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Generative models

Learning distribution of data given a set of samples from it D RN q(x).

® Simple parameterized distributions e.g. N (u, o)

Normalizing Flows
® Variational Auto-Encoder (VAE)s

® Generative Adversarial Network (GAN)s
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Generative models

Learning distribution of data given a set of samples from it D RN q(x).
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Diffusion Models in 2022

Papers submitted to arXiv under CS category with “diffusion” in their title, only in 2022 (as of
November 16, 2022) [link]

We gratefully acknowledge support from
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Diffusion Models over time

Some researchers from Oxford host a website that maintains a list of diffusion/score-based model
papers at https://scorebasedgenerativemodeling.github.io/

Below shows the number of papers published in this area annually, according to this website:

200

100
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Diffusion Models over time

Some researchers from Oxford host a website that maintains a list of diffusion/score-based model
papers at https://scorebasedgenerativemodeling.github.io/
Below shows the number of papers published in this area annually, according to this website:

® Sohl-Dickstein et al. (2015) first introduced 200
diffusion models in their current format.
100
® (Ho et al., 2020) proposed Denoising
Diffusion Probabilistic Models (DDