THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 2: Introduction to Deep Learning

Course Logistics

- Update on course registrations — 39 students registered!

11 moved from walitlist, 15 still on the walitlist

http://piazza.com/ubc.ca/winterter12022/cpsc532s

Course Logistics

- Update on course registrations — 39 students registered!

11 moved from walitlist, 15 still on the walitlist

- Plazza — 29 students signed up so far

- plazza.com/ubc.ca/winterter12022/cpsc532s

- Access code: McGurk

http://piazza.com/ubc.ca/winterter12022/cpsc532s

Course Logistics

- Update on course registrations — 39 students registered!

11 moved from walitlist, 15 still on the walitlist

- Plazza — 29 students signed up so far

- plazza.com/ubc.ca/winterter12022/cpscb32s

- Access code: McGurk
- Assignment 0 is out (for practice only, no credit)

- Assignment 1 will be out later today (due in 1 week)

http://piazza.com/ubc.ca/winterter12022/cpsc532s

Course Logistics

- Update on course registrations — 39 students registered!

11 moved from walitlist, 15 still on the walitlist

- Plazza — 29 students signed up so far

- plazza.com/ubc.ca/winterter12022/cpscb32s

- Access code: McGurk
- Assignment 0 is out (for practice only, no credit)
- Assignment 1 will be out later today, at least in part (due in 1 week)

- Mine and TA office hours will be posted today (mine are 12:30-1:30 pm)

http://piazza.com/ubc.ca/winterter12022/cpsc532s

THE UNIVERSITY OF BRITISH COLUMBIA

Topics Iin Al (CPSC 532S):

Multimodal Learning with Vision, Language and Sound

Lecture 1: Introduction

Grading Ciriteria

* Assignments (programming) — 40% (total)
* Research papers — 20%

* Project — 40%

Grading Criteria

* Assignments (programming) — 40% (total)
* Research papers — 20%
* Project — 40%

NO LATE SUBMISSIONS — If you don’t complete the
assignment, hand in what you have

Assignments (5 assignments and 40% of grade total)

» Assignment O: Introduction to PyTorch (0%)

» Assignment 1: Neural Network Introduction (5%) — @ python'

Assignments all use Python Jupiter Notebooks, use Canvas to hand

everything in. Assignments always due at 11:59pm PST on due date.

Assignments (5 assignments and 40% of grade total)

» Assignment O: Introduction to PyTorch (0%)

» Assignment 1: Neural Network Introduction (5%) — @ python'

» Assignment 2: Convolutional Neural Networks (5%) — PYTORCH

Assignments all use Python Jupiter Notebooks, use Canvas to hand

everything in. Assignments always due at 11:59pm PST on due date.

Assignments (5 assignments and 40% of grade total)

» Assignment O: Introduction to PyTorch (0%)

» Assignment 1: Neural Network Introduction (5%) — @ python'
» Assignment 2: Convolutional Neural Networks (5%) — PYTORCH

» Assignment 3: RNN Language Modeling and Translation (10%) — PYTORCH

Assignments all use Python Jupiter Notebooks, use Canvas to hand

everything in. Assignments always due at 11:59pm PST on due date.

Assignments (5 assignments and 40% of grade total)

» Assignment O: Introduction to PyTorch (0%)

» Assignment 1: Neural Network Introduction (5%) — @ python’
» Assignment 2: Convolutional Neural Networks (5%) — PYTORCH
» Assignment 3: RNN Language Modeling and Translation (10%) — PYTORCH

» Assignment 4: Neural Model for Image Captioning / Retrieval (10%) — PYTORCH

Assignments all use Python Jupiter Notebooks, use Canvas to hand

everything in. Assignments always due at 11:59pm PST on due date.

Assignments (5 assignments and 40% of grade total)

» Assignment O: Introduction to PyTorch (0%)

» Assignment 1: Neural Network Introduction (5%) — @ python’

» Assignment 2: Convolutional Neural Networks (5%) — PYTORCH

» Assignment 3: RNN Language Modeling and Translation (10%) — PYTORCH

» Assignment 4: Neural Model for Image Captioning / Retrieval (10%) — PYTORCH

» Assignment 5: Advanced Architectures Graph NN and GANs (10%) — PYTORCH

Assignments all use Python Jupiter Notebooks, use Canvas to hand

everything in. Assignments always due at 11:59pm PST on due date.

Assignments (5 assignments and 40% of grade total)

| reserve the right to change release and due
dates for the assignments to accommodate
constraints of the course, do not take the
dates on web-page as “set In stone”.

Research Papers (reviews and presentation, 20% of grade total)

Presentation - 10%

* You will need to present 1 paper individually or as a group (group size will be
determined by # of people in class)

* Pick a paper from the syllabus individually (we will have process to pick #1, #2, #3 choices)
* WIll need to prepare slides and meet with me or TA for feedback
* |t IS your responsibllity to schedule these meetings

* | will ask you to record these presentation and we will make these available

Research Papers (reviews and presentation, 20% of grade total)

Presentation - 10%

* You will need to present 1 paper individually or as a group (group size will be
determined by # of people in class)

* Pick a paper from the syllabus individually (we will have process to pick #1, #2, #3 choices)
* WIll need to prepare slides and meet with me or TA for feedback
* |t IS your responsibllity to schedule these meetings

* | will ask you to record these presentation and we will make these available

Reading Reviews - 10%

* Individually, one for most lectures after the first half of semester

* Due 11:59pm a day before class where reading assigned, submitted via Canvas

Good Presentation

* You are effectively taking on responsibility for being an instructor for part of
the class (take i1t seriously)

* \What makes a good presentation”

- High-level overview of the problem and motivation

- Clear statement of the problem

- Overview of the technical details of the method, including necessary background
- Relationship of the approach and method to others discussed In class

- Discussion of strengths and weaknesses of the approach

- Discussion of strengths and weaknesses of the evaluation

- Discussion of potential extensions (published or potential)

Reading Reviews

* Designed to make sure you read the material and have thought about It prior
to class (to stimulate discussion)

- Short summary of the paper (3-4 sentences)

- Main contributions (2-3 bullet points)

- Positive / negative points (2-3 bullet points each)

- What did you not understand (was unclear) about the paper (2-3 bullet points)

-inal Project (40% of grade total)

* Group project (groups of 3 are encouraged, but fewer maybe possible)
» Groups are self-formed, you will not be assigned to a group

* YOU need to come up with a project proposal and then work on the project
as a group (each person in the group gets the same grade for the project)

* Project needs to be research oriented (not simply implementing an existing
paper); you can use code of existing paper as a starting point though

Project proposal + class presentation: 15%

Project + final presentation (during finals week): 25%

Sample Project ldeas

* [ranslate an image into a cartoon or Picasso drawing better than existing
approaches (e.g., experiment with loss functions, architectures)

* (Generating video clips by retrieving images relevant to lyrics of songs
» (Generating an iImage based on the sounds or linguistic description

» Compare different feature representation and role of visual attention in visual
question answering

» Storyboarding movie scripts

* Grounding a language/sound in an image

... there are endless possibilities ... think creatively and have fun!

THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 2: Introduction to Deep Learning

Introduction to Deep Learning

There Is a lot packed into today’s lecture (excerpts from a few lectures of CS231n)

CS231n: Convolutional Neural Networks for Visual Recognition %

Spring 2017

T 1=
T I I LB
T TR T
EEBEDEEERE
EEBUEREEEE

A
&
V.
£
K

*This network is running live in your bro

2

ser

if you want more details, check out CS231n lectures on-line

Covering: foundations and most important aspects of DNNs

Not-covering: neuroscience background of deep learning, optimization
(CPSC 340 & CPSC 540), and not a lot of theoretical underpinning

‘Diene
¢ PIXA
R

Piene
7 PIX
A
| 24

| inear regression (review)

Set

production
COsts

Inputs (features)

promotional genre of box office
COSts the movie first week
X gl) X ?El) X il)
X 52) X ?EZ) X iZ)
X 53) X §3) ” iB)

total book
sales

o
@

P

total revenue total revenue

USA

INnternational

*slide adopted from V. Ordonex

| inear regression (review)

Inputs (features)

total revenue total revenue

production promotional genre of box office total book

costs costs the movie first week sales USA international
Training X§1) x:gl) X§1) xil) xél) yl(l) yz(l)

X§2) x§2) x?EZ) xiZ) xéZ) y1(2) y2(2)

I I Bl | I

- §4) o §4) o §4) o 24) X §4)

xiS) x§5) x:gS) xiS) xéS)

*slide adopted from V. Ordonex

| inear regression (review)

Training

production
COsts

promotional genre of
costs the movie
X 51) X §1)
X 52) X §2)
X gs) X §3)
X 54) X §4)
X 55) X §5)

Inputs (features)

box office
first week

total book
sales

D

o

total revenue total revenue

USA international
yl(l))’2(1)
y1(2) y2(2)

y 1(3) y 2(3)

*slide adopted from V. Ordonex

| inear regression (review)

Yj = Z wjix; + by

each output Is a linear combination of inputs plus bias, easier to write in matrix form:

v=W'x+Db

*slide adopted from V. Ordonex

| inear regression (review)

Uj = Z w;iTi + 0;

each output Is a linear combination of inputs plus bias, easier to write in matrix form:

v=W'x+Db

Inputs (features) Outputs

Key to accurate prediction is

. : X1 " X3 X4 X5 32 Vs
Igarnlng paralmetlers Ito minimize 2 e e e e e o
discrepancy with historical data D L e e e e e

Dtrain — {(X(d)v y(d>)}

*slide adopted from V. Ordonex

| inear regression (review)

— Z w]'z'.flji —+- bj

each output Is a linear combination of inputs plus bias, easier to write in matrix form:

—W'x+Db

‘Dtrazn‘
y(d) (d))

Key to accurate prediction Is [,(
learning parameters to minimize
discrepancy with historical data

g (x(D) () :
Dtrazn {(Y)} -\Rf*7 .t)>l< — a,rg 111111 E(Wp b)

*slide adopted from V. Ordonex

d=1

| inear regression (review)

Yj = ijiafi + 0;

each output Is a linear combination of inputs plus bias, easier to write in matrix form:

v=W'x+Db

|l)train|
Key to accurate prediction is E(W, b) — Z |‘y(d) o y(d)‘ |2

learning parameters to minimize
discrepancy with historical data d=1

 f(x(@D (@ :
Dtrazn {(y)} -\Rf*7 .t)>l< — a,rg 111111 E(Wp b)

*slide adopted from V. Ordonex

| inear regression (review) — Learning /w Least Squares
|Dtrain|
L(W,b)=) HWT x4 + b — y(d)H
d=1

W*, b* = argmin L(W, b)

Solution:

*slide adopted from V. Ordonex

| inear regression (review) — Learning /w Least Squares

|Dtrain|
L(W,Db) Z HWT x(@ L b — y<d>H
d=1

W*, b* = argmin L(W, b)

Solution:

*slide adopted from V. Ordonex

| inear regression (review) — Learning /w Least Squares

Solution:

|Dtrain|
L(W,Db) Z HWT x(@ L b — y<d>H
d=1

W*, b* = argmin L(W, b)

aﬁg()::;) — 833-7, th:n‘ ‘WT x(@ L p— y(d)| ‘
OL(W,b) o e T (d) (d)
ow., Ow., HW by ||
It I =1

*slide adopted from V. Ordonex

| inear regression (review) — Learning /w Least Squares

|Dtrain|
L(W,Db) Z HWT x(@ L b — y<d>H
d=1

W*, b* = argmin L(W, b)

Solution:
aﬁ(‘(??:; 2 - 833@ th:n‘ ‘WT 9 +b - y(d)| ‘
0L(W,b) 0 S n‘ ‘WTX(d) +b—y<d>| |2 _
ow ;; ow j; —

after some operations — W* = (X' X)7'X"'Y

*slide adopted from V. Ordonex

One-layer Neural Network

Input Layer

Output Layer

Activation
Function

Linear Activation

One-layer Neural Network

Input Layer

Multi-layer Perceptron Layer (MLP) / Fully Connected (FC) Layer

Weighted Activation
. Sum Function

Fully Connected (FC) Layer = Activation Function (Linear Layer)

One-layer Neural Network

Input Layer

Multi-layer Neural Network

Input Layer

L1

//

=
N

/17
4

‘.
\
X

\‘ﬁl\
N\

=
ot

Neural Network Intuition

Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)

* slide from Marc’Aurelio Renzato

Neural Network Intuition

Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping”?

Answer: Compositions of simpler functions (a.k.a. layers)? \We will talk more
about what specific functions next ...

* slide from Marc’Aurelio Renzato

Neural Network Intuition

Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping”?

Answer: Compositions of simpler functions (a.k.a. layers)? \We will talk more
about what specific functions next ...

Question: What does a hidden unit do?
Answer: |t can be thought of as classifier or a feature.

* slide from Marc’Aurelio Renzato

Inputs (features) Outputs
[genre of box office total book total revenue total revenue

Neural Network Intuition

1 1 1 1 1 1 1
.'X,'i) xz() x3() xq() xs() yf) yZ()
2 2 2 2 2 2 2
:c](. . .‘(g) :tg . .‘C4(. ;(é))f) 32(.
3 3 3 3 3 3 3
X§) xz() x3() xq() xs() yf) yZ()

1 0 0 0

e.g., hidden unit = production cost + promotion cost

e.q., p(film over budget) = sigmoid (hidden unit)

Question: What does a hidden unit do”?

Answer:

t can be thought of as classifier or a feature.

* slide from Marc’Aurelio Renzato

Neural Network Intuition

Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping”?

Answer: Compositions of simpler functions (a.k.a. layers)? \We will talk more
about what specific functions next ...

Question: What does a hidden unit do?
Answer: |t can be thought of as classifier or a feature.

Question: Why have many layers?

Answer: 1) More layers = more complex functional mapping

2) More efficient due to distributed representation

* slide from Marc’Aurelio Renzato

Multi-layer Neural Network

Input Layer

L1

//

=
N

/17
4

‘.
\
X

Ny

Linear Activation

Multi-layer Neural Network

Linear Activation

Multi-layer Neural Network

Input Layer

Why"/

L]
2nd Hidden Layer

1st Hidden Layer

Y

‘v
P

&
N

\J

Recall: a(r) ==

Output Layer

W, (Who (Whix+bp1) +bps) + b, =

Linear Activation

Multi-layer Neural Network

Input Layer

Why"/

L]
2nd Hidden Layer

1st Hidden Layer

Y

‘v
P

&
N

\J

Output Layer

W, (Who (Whix+bp1) +bps) + b, =

Linear Activation

Recall: a(x) — X => entire neural network is linear, which is not expressive

One-layer Neural Network

Input Layer

Output Layer

Activation
Function

Linear Activation

One-layer Neural Network

Input Layer

1

a(xr) = sigmoid(x)

14 e®
Output Layer

A
Activation

Function

Sigmoid Activation

Light Theory: Neural Network as Universal Approximator

Neural network can arbitrarily approximate any continuous function for every
value of possible inputs

R f(z)

> T

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

Neural network can arbitrarily approximate any continuous function for every
value of possible inputs

R f(z)

> T

The guarantee is that by using enough hidden neurons we can always find a
neural network whose output g(z) satisfies |g(z) — f(x)| < € for an arbitrarily
small €

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

Lets start with a simple network: one hidden layer with two hidden neurons
and a single output layer with one neuron (with sigmoid activations)

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

Lets start with a simple network: one hidden layer with two hidden neurons
and a single output layer with one neuron (with sigmoid activations)

L et’s look at output of this (hidden) neuron as a function
of parameters (weight, bias)

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

Lets start with a simple network: one hidden layer with two hidden neurons
and a single output layer with one neuron (with sigmoid activations)

L et’s look at output of this (hidden) neuron as a function
of parameters (weight, bias)

1 N Output from top hidden neuron

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

Lets start with a simple network: one hidden layer with two hidden neurons
and a single output layer with one neuron (with sigmoid activations)

L et’s look at output of this (hidden) neuron as a function
of parameters (weight, bias)

1 N Output from top hidden neuron

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

By dialing up the weight (e.g. w = 999) we can actually create a “step” function

. A Output from top hidden neuron

b = -40

.

K

/

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

By dialing up the weight (e.g. w = 999) we can actually create a “step” function

't Is easier to work with sums of step functions, so we can assume that every
neuron outputs a step function.

. A Output from top hidden neuron

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

By dialing up the weight (e.g. w = 999) we can actually create a “step” function

't Is easier to work with sums of step functions, so we can assume that every
neuron outputs a step function.

. A Output from top hidden neuron

Location of the step? b = -40

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

By dialing up the weight (e.g. w = 999) we can actually create a “step” function

't Is easier to work with sums of step functions, so we can assume that every
neuron outputs a step function.

. /‘\ Output from top hidden neuron
Location of the step? b=-40
b)
S = w = 1007~
£ / (0 >

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

By dialing up the weight (e.g. w = 999) we can actually create a “step” function

't Is easier to work with sums of step functions, so we can assume that every
neuron outputs a step function

. A Output from top hidden neuron
Location of the step? s = 0.40
b \
S = A
W0 -
Z (0 >

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

The output neuron is a weighted combination of step functions (assuming
bias for that layer is O)

> AN Weighted output from hidden layer

) N:O-V T
v NS w, = 1.2

A -

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

The output neuron is a weighted combination of step functions (assuming
bias for that layer is O)

5 A Weighted output from hidden layer

. £

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

The output neuron is a weighted combination of step functions (assuming
bias for that layer is O)

AN Weighted output from hidden layer

/
\

-

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

5 AN Weighted output from hidden layer

040

/060 =~)
/

\
\ /’

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

3 A Weighted output from hidden layer

|:,0’ | 'O\:‘ - | |
> h=-1.3 2 Riemann sum approximation

l 0.2 a
;jj::=::< ‘_ h=-1.6 :1: \A

\

4 1 | = D
I., .I, ':/" ‘\\‘ l.v -Il

,‘ | Average deviation: 0.39
\ 0.6) Success!

- | Reset

:‘:ﬁ::zzzij; h=-1.2

(08)
>~ h=1.0

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

t Riemann sum approximation

A

-
B
R
4
4
e

"

m

Light Theory: Neural Network as Universal Approximator

Conditions needed for proof to hold: Activation function needs to be well

defined
m11_):0[;<> a(x) = A
A+#B

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

Conditions needed for proof to hold: Activation function needs to be well

definea
mlgx;@ a(x) = A
A H7) = B
A+ B

Note: [his gives us another way to provably say that linear activation function

cannot produce a neural network which Is an universal approximator.

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

Universal Approximation Theorem: Single hidden layer can approximate any
continuous function with compact support to arbitrary accuracy, when the

width goes to Infinity. [Hornik et al., 1989]
Hidden Layer

Input Layer
Output Layer

Light Theory: Neural Network as Universal Approximator

Universal Approximation Theorem: Single hidden layer can approximate any
continuous function with compact support to arbitrary accuracy, when the
width goes to Infinity. [Hornik et al., 1989]

Universal Approximation Theorem (revised): A network of infinite depth
with a hidden layer of size d + 1 neurons, where d is the dimension of the input

space, can approximate any continuous function.

Hidden Layer 1 Hidden Layer K | Lu et al., NIPS 2017 |

Input Layer

Output Layer

Light Theory: Neural Network as Universal Approximator

Universal Approximation Theorem: Single hidden layer can approximate any
continuous function with compact support to arbitrary accuracy, when the
width goes to Infinity. [Hornik et al., 1989]

Universal Approximation Theorem (revised): A network of infinite depth
with a hidden layer of size d + 1 neurons, where d is the dimension of the input

space, can approximate any continuous function.
[Lu et al., NIPS 2017]

Universal Approximation Theorem (further revised): ResNet with a single
hidden unit and infinite depth can approximate any continuous function.

[Lin and Jegelka, NIPS 2018 |

Light Theory: Neural Network as Universal Approximator

Input Layer Output Layer

Hidden Layer 1 Hidden Layer K

POEN -

Universal Approximation Theorem (further revised): ResNet with a single
hidden unit and infinite depth can approximate any continuous function.

| Lin and Jegelka, NIPS 2018 |

Practical Observations

Neural Network represents a function using a piece-wise linear approximation

Practical Observations

Neural Network represents a function using a piece-wise linear approximation

Expressivity (theoretic quality) of NN = the numlber of piece-wise linear regions
— Numlber of regions is a polynomial function of units per layer (breadth of NN)

— Numlber of regions is an exponential function of layers (depth of NN)

Practical Observations

Neural Network represents a function using a piece-wise linear approximation

Expressivity (theoretic quality) of NN = the numlber of piece-wise linear regions
— Numlber of regions is a polynomial function of units per layer (breadth of NN)

— Numlber of regions is an exponential function of layers (depth of NN)

Effectiveness (practical quality) of the NN is also a function of optimization

— Deep networks are generally harder to optimize

Practical Observations

Neural Network represents a function using a piece-wise linear approximation

Expressivity (theoretic quality) of NN = the numlber of piece-wise linear regions

— Numlber of regions is a polynomial function of units per layer (breadth of NN)

— Numlber of regions is an exponential function of layers (depth of NN)

Effectiveness (practical quality) of the NN is also a function of optimization

— Deep networks are generally harder to optimize

Note: In recent literature the

of parameters have been used as a proxy for

expressiveness of NN, this Is not a great practice, because It ignores topology.

One-layer Neural Network

Input Layer

1

a(xr) = sigmoid(x)

14 e®
Output Layer

A
Activation

Function

Sigmoid Activation

Learning Parameters of One-layer Neural Network

|Dtrain| 5
L(W,b) = Z (Singid (WTx(d) + b) — y(d)>
d=1

W*, b* = argmin L(W, b)

*slide adopted from V. Ordonex

Learning Parameters of One-layer Neural Network

|Dt7°a/£n| 5
L(W,b) = Z (Singid (WTx(d) + b) — y(d)>
d=1

W*, b* = argmin L(W, b)

Solution:
| Dirain]
)25 i ())
|Dt n|
)0 gt (w9 3))

*slide adopted from V. Ordonex

Learning Parameters of One-layer Neural Network

|Dt7°a/£n| 5
L(W,b) = Z (Singid (WTx(d) + b) — y(d)>
d=1

W*, b* = argmin L(W, b)

Solution:
IL(W,b) g Puant =)
ow, — w; ; (SlngId (WTX(d) + b) _ y(d))
IL(W.b) o et >
Jwa ow dz:; (51gm01d (WTx(d) + b) — y(d)) =0

OL(W,b)

=0
@wjz-

Problem: No closed form solution

*slide adopted from V. Ordonex

Gradient Descent (review)

|Dt7"ain| 2
L(W,b) = (sigmoid (WTx<d> + b) _ y<d>)
d=1

A

*slide adopted from V. Ordonex

Gradient Descent (review)

\ [Dirain] , 1. Start from random value of Wy, b
L(W,b)= > (sigmoid (W'x@ +b) —y(®)
d=1

*slide adopted from V. Ordonex

Gradient Descent (review)

\ [Dirain] , 1. Start from random value of W, bg
L(W,b)= > (sigmoid (W'x@ +b) —y(®)
d=1

*slide adopted from V. Ordonex

Gradient Descent (review)

Dyrain] , 1. Start from random value of W, bg
AR (sigmoid (WTx<d> + b) _ y<d>)
d=1
For kK = 0 to max number of iterations

2. Compute gradient of the loss with
respect to previous (initial) parameters:

V L(Wv b) ‘W:Wk ,b=Dby

*slide adopted from V. Ordonex

Gradient Descent (review)

Dyrain] , 1. Start from random value of W, bg
AR (sigmoid (WTx<d> + b) _ y<d>)
d=1
For kK = 0 to max number of iterations

2. Compute gradient of the loss with
respect to previous (initial) parameters:

V £(W7 b) |W:Wk,b=bk

*slide adopted from V. Ordonex

Gradient Descent (review)

A Dyrain] , 1. Start from random value of W, bg
LW, b)= Y (sigmoid (WTx<d> + b) _ y<d>)
d=1
For kK = 0 to max number of iterations

2. Compute gradient of the loss with
respect to previous (initial) parameters:

V L(W7 b) |W:Wk ,b=Dbp

3. Re-estimate the parameters

OL(W. b
Wit = Wi — A é‘W)
W=W, b=b,
>
OL(W,b
bit1 =br — A (0b)
W=W,,b=b,

*slide adopted from V. Ordonex

Gradient Descent (review)

A | Dirain , 1. Start from random value of -
L(W,b) = Z (Sigmoid (WTX(d) + b) — y(d))

d=1
For £k = 0 to max number of iterations

2. Compute gradient of the loss with
respect to previous (initial) parameters:

3. Re-estimate the parameters

*slide adopted from V. Ordonex

Gradient Descent (review)

A Dyrain] , 1. Start from random value of Wy, bg
LW, b)= Y (sigmoid (WTx<d> + b) _ y<d>)
d=1
For kK = 0 to max number of iterations

2. Compute gradient of the loss with
respect to previous (initial) parameters:

V L(Wv b) ‘W:Wk ,b=Dby

3. Re-estimate the parameters

OL(W. b
Wit = Wi — A E”)‘W)
W=W, b=b,
>
OL(W,b
bit1 =br — A (6’b)
W=W,,b=b,

*slide adopted from V. Ordonex

Gradient Descent (review)

Dyrain] , 1. Start from random value of Wy, bg
AR (sigmoid (WTx<d> + b) _ y<d>)
d=1
For kK = 0 to max number of iterations

2. Compute gradient of the loss with
respect to previous (initial) parameters:

V L(Wv b) ‘W:Wk ,b=Dby

3. Re-estimate the parameters

0L(W,b)
Wk_|_1 — Wk —)\
- O0W W=W,,b=b,
>
O0L(W,b)
bk_|_1 — bk —)\
- Ob W=W,.b=b,

A - is the learning rate

*slide adopted from V. Ordonex

Stochastic Gradient Descent (review)

|Dtrain|

2
Z (sigmoid (WTX(d) + b) — y(d))
d=1

IL(W,b) O

8wjz- C%Uji

Stochastic Gradient Descent (review)

8[1({(;2; b) = 83j7; .(sigmoid (WTX(d) + b) — y(d))2

Problem: For large datasets computing sum Is expensive

Stochastic Gradient Descent (review)

|Dtraz'n|
W.b 2
OL(W,b) _ 0 E (sigm()id (WTX(d) + b) — y(d))
5’wjz- 8wj7; 1

Problem: For large datasets computing sum Is expensive

Solution: Compute approximate gradient with mini-batches of
much smaller size (as little as 1-example sometimes)

Stochastic Gradient Descent (review)

|Dtraz’n|
W.b 2
OL(W,b) _ 0 E (sigm()id (WTX(d) + b) — y(d>)
5’wjz- 8wj7; 1

Problem: For large datasets computing sum Is expensive

Solution: Compute approximate gradient with mini-batches of
much smaller size (as little as 1-example sometimes)

Problem: How do we compute the actual gradient?

Numerical Differentiation

1; - Vector of all zeros, except for one 1 in i-th location

We can approximate the gradient numerically, using:

0fx) . f(x+hl)— f(x)
8$7; -~ h—0 h

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Numerical Differentiation

1; - Vector of all zeros, except for one 1 in i-th location

We can approximate the gradient numerically, using:

0fx) . f(x+hl)— f(x)
(%7; - h—0 h

Even better, we can use central differencing:

8@; -~ h—0 2h

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Numerical Differentiation

1; - Vector of all zeros, except for one 1 in i-th location

We can approximate the gradient numerically, using:

0fx) . f(x+hl)— f(x)
(%7; - h—0 h

Even better, we can use central differencing:

8@; -~ h—0 2h

However, both of theses suffer from rounding errors and are not good enough
for learning (they are very good tools for checking the correctness of
implementation though, e.g., use A = 0.000001).

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Numerical Differentiation

1; - Vector of all zeros, except for one 1 in i-th location
1;; - Matrix of all zeros, except for one 1 in (i,j)-th location

We can approximate the gradient numerically, using:

5’£(W, b) . E(W + h].z'j, b) — L(W, b) QE(W, b) . E(W, b + hlj) — [,(W, b)
~ lim ~ lim
Ow; ; h—0 h 0b; h—0 h

Even better, we can use central differencing:

OL(W.b) . L(W+hly b)— L(W +hly;,b) OLW.b) . L(W.,b+hl;)— L(W,b+hl;)
Dwi; ho 2h Ob; hso 2h

However, both of theses suffer from rounding errors and are not good enough
for learning (they are very good tools for checking the correctness of
implementation though, e.g., use A = 0.000001).

Symbolic Differentiation y = f01,22) = In(z1) + 2122 — sin(2)

Input function is represented as computational graph (a symbolic tree)

Sory TR
w f’fzﬁ@m ~(o0)—v

\mp\ements differentiation rules for composite functions:

Sum Rule Product Rule Chain Rule

(@) +9e) _ Afle) | dylw) dUl)-gw) _df@) o dee) (o) _ dflg) dgle)
dx de = dw dx dx dx dx dg(x) dx

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Symbolic Differentiation y = f(e1,22) = In(21) + 2122 — sin(as)

Input function is represented as computational graph (a symbolic tree)

Sory TR
w @ﬁ@m ~(o0)—v

\mp\ements differentiation rules for composite functions:

Sum Rule Product Rule Chain Rule

d(f(z) +g(z)) df(z) dg(z) d(f(z)-g(x)) df() dg(z) d(f(g(z))) _df(g(x)) dg(z)

dx B dz = dz dx B dx g(x) + J (@) dx dx - dx dx

Problem: For complex functions, expressions can be exponentially large; also

difficult to deal with piece-wise functions (creates many symbolic cases)
*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Automatic Differentiation (AutoDiff) v=/true2) =)+ aes = sinfz)

Intuition: Interleave symbolic differentiation and simplification

Key ldea: apply symbolic differentiation at the elementary operation level,
evaluate and keep intermediate results

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Automatic Differentiation (AutoDiff) v=/true2) =)+ aes = sinfz)

Intuition: Interleave symbolic differentiation and simplification

Key Idea: apply symbolic differentiation at the elementary operation level,
evaluate and keep intermediate results

Success of deep learning owes A LOT to success of AutoDiff algorithms
(also to advances In parallel architectures, and large datasets, ...)

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Automatic Differentiation (AutoDiff) v=/true2) =)+ aes = sinfz)

Each node is an input, intermediate, or output variable

Computational graph (a DAG) with variable ordering from
topological sort.

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Automatic Differentiation (AutoDiff) v =/tx.e2) =nle) e = sinlz)

1 _,‘ @\

2 ’ @ sin ‘ ‘_’ g Computational graph is governed by these equations
Vo = L1
Each node is an input, intermediate, or output variable U1 = L2
vy = In(vp)
Computational graph (a DAG) with variable ordering from V3 = Vg - U1

topological sort. vy = sin(vy)

U5 = U2 + U3
Vg — Uy — U4y
Y = Vs

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Automatic Differentiation (AutoDiff) v=/true2) =)+ aes = sinfz)

Lets see how we can evaluate a function using
computational graph (DNN inferences)

/
$2—'@W '—’ Y Computational graph is governed by these equations

Vo — X1
Each node is an input, intermediate, or output variable U1 = L2

vy = In(vg)
Computational graph (a DAG) with variable ordering from V3 = Vg - U1

topological sort. vy = sin(vy)

U5 = U2 + U3
Vg — Uy — U4y
Y = Vs

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Automatic Differentiation (AutoDiff) ¥ =/tzz) =ilm)+ e = sinlz)

Lets see how we can evaluate a function using
computational graph (DNN inferences)

Forward Evaluation Irace:

Vg — X1
Each node is an input, intermediate, or output variable Vi = 967

vy = In(vg)
Computational graph (a DAG) with variable ordering from Vs = Vg - U1

topological sort. v = sin(vy)

U5 = V2 + U3

Vg — Uy — U4y

Automatic Differentiation (AutoDiff) ¥ =/tzz) =ilm)+ e = sinlz)

Lets see how we can evaluate a function using
computational graph (DNN inferences)

Forward Evaluation Irace:

Vg — 41 2
Each node is an input, intermediate, or output variable Vi = 967

vy = In(vg)
Computational graph (a DAG) with variable ordering from Vs = Vg - U1

topological sort. v = sin(vy)

U5 = V2 + U3

Vg — Uy — U4y

Automatic Differentiation (AutoDiff) ¥ =/tzz) =ilm)+ e = sinlz)

Lets see how we can evaluate a function using
computational graph (DNN inferences)

Forward Evaluation Irace:

Vg — X1
Each node is an input, intermediate, or output variable Vi = 967

vy = In(vg)
Computational graph (a DAG) with variable ordering from Vs = Vg - U1

topological sort. v = sin(vy)

U5 = V2 + U3

Vg — Uy — U4y

Automatic Differentiation (AutoDiff) ¥ =/tzz) =ilm)+ e = sinlz)

Lets see how we can evaluate a function using
computational graph (DNN inferences)

Forward Evaluation Irace:

Vo = 41
Each node is an input, intermediate, or output variable U1 = L2

vo = In(vg) n(2) = 0.693
Computational graph (a DAG) with variable ordering from Vs = Vg - U1

topological sort. v = sin(vy)

U5 = V2 + U3

Vg — Uy — U4y

Automatic Differentiation (AutoDiff) v =/tm=)=

r1) + r122 — sin(xs)

Lets see how we can evaluate a function using
computational graph (DNN inferences)

OO
@—'@ Sin ‘ ‘—'y

Forward Evaluation Irace:

f(2,5)
Vg — 41
Each node is an input, intermediate, or output variable bil = 49
vo = In(vg) n(2) = 0.693
Computational graph (a DAG) with variable ordering from Vs = Vg - Uy 55 =10
topological sort. vy = sin(vy) sin(5) = 0.959

U5 = V2 + U3
Vg — Uy — U4y

Y = Vs

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Automatic Differentiation (AutoDiff) v =/tm=)=

r1) + r122 — sin(xs)

Lets see how we can evaluate a function using
computational graph (DNN inferences)

OO
@—'@ Sin ‘ ‘—'y

Forward Evaluation Irace:

f(2,5)
Vg — 41
Each node is an input, intermediate, or output variable bil = 49
vo = In(vg) n(2) = 0.693
Computational graph (a DAG) with variable ordering from Vs = Vg - Uy 55 =10
topological sort. vy = sin(vy) sin(5) = 0.959

U5 = V2 + U3
Vg — Uy — U4y

Y = Vs

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Automatic Differentiation (AutoDiff) v=/trez) =izt me: = sinlz)

SECASC ;@
(Do) @ (o) —

Forward Evaluation Irace:

f(2,5)
Vo = T1
V1 = X9 ®
vo = In(vo) n(2) = 0.693
V3 = Vg * V1 2x5=10
vy = sin(vy) sin(5) = 0.959
V5 = Vg + U3 0.693 + 10 = 10.693
Vg — Us — U4 10.693 + 0.959 = 11.652
Y= "Ve 11.652

AutoDiff - Forward Mode

f(2,5)
Vo = 41
V1 = T2 5
vy = In(vp) n() = 0.693
U3 = Vg - U1 2x5=10
vy = sin(vy) sin(5) = 0.959

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Y = f(l'la 372) — ln(iUl) + X1To — SZR(:EQ)

Lets see how we can evaluate a derivative using
computational graph (DNN learning)

af(ajlv ZUQ)

axl (561:2,332:5)

We will do this with forward mode first, by
introducing a derivative of each variable node
with respect to the input variable.

AutoDiff - Forward Mode

N —>‘ \ @
ﬁ@—> @ (v)—

Forward Evaluation Irace:

f(2,5)
Vo = I1
V1 = T2 5
vy = In(vg) n(2) = 0.693
V3 = Vg * V1 2x5=10
vy = sin(v) sin(5) = 0.959
Vs = V2 + V3 0.693 + 10 = 10.693
Vg = Us — V4 10.693 + 0.959 = 11.652
Y = Vs 11.652

Yy — f($1,33‘2)

Forward Derivative

race.

= In(x

af(xlva)

8:1’;1

1) + 122 — sin(xo)

(331 :2,332 :5)

AutoDiff - Forward Mode

f(2,5)
Up = X1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(v) sin(5) = 0.959

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Yy — f($1,33‘2)

Forward Derivative

race.

= In(x

af(xlva)

8:1’;1

1) + 122 — sin(xo)

(331 :2,.7;2 :5)

O
8371

AutoDiff - Forward Mode

f(2,5)
Up = X1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(v) sin(5) = 0.959

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Yy — f($1,33‘2)

Forward Derivative

race.

= In(x

af(xlva)

8:1’;1

1) + 122 — sin(xo)

(331 :2,.7;2 :5)

O
8371

AutoDiff - Forward Mode

ww@ﬁ ()
SYAL

Forward Evaluation Irace:

f(2,5)
Vo = I1
V1 = T2 5
vy = In(vg) n(2) = 0.693
V3 = Vg * V1 2x5=10
vy = sin(v) sin(5) = 0.959
Vs = V2 + V3 0.693 + 10 = 10.693
Vg = Us — V4 10.693 + 0.959 = 11.652
Y = Vs 11.652

Yy — f($1,33‘2)

Forward Derivative

race.

= In(x

af(xlva)

8:1’;1

1) + 122 — sin(xo)

(331 :2,.7;2 :5)

Ovg
Oz,
Ovq
o0z,

AutoDiff - Forward Mode

ww@ﬁ ()
SYAL

Forward Evaluation Irace:

f(2,5)
Vo = I1
V1 = T2 5
vy = In(vg) n(2) = 0.693
V3 = Vg * V1 2x5=10
vy = sin(v) sin(5) = 0.959
Vs = V2 + V3 0.693 + 10 = 10.693
Vg = Us — V4 10.693 + 0.959 = 11.652
Y = Vs 11.652

Yy — f($1,33‘2)

Forward Derivative

race.

= In(x

af(xlva)

8:1’;1

1) + 122 — sin(xo)

(331 :2,.7;2 :5)

Ovg
Oz,
Ovq
o0z,

AutoDiff - Forward Mode

f(2,5)
Vo = L1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(v) sin(5) = 0.959

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Yy — f($1,33‘2)

Forward Derivative

race.

= In(x

af(xlva)

8:1’;1

1) + 122 — sin(xo)

(331 :2,.7;2 :5)

Ovg
Oxq
0vq
Ox1
0V
ox1

AutoDiff - Forward Mode

. ‘ \ @
L2 @ SN @ ' g

Forward Evaluation Irace:

f(2,5)
Vo = I1
V1 = T2 5
vy = In(vg) n(2) = 0.693
m1 2x5=10
vy = sin(v) sin(5) = 0.959
Vs = V2 + V3 0.693 + 10 = 10.693
Vg = Us — V4 10.693 + 0.959 = 11.652
Y = Vs 11.652

Forward Derivative Irace:

y:

f($17 33‘2)

= In(x

8f(£€1,£132)

8:1’;1

1) + 122 — sin(xo)

(331 :2,.7;2 :5)

8?)0

Oy

anl

Oy

82}2

Oy

Chain Rule

AutoDiff - Forward Mode

. ‘ \ @
L2 @ SN @ ' g

Forward Evaluation Irace:

f(2,5)
Vo = I1
V1 = T2 5
vy = In(vg) n(2) = 0.693
m1 2x5=10
vy = sin(v) sin(5) = 0.959
Vs = V2 + V3 0.693 + 10 = 10.693
Vg = Us — V4 10.693 + 0.959 = 11.652
Y = Vs 11.652

y = f(x1,22) = In(x

Forward Derivative Irace:

8f(£€1,£132)

8:1’;1

1) + 122 — sin(xo)

(331 :2,.7;2 :5)

8?)0

Oy

anl

Oy

82}2

Oy

1 (%0
Vo 8%1

Chain Rule

AutoDiff - Forward Mode

B =2
SNQE=0 @ D

Forward Evaluation Irace:

f(2,5)
Vo = I1
V1 = X9 5
vy = In(vg) n(2) = 0.693
m1 2x5=10
vy = sin(v) sin(5) = 0.959
Vs = V2 + V3 0.693 + 10 = 10.693
Vg = Us — V4 10.693 + 0.959 = 11.652
Y = Vs 11.652

y = f(x1,22) = In(x

1) + 122 — sin(xo)

Forward Derivative Trace: Of(x1,x2)
0T1 | (3,22,20=5)
6?]0
5’371 |
Ovq 0
8x1
0vs _ 1 Ovg 1/2*1=0.5
0xq vo 011
Chain Rule

AutoDiff - Forward Mode

N —>‘ \ @
ﬁ@—> @ (v)—

Forward Evaluation Irace:

f(2,5)
Vg — 41
V1 = I9 5
vy = In(vg) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vs = sin(vr) sin(5) = 0.959
Vs = Vg + U3 0.693 + 10 = 10.693
Vg = Us — U4 10.693 + 0.959 = 11.652
Y = Ve 11.652

Yy — f($1,33‘2)

Forward Derivative

race.

