1*5 + 2*0 = 5
	$\frac{\partial v_4}{\partial x_1} = \frac{\partial v_1}{\partial x_1} cos(v_1)$	$0 * \cos(5) = 0$
	$\frac{\partial v_5}{\partial x_1} = \frac{\partial v_2}{\partial x_1} + \frac{\partial v_3}{\partial x_1}$	0.5 + 5 = 5.5
	$\frac{\partial v_6}{\partial x_1} = \frac{\partial v_5}{\partial x_1} - \frac{\partial v_4}{\partial x_1}$	5.5 - 0 = 5.5
	$\frac{\partial y}{\partial x_1} = \frac{\partial v_6}{\partial x_1}$	5.5

We now have:

$$\left. \frac{\partial f(x_1, x_2)}{\partial x_1} \right|_{(x_1 = 2, x_2 = 5)} = 5.5$$

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$$

Forward Derivative Trace:		$\partial f(x_1, x_2)$
		∂x_1 $ _{(x_1=2,x_2=5)}$
	$\frac{\partial v_0}{\partial x_1}$	1
	$\frac{\partial v_1}{\partial x_1}$	0
	$\frac{\partial v_2}{\partial x_1} = \frac{1}{v_0} \frac{\partial v_0}{\partial x_1}$	1/2 * 1 = 0.5
	$\frac{\partial v_3}{\partial x_1} = \frac{\partial v_0}{\partial x_1} \cdot v_1 + v_0 \cdot \frac{\partial v_1}{\partial x_1}$	1*5 + 2*0 = 5
	$\frac{\partial v_4}{\partial x_1} = \frac{\partial v_1}{\partial x_1} cos(v_1)$	$0 * \cos(5) = 0$
	$\frac{\partial v_5}{\partial x_1} = \frac{\partial v_2}{\partial x_1} + \frac{\partial v_3}{\partial x_1}$	0.5 + 5 = 5.5
	$\frac{\partial v_6}{\partial x_1} = \frac{\partial v_5}{\partial x_1} - \frac{\partial v_4}{\partial x_1}$	5.5 - 0 = 5.5
	$\frac{\partial y}{\partial x_1} = \frac{\partial v_6}{\partial x_1}$	5.5

We now have:

$$\left. \frac{\partial f(x_1, x_2)}{\partial x_1} \right|_{(x_1 = 2, x_2 = 5)} = 5.5$$

Still need:

$$\left. \frac{\partial f(x_1, x_2)}{\partial x_2} \right|_{(x_1 = 2, x_2 = 5)}$$

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$$

Forward Derivative Trace:	$\left \frac{\partial f(x_1, x_2)}{\partial x_1} \right _{(x_1 = 2, x_2 = 5)}$
$\frac{\partial v_0}{\partial x_1}$	1
$\frac{\partial v_1}{\partial x_1}$	0
$\frac{\partial v_2}{\partial x_1} = \frac{1}{v_0} \frac{\partial v_0}{\partial x_1}$	1/2 * 1 = 0.5
$\frac{\partial v_3}{\partial x_1} = \frac{\partial v_0}{\partial x_1} \cdot v_1 + v_0 \cdot \frac{\partial v_3}{\partial x_2}$	$\frac{\partial v_1}{\partial x_1} \qquad 1*5 + 2*0 = 5$
$\frac{\partial v_4}{\partial x_1} = \frac{\partial v_1}{\partial x_1} cos(v_1)$	$0 * \cos(5) = 0$
$\frac{\partial v_5}{\partial x_1} = \frac{\partial v_2}{\partial x_1} + \frac{\partial v_3}{\partial x_1}$	0.5 + 5 = 5.5
$\frac{\partial v_6}{\partial x_1} = \frac{\partial v_5}{\partial x_1} - \frac{\partial v_4}{\partial x_1}$	5.5 - 0 = 5.5
$\frac{\partial y}{\partial x_1} = \frac{\partial v_6}{\partial x_1}$	5.5

Forward mode needs m forward passes to get a full Jacobian (all gradients of output with respect to each input), where m is the number of inputs

$$\mathbf{y} = f(\mathbf{x}) : \mathbb{R}^m \to \mathbb{R}^n$$

Forward mode needs m forward passes to get a full Jacobian (all gradients of output with respect to each input), where m is the number of inputs

$$\mathbf{y} = f(\mathbf{x}) : \mathbb{R}^m \to \mathbb{R}^n$$

Problem: DNN typically has large number of inputs:

image as an input, plus all the weights and biases of layers = millions of inputs!

and very few outputs (many DNNs have n=1)

Forward mode needs m forward passes to get a full Jacobian (all gradients of output with respect to each input), where m is the number of inputs

$$\mathbf{y} = f(\mathbf{x}) : \mathbb{R}^m \to \mathbb{R}^n$$

Problem: DNN typically has large number of inputs:

image as an input, plus all the weights and biases of layers = millions of inputs!

and very few outputs (many DNNs have n=1)

Why?

Forward mode needs m forward passes to get a full Jacobian (all gradients of output with respect to each input), where m is the number of inputs

$$\mathbf{y} = f(\mathbf{x}) : \mathbb{R}^m \to \mathbb{R}^n$$

Problem: DNN typically has large number of inputs:

image as an input, plus all the weights and biases of layers = millions of inputs!

and very few outputs (many DNNs have n=1)

Automatic differentiation in **reverse mode** computes all gradients in n backwards passes (so for most DNNs in a single back pass — **back propagation**)

Forward Evaluation Trace:

	f(2,5)
$v_0 = x_1$	2
$v_1 = x_2$	5
$v_2 = \ln(v_0)$	ln(2) = 0.693
$v_3 = v_0 \cdot v_1$	$2 \times 5 = 10$
$v_4 = sin(v_1)$	sin(5) = 0.959
$v_5 = v_2 + v_3$	0.693 + 10 = 10.693
$v_6 = v_5 - v_4$	10.693 + 0.959 = 11.652
$y = v_6$	11.652

Traverse the original graph in the *reverse* topological order and for each node in the original graph introduce an **adjoint node**, which computes derivative of the output with respect to the local node (using Chain rule):

$$\bar{v}_i = \frac{\partial y_j}{\partial v_i} = \sum_{k \in \text{pa}(i)} \frac{\partial v_k}{\partial v_i} \frac{\partial y_j}{\partial v_k} = \sum_{k \in \text{pa}(i)} \frac{\partial v_k}{\partial v_i} \bar{v}_k$$

"local" derivative

Forward Evaluation Trace:

Forward Evaluation Trace:

Automatic Differentiation (AutoDiff)

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$$

AutoDiff can be done at various granularities

Elementary function granularity:

Complex function granularity:

Backpropagation Practical Issues

Backpropagation Practical Issues

$$\mathbf{y} = f(\mathbf{W}, \mathbf{b}, \mathbf{x}) = \mathbf{sigmoid}(\mathbf{W} \cdot \mathbf{x} + \mathbf{b})$$
 $\mathbf{W} \longrightarrow \mathbf{b} \longrightarrow \mathbf{b}$

Backpropagation Practical Issues

"**local**" Jacobians (matrix of partial derivatives, e.g. size |x| x |y|)

$$\mathbf{y} = f(\mathbf{W}, \mathbf{b}, \mathbf{x}) = \mathbf{sigmoid}(\mathbf{W} \cdot \mathbf{x} + \mathbf{b})$$

"backprop" Gradient

 $\mathbf{x},\mathbf{y} \in \mathbb{R}^{2048}$

Element-wise sigmoid layer:

 $\mathbf{x},\mathbf{y} \in \mathbb{R}^{2048}$

Element-wise sigmoid layer:

What is the dimension of Jacobian?

 $\mathbf{x},\mathbf{y} \in \mathbb{R}^{2048}$

Element-wise sigmoid layer:

What is the dimension of Jacobian?

What does it look like?

 $\mathbf{x},\mathbf{y} \in \mathbb{R}^{2048}$

Element-wise sigmoid layer:

What is the dimension of Jacobian?

What does it look like?

If we are working with a mini batch of 100 inputs-output pairs, technically Jacobian is a matrix 204,800 x 204,800

Backpropagation: Common questions

Question: Does BackProp only work for certain layers?

Answer: No, for any differentiable functions

Question: What is computational cost of BackProp?

Answer: On average about twice the forward pass

Question: Is BackProp a dual of forward propagation?

Answer: Yes

Backpropagation: Common questions

Question: Does BackProp only work for certain layers?

Answer: No, for any differentiable functions

Question: What is computational cost of BackProp?

Answer: On average about twice the forward pass

Question: Is BackProp a dual of forward propagation?

Answer: Yes

^{*} Adopted from slides by Marc'Aurelio Ranzato

$$a(x) = \mathbf{sigmoid}(x) = \frac{1}{1 + e^{-x}}$$

Sigmoid Activation

Computational Graph: 1-layer network

$$a(x) = \mathbf{sigmoid}(x) = \frac{1}{1 + e^{-x}}$$

Sigmoid Activation

Pros:

- Squishes everything in the range [0,1]
- Can be interpreted as "probability"
- Has well defined gradient everywhere

- Saturated neurons "kill" the gradients
- Non-zero centered
- Could be expensive to compute

$$a(x) = \mathbf{sigmoid}(x) = \frac{1}{1 + e^{-x}}$$

Sigmoid Activation

Sigmoid Gate

- Saturated neurons "kill" the gradients
- Non-zero centered
- Could be expensive to compute

$$a(x) = \mathbf{sigmoid}(x) = \frac{1}{1 + e^{-x}}$$

Sigmoid Activation

- Saturated neurons "kill" the gradients
- Non-zero centered
- Could be expensive to compute

$$a(x) = \mathbf{sigmoid}(x) = \frac{1}{1 + e^{-x}}$$

Sigmoid Activation

- Saturated neurons "kill" the gradients
- Non-zero centered
- Could be expensive to compute

$$a(x) = \mathbf{sigmoid}(x) = \frac{1}{1 + e^{-x}}$$

Sigmoid Activation

- Saturated neurons "kill" the gradients
- Non-zero centered
- Could be expensive to compute

$$a(x) = \mathbf{sigmoid}(x) = \frac{1}{1 + e^{-x}}$$

Sigmoid Activation

- Saturated neurons "kill" the gradients
- Non-zero centered
- Could be expensive to compute

$$a(x) = \mathbf{sigmoid}(x) = \frac{1}{1 + e^{-x}}$$

Sigmoid Activation

- Saturated neurons "kill" the gradients
- Non-zero centered
- Could be expensive to compute

$$a(x) = \mathbf{sigmoid}(x) = \frac{1}{1 + e^{-x}}$$

Sigmoid Activation

Activation Function: Tanh

Pros:

- Squishes everything in the range [-1,1]
- Centered around zero
- Has well defined gradient everywhere

Cons:

- Saturated neurons "kill" the gradients

$$a(x) = \tanh(x) = 2 \cdot \text{sigmoid}(2x) - 1$$
$$a(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$$

Tanh Activation

Activation Function: Rectified Linear Unit (ReLU)

Pros:

- Does not saturate (for x > 0)
- Computationally very efficient
- Converges faster in practice (e.g. 6 times faster)

Cons:

- Not zero centered

$$a(x) = max(0, x)$$

$$a'(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$$

ReLU Activation