= In(x1) + x122 — sin(xzs)

af(xlva)

axl (331:2,.7;2:5)

8?)0

Oy

anl

Oy

82}2

Oy

(%3

Oy

1 5”00

Vo 8$1

1/2*1=0.5

AutoDiff - Forward Mode

O
00 @ @

Forward Evaluation Irace:

f(2,5)
Vg — 41
V1 = I9 5
vy = In(vg) n(2) = 0.693
V3 = Vg * V1 2x5=10
vs = sin(vr) sin(5) = 0.959
Vs = Vg + U3 0.693 + 10 = 10.693
Vg = Us — U4 10.693 + 0.959 = 11.652
Y = Ve 11.652

y = f(x1,22) = In(x

Forward Derivative Irace:

1) + 122 — sin(xo)

8f(£€1,£132)

axl (331:2,.7;2:5)

8?)0

Oy

anl

Oy

82}2

Oy

(%3

Oy

1 5”00
N Vo 8$1

Product Rule

1/2*1=0.5

Y = f(3317 372) — ln(il?l) + X1To — Sfm(:vg)

AutoDiff - Forward Mode

- _» ‘ Forward Derivative Irace: Of(z1,)
@ 0z (21=2,22=5)
\ Ovg
$2—>@ @ >‘—> Y 6’—:1:1 |
SN Ovq
Forward Evaluation Irace: % -~ 1 dug et oe
£(2,5) O0ri1 wvg 0xq
Ovs 0vg 0vq
Yo = T 5 a—aﬁza—xl-vl—l—vo-a—xl
V1 = X9 5 Product Rule
vo = In(vo) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(v) sin(5) = 0.959
V5 = VU2 + VU3 0.693 + 10 = 10.693
Vg — Us — U4 10.693 + 0.959 = 11.652
Y= Ve 11.652

Y = f(3317 372) — ln(il?l) + X1To — Sfm(:vg)

AutoDiff - Forward Mode

- _» ‘ Forward Derivative Irace: Of(z1,)
@ 0z (21=2,22=5)
\ Ovg
$2—>@ @ >‘—> Y 6’—:1:1 |
SN 0vq
Forward Evaluation Irace: % -~ 1 dug et oe
£(2,5) O0ri1 wvg 0xq
Ovs 0vg 0vq
Vo = X1 5 a—mza—aﬁ-ervo-a—xl 1"54+2*0=5
V1 = X9 5 Product Rule
vo = In(vo) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(v) sin(5) = 0.959
V5 = Vg + U3 0.693 + 10 = 10.693
Vg — U5 — U4 10.693 + 0.959 = 11.652
Y = Vs 11.652

AutoDiff - Forward Mode

xlﬁ‘\ @\

@
ST

Forward Evaluation Irace:

() —

Yy — f($1,33‘2)

= In(x

1) + 122 — sin(xo)

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

U5 = U2 + U3
Vg — Uy — U4y

Y = Vs

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Forward Derivative Trace: Of(x1,x2)
011 (r1=2,22=5)

6?)0
5,—371 1
82}1
a_xl 0
%: 1 Ovg 1/2*1=0.5
Oxr1 vy 0xq
Ovs Ovg 0vy
5»—331:3—%'@1_'_@0'8—331 16 +2"0=5
Oovy Ovy
S _ a—ml(:()s(vl) 0 * cos(5) = 0
Ovs B 0vo | Ovs
5 = 5z ' 52 05+5=55
0vg - 0vs Ovy
8—51;1 = 9t o 55-0=5.5
Oy Oue
a_xl _ a_xl 5.5

AutoDiff - Forward Mode

We now have:

8f($17$2)

a$1 (5131:2,332:5)

= 9.9

Y = f(wla 372) — ln(il?l) + X1To — Szn(xQ)

Forward Derivative Trace: Of(x1,x2)
011 (r1=2,22=5)

8?}0
a_wl 1
8@1
a_xl 0
%: 1 Ovg 1/2*1=0.5
Oxr1 vy 0xq
Ovs Ovg Juy
3—1.1:@—3;1.014_@0.8—@ 16 +2"0=5
Oovy Ovy
S _ 8—11;1008(vl) 0 * cos(5) = 0
Ovs B 0vo | Ovs
5 = 5z ' 52 05+5=55
0vg - 0vs Ovy
8—;1;1 = 9t o 55-0=5.5
Jy Oug
Oy 5.5

5’331_8—231

AutoDiff - Forward Mode

We now have:

8f($17$2)

a$1 (5131:2,332:5)

Still need:

af(xlv 513‘2)

axQ (5131 :2,5132:5)

= 9.9

Y = f(wla 372) — ln(il?l) + X1To — Szn(xQ)

Forward Derivative Trace: Of(x1,x2)
011 (r1=2,22=5)

8?}0
a_wl 1
8@1
a_xl 0
%: 1 Ovg 1/2*1=0.5
Oxr1 vy 0xq
Ovs Ovg Juy
3—1.1:@—3;1.014_@0.8—@ 16 +2"0=5
Oovy Ovy
S _ 8—11;1008(vl) 0 * cos(5) = 0
Ovs B 0vo | Ovs
5 = 5z ' 52 05+5=55
0vg - 0vs Ovy
8—;1;1 = 9t o 55-0=5.5
Jy Oug
Oy 5.5

5’331_8—231

AutoDiff - Forward Mode

Forward mode needs m forward passes to get a full Jacobian (all gradients of
output with respect to each input), where m is the number of inputs

y = f(x): R™ — R"

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

AutoDiff - Forward Mode

Forward mode needs m forward passes to get a full Jacobian (all gradients of
output with respect to each input), where m is the number of inputs

y = f(x): R™ — R"

Problem: DNN typically has large number of inputs:

image as an input, plus all the weights and biases of layers = millions of inputs!

and very few outputs (many DNNs have n = 1)

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

AutoDiff - Forward Mode

Forward mode needs m forward passes to get a full Jacobian (all gradients of
output with respect to each input), where m is the number of inputs

y = f(x): R™ — R"

Problem: DNN typically has large number of inputs:

image as an input, plus all the weights and biases of layers = millions of inputs!

and very few outputs (many DNNs have n, = 1) Why?

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

AutoDiff - Forward Mode

Forward mode needs m forward passes to get a full Jacobian (all gradients of
output with respect to each input), where m is the number of inputs

y = f(x): R™ — R"

Problem: DNN typically has large number of inputs:

image as an input, plus all the weights and biases of layers = millions of inputs!

and very few outputs (many DNNs have n = 1)

Automatic differentiation in reverse mode computes all gradients in 12 backwards
passes (so for most DNNs in a single back pass — back propagation)

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

AutoDiif - Reverse Mode

"—OLE @
\ e @ @
Dk

Forward Evaluation Irace:

Traverse the original graph in the reverse
£(2,5) topological order and for each node In the

’ original graph introduce an adjoint node, which
Vo = X1 2 computes derivative of the output with respect
to the local node (using Chain rule):

V1 = T2 O

vz = In(vo) n(2) = 0.693

V3 = Vg * U1 2Xx5=10

Vg = sin(vl) sin(®) = 0.959 b, = ayj _ Z a’Ulc ayy Z avk o
Us = VU2 T U3 0.693 + 10 = 10.693 dv; kepa(i) Ov; 87)16 kepal(i) Jv;

Vg — Us — U4 10.693 + 0.959 = 11.652

Y = Ve 11.652 “local” derivative

AutoDiif - Reverse Mode

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

2 —— > Vg4 |« — Y

Backwards Derivative Irace;

AutoDiif - Reverse Mode

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

2 —— > Vg4 |« — Y

Backwards Derivative Irace;

AutoDiif - Reverse Mode

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

2 —— > Vg4 |« — Y

Backwards Derivative Irace;

AutoDiif - Reverse Mode

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

2 —— > Vg4 |« — Y

Backwards Derivative Irace;

__ Ovg
Uy — Uﬁ—av
5
Oy
6 = —— 1

AutoDiif - Reverse Mode

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

2 —— - 4 « <—y

Backwards Derivative Irace;

__ Ovg
Uy — UG_@U
5
Oy
6 = —— 1

AutoDiif - Reverse Mode

@ @ O
\ \ L9 4—@4 ”(_]4 < 4— y
. _, IR Backwards Derivative Irace:
2 Sin " — Y

Forward Evaluation [race:
f(2,5)
Vg — L1
V1 = I9 5
vo = In(vo) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(v) sin(5) = 0.959
Vs = Vg + VU3 0.693 + 10 = 10.693 Ovg
Vs = Vg —=—— = Vg 1
Vg — Uy — U4y 10.093 + 0.959 = 11.652 O0vs
Y = s 11.652 o= 1
82)6

AutoDiif - Reverse Mode

. ‘ \ @
L2 @ SN @ ' g

Forward Evaluation Irace:

f(2,5)
Vo = I1
V1 = X9 5
vy = In(vg) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(v) sin(5) = 0.959
Vs = V2 + V3 0.693 + 10 = 10.693
Vg = Us — V4 10.693 + 0.959 = 11.652
Y = Vs 11.652

Backwards Derivative Irace;

()—

1x1 = 1

AutoDiif - Reverse Mode

(D) @
Sin

Forward Evaluation Irace:

SR

() —

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

U5 = U2 + U3
Vg — Uy — U4y

Y = Vs

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Backwards Derivative Irace;

-
N
|
S
@)

-~
o)
|
c
o
|
~{
@)
o

c
)
|

@\

()—

1x1 = 1

AutoDiif - Reverse Mode

(D) @
Sin

Forward Evaluation Irace:

SR

() —

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

U5 = U2 + U3
Vg — Uy — U4y

Y = Vs

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Backwards Derivative Irace;

-
N
|
S
@)

-~
o)
|
c
o
|
~{
@)
o

c
)
|

@\

()—

1x1 = 1

AutoDiif - Reverse Mode

B _>’ \ @
L2 @ sin @ ' g

Forward Evaluation Irace:

xl_‘\ @\

Backwards Derivative Irace;

()—

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

0
@4_@6ﬁ:@6 (—1)
8”04
~_ 0Ovg _ .
Vs = Vg——7
5} 63?)5 6
Oy

c
)
|

1x1 = 1

AutoDiif - Reverse Mode

(D) @
Sin

Forward Evaluation Irace:

SR

() —

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

U5 = U2 + U3
Vg — Uy — U4y

Y = Vs

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Backwards Derivative Irace;

0
@4_@6ﬁ:@6 (—1)
8”04
~_ 0Ovg _ .
Vs = Vg——7
5} 63?)5 6
Oy

c
)
|

@\

()—

1x-1 = -1

1x1 = 1

AutoDiif - Reverse Mode

OO
00 @ @

Forward Evaluation Irace:

f(2,5)
Vo = T1
V1 = I9 5
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(v) sin(5) = 0.959
V5 = Vg + U3 0.693 + 10 = 10.693
Vg — U5 — U4 10.693 + 0.959 = 11.652
Y= Ve 11.652

TOsw @\

@_@/ @—s

Backwards Derivative Irace;

@ -

=~ o
| |
c c

@) Ot
|

~{

o

~—~
|

-

~—

-~
o)
|
c
o
|
~{
@)
o

c
)
|

1x-1 = -1

1x1 = 1

AutoDiif - Reverse Mode

OO
00 @ @

Forward Evaluation Irace:

f(2,5)
Vo = T1
V1 = I9 5
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(v) sin(5) = 0.959
V5 = Vg + U3 0.693 + 10 = 10.693
Vg — U5 — U4 10.693 + 0.959 = 11.652
Y= Ve 11.652

TOsw @\

@_@/ @—s

Backwards Derivative Irace;

@ -

=~ o
| |
c c

@) Ot
|

~{

o

~—~
|

-

~—

-~
o)
|
c
o
|
~{
@)
o

c
)
|

1x-1 = -1

1x1 = 1

AutoDiif - Reverse Mode

OO
L2 @ sin @ " g

Forward Evaluation Irace:

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

Us = U2 + U3
Vg — Uy — U4y

Y = Vs

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Backwards Derivative Irace;

-
W
|
S
O
|
=4
@
~—~
e
~—

~
N
|
S
@)
|
i~
o))
~—~
|
ek
—

-~
o)
|
c
o
|
~{
@)
o

c
)
|

@\

()—

1x-1 = -1

1x1 = 1

AutoDiif - Reverse Mode

OO
L2 @ sin @ " g

Forward Evaluation Irace:

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

Us = U2 + U3
Vg — Uy — U4y

Y = Vs

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Backwards Derivative Irace;

-
W
|
S
O
|
=4
@
~—~
e
~—

c c
Ot H~
| |
> >
oy o
| |
s s
— ~—~
|
ek
~—

c
)
|

@\

()—

1x1 =1

1x-1 = -1

1x1 = 1

AutoDiif - Reverse Mode

OO
L2 @ sin @ " g

Forward Evaluation Irace:

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

U5 = U2 + U3
Vg — Uy — U4y

Y = Vs

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Backwards Derivative Irace;

-
W
|
S
O
|
=4
@
~—~
e
~—

~
N
|
S
@)
|
i~
o))
~—~
|
ek
—

-~
o)
|
c
o
|
~{
@)
o

c
)
|

@\

()—

1x1 =1

1x-1 = -1

1x1 = 1

AutoDiif - Reverse Mode

OO
L2 @ sin @ " g

Forward Evaluation Irace:

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

Us = U2 + U3
Vg — Uy — U4y

Y = Vs

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Backwards Derivative Irace;

-
W
|
S
O
|
=4
@
~—~
e
~—

~
N
|
S
@)
|
i~
o))
~—~
|
ek
—

-~
o)
|
c
o
|
~{
@)
o

c
)
|

@\

()—

1x1 =1

1x-1 = -1

1x1 = 1

AutoDiif - Reverse Mode

OO
L2 @ sin @ " g

Forward Evaluation Irace:

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

Us = U2 + U3
Vg — Uy — U4y

Y = Vs

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Backwards Derivative Irace;

?72—?75(%2_?75 (1)

_ _ Ov _

v3:v5a—UZ=v5 (1)
OV _

@4—@68_0227}6 (—1)

0 = T6 228 — g - 1

5 6(%5 6

. 0y

c
)
|

@\

()—

1x1 =1

1x-1 = -1

1x1 = 1

AutoDiif - Reverse Mode

OO
L2 @ sin @ " g

Forward Evaluation Irace:

f(2,5)
Vo = T1
V1 = T2 O
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

Us = U2 + U3
Vg — Uy — U4y

Y = Vs

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

Backwards Derivative Irace;

?72—?75(%2_?75 (1)

_ _ Ov _

v3:v5a—UZ=v5 (1)
OV _

@4—@68_0227}6 (—1)

0 = T6 228 — g - 1

5 6(%5 6

. 0y

c
)
|

@\

()—

1x1 =1

1x1 =1

1x-1 = -1

1x1 = 1

AutoDiif - Reverse Mode

OO
00 @ @

Forward Evaluation Irace:

f(2,5)
Vo = T1
V1 = I9 5
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(v) sin(5) = 0.959
V5 = Vg + U3 0.693 + 10 = 10.693
Vg — U5 — U4 10.693 + 0.959 = 11.652
Y= Ve 11.652

2 —— > Vg4 |« — Y

Backwards Derivative Irace;

Uy = Us = U5 - (1) 1x1 = 1

U3 =Us5— = U5 - (1) 1x1 = 1

~
N
|
S
@)
|
i~
o))
~—~
|
ek
—

1x-1 = -1

-~
o)
|
c
o
|
~{
@)
o

o ' 1x1 = 1

c
)
|

AutoDiif - Reverse Mode

OO
R Oe=0 @ D

Forward Evaluation Irace:

f(2,5)
Vo = T1
V1 = I9 5
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(v) sin(5) = 0.959
V5 = Vg + U3 0.693 + 10 = 10.693
Vg — U5 — U4 10.693 + 0.959 = 11.652
Y= Ve 11.652

= = 5’?}3 | 8U4
: 382}1 | 02}1
~ 0 _
vQ:U5(%Z = U5 - (1)
~_ Ovs _
032053—2}2205 (1)
Ov ~
@4—@68_0222}6 (—1)
Bs = G528 = 5is - 1
5 6(%5 6
Oy
Vg — —

()—

1x1 =1

1x1 =1

1x-1 = -1

1x1 = 1

AutoDiif - Reverse Mode

OO
R Oe=0 @ D

Forward Evaluation Irace:

f(2,5)
Vo = T
V1 = I9 5
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959
U5 = Vg + U3 0.693 + 10 = 10.693
Ve = Us — V4 10.693 + 0.959 = 11.652
Y = Ve 11.652

= = 5’?}3 | 8U4
: 382}1 | 02}1
~ 0 _
02205(%2 = U5 - (1)
~_ Ovs _
032053—2}2205 (1)
Ov ~
@4—@68_0227}6 (—1)
Bs = G528 = 5is - 1
5 6(%5 6
Oy
Vg — —

()—

1x1 =1

1x1 =1

1x-1 = -1

1x1 = 1

AutoDiif - Reverse Mode

(D) @
Sin

Forward Evaluation Irace:

SR

() —

f(2,5)
Vo = X1
V1 = T2 5
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

U5 = U2 + U3
Vg — Uy — U4y

Y = Vs

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

()—

Backwards Derivative Irace;

Wy 5,90
8”01 | 4801

= U5 - (1) 1x1 =1

— V3V + 1_}4608(1}1)

U3 = Us—=— = U5 - (1) 11 = 1

— = Vg - (—1) 1x-1 = -1

-
N
|
~4
OB

-~
o)
|
c
o
|
~{
@)
o

Io- ° 1x1 = 1

c
)
|

AutoDiif - Reverse Mode

(D) @
Sin

Forward Evaluation Irace:

SR

() —

f(2,5)
Vo = X1
V1 = T2 5
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(vy) sin(5) = 0.959

U5 = U2 + U3
Vg — Uy — U4y

Y = Vs

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.6562

()—

Backwards Derivative Irace;

Wy 5,90
8@1 | 4801

= U5 - (1) 1x1 =1

= U3vUg + V4cos(v1) | 1.716

U3 = Us—=— = U5 - (1) 11 = 1

— = Vg - (—1) 1x-1 = -1

-
N
|
~4
OB

-~
o)
|
c
o
|
~{
@)
o

Io- ° 1x1 = 1

c
)
|

AutoDiif - Reverse Mode

. ‘ \ @
L2 @ SN @ ' g

Forward Evaluation Irace:

f(2,5)
Vo = T1
V1 = I9 5
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(v) sin(5) = 0.959
V5 = Vg + U3 0.693 + 10 = 10.693
Vg — U5 — U4 10.693 + 0.959 = 11.652
Y= Ve 11.652

» Vg |« <—y

= = ng L= 8?)2 B i 1
0~ 381}0 | 281}() — sl 02 Vo
Ov Ov
V1 = ?73 avj | @48—1}11 = V3V + 1_}4608(”01)
Ov
’172 — ?758@5 — Uy - (].)
2
. _ Ov _
Vg = 058—2}5 = U5 - (1)
3
_ _ Ovg _
Uy = vGa—vi = vg - (—1)
_ dvg
Uy — /068_?]5: U6 1
_ oy
Vg — —

0.5

1.716

1x1 =1

1x1 =1

1x-1 = -1

1x1 = 1

AutoDiif - Reverse Mode

. ‘ \ @
L2 @ SN @ ' g

Forward Evaluation Irace:

f(2,5)
Vo = T1
V1 = I9 5
va = In(vp) n(2) = 0.693
V3 = Vg * VU1 2x5=10
vy = sin(v) sin(5) = 0.959
V5 = Vg + U3 0.693 + 10 = 10.693
Vg — U5 — U4 10.693 + 0.959 = 11.652
Y= Ve 11.652

» Vg |« <—y

= = ng L= 8?)2 B i 1
0~ 381}0 | 281}() — sl 02 Vo
Ov Ov
V1 = ?73 avj | @48—1}11 = V3V + 1_}4608(”01)
Ov
’172 — ?758@5 — Uy - (].)
2
. _ Ov _
Vg = 058—2}5 = U5 - (1)
3
_ _ Ovg _
Uy = vGa—vi = vg - (—1)
_ dvg
Uy — /068_?]5: U6 1
_ oy
Vg — —

9.5

1.716

1x1 =1

1x1 =1

1x-1 = -1

1x1 = 1

Automatic Differentiation (AUtoDIff) v = f@122) = (@) + 2122 — sin(a»)

AutoDift can be done at various granularities

Elementary function granularity: Complex function granularity:

Backpropagation Practical Issues

Input Layer Easier to deal with In vector form

L]
2nd Hidden Layer

1st Hidden Layer

Y

&
P

L

N

C
V.

NN

=
ot

Backpropagation Practical Issues
y = f(W,b,x) = sigmoid(W - x + b)

X ——

|
OO OO0

Backpropagation Practical Issues Tocal” Jacobians

(matrix of partial derivatives, e.g. size |x| x |y|)

y — f(W) b, X) — Sigmoid(W X b) “backprop” Gradient

X —

O0x Ox Oy

Ob 0b Oy

Jacobian of Sigmoid layer

Element-wise sigmoid layer:

Jacobian of Sigmoid layer

Element-wise sigmoid layer:

What is the dimension of Jacobian”

Jacobian of Sigmoid layer

Element-wise sigmoid layer:

What is the dimension of Jacobian”

What does it look like”?

Jacobian of Sigmoid layer

Element-wise sigmoid layer:

What is the dimension of Jacobian”

What does it look like”?

If we are working with a mini batch of 100 inputs-output pairs, technically Jacobian is a matrix 204,800 x 204,800

Backpropagation: Common questions

Question: Does BackProp only work for certain layers?

Answer: No, for any differentiable functions

Question: What is computational cost of BackProp?

Answer: On average about twice the forward pass

Question: Is BackProp a dual of forward propagation®

Answer: Yes

* Adopted from slides by Marc’Aurelio Ranzato

Backpropagation: Common questions

Question: Does BackProp only work for certain layers?

Answer: No, for any differentiable functions

Question: What is computational cost of BackProp?

Answer: On average about twice the forward pass

Question: Is BackProp a dual of forward propagation®

Answer: Yes

FProp BackProp
Sum Copy
\ I.- - o
|
— I
Copy Sum
&=
i—) €--()=
‘ Y

* Adopted from slides by Marc’Aurelio Ranzato

Activation Function: Sigmoid

Input Layer

1

a(xr) = sigmoid(x)

14 e®
Output Layer

Activation
Function

Sigmoid Activation

Computational Graph: 1-layer network

Yi
X3 \ |
W-x+b sigmoid(o @ MSE;,s @

L

Activation Function: Sigmoid

Input Layer

1

a(xr) = sigmoid(x)

14 e®
Output Layer

Activation
Function

Sigmoid Activation

Activation Function: Sigmoid

Pros:
- Squishes everything in the range [0, 1]
- Can be interpreted as “probability”
- Has well defined gradient everywhere

Cons:
- Saturated neurons “kill” the gradients
- Non-zero centered
- Could be expensive to compute

B 1
14 e =

a(x) = sigmoid(x)

Sigmoid Activation

* slide adopted from Li, Karpathy, Johnson’s CS231n at Stanford

Activation Function: Sigmoid

1

Sigmoid a(r) = sigmoid(z) = i
Gate

D

Cons: - >
- Saturated neurons “kill” the gradients
- Non-zero centered Sigmoid Activation
- Could be expensive to compute

* slide adopted from Li, Karpathy, Johnson’s CS231n at Stanford

Activation Function: Sigmoid

1

a = sigmoid(z)

x T ltew o 1
B SigMOoid e a(x) = sigmoid(z) = [
Gate

D

Cons: - >
- Saturated neurons “kill” the gradients
- Non-zero centered Sigmoid Activation
- Could be expensive to compute

* slide adopted from Li, Karpathy, Johnson’s CS231n at Stanford

Activation Function: Sigmoid

1

a = sigmoid(x)

X - 14+ e * . . 1
—— SIgMOId ————— a(x) — SlngId(aj) — 1 + -2
— [¢ I | [- — — —

0L 0 sigmoid(z) 0L oL
or ox da da L
Cons: ~10 | 10
- Saturated neurons “Kill” the gradients
- Non-zero centered Sigmoid Activation

- Could be expensive to compute

* slide adopted from Li, Karpathy, Johnson’s CS231n at Stanford

Activation Function: Sigmoid

1

a = sigmoid(x)

T B 1l +e % . . 1
B SigMOoid e a(x) = sigmoid(z) = [
——————— Gate A ——————————

0L 0 sigmoid(z) 0L oL
or 0x Oa Oa
Cons:
- Saturated neurons “Kill” the gradients
- Non-zero centered Sigmoid Activation

- Could be expensive to compute

* slide adopted from Li, Karpathy, Johnson’s CS231n at Stanford

Activation Function: Sigmoid

1

a = sigmoid(x)

X 1 + e~ % , , 1
B SigMOoid e a(x) = sigmoid(z) = [
[¢ I | - I —

0L 0 sigmoid(z) 0L oL
or 0x da da L T
Cons: - 0 >
- Saturated neurons “kill” the gradients)
- Non-zero centered Sigmoid Activation

- Could be expensive to compute

* slide adopted from Li, Karpathy, Johnson’s CS231n at Stanford

Activation Function: Sigmoid

1

a = sigmoid(z)

X T + e~ 7 , , 1
SIgMOid a(x) = sigmoid(z) = [
Gate
0L 0 sigmoid(z) 0L oL
or Ox da da L T
\ o
Cons: - 0 >
- Saturated neurons “Kkill” the gradients)
- Non-zero centered Sigmoid Activation

- Could be expensive to compute

* slide adopted from Li, Karpathy, Johnson’s CS231n at Stanford

Activation Function: [annh

a(x) = tanh(x) = 2 - sigmoid(2z) — 1

2
a(x) = tanh(x) = e 1

Pros:
- Squishes everything in the range [-1,1] 1
- Centered around zero
- Has well defined gradient everywhere

10

Cons:

- Saturated neurons “kill” the gradients
Tanh Activation

* slide adopted from Li, Karpathy, Johnson’s CS231n at Stanford

Activation Function: Rectified Linear Unit (RelLLU)

a(x) = maz(0,x)

, 1 itz>0
a(x) = .
0 iftx<O

Pros:
- Does not saturate (for x > 0) 10
- Computationally very efficient
- Converges faster in practice (e.g. 6 times faster)

Cons: ~10 10

- Not zero centeread
RelU Activation

* slide adopted from Li, Karpathy, Johnson’s CS231n at Stanford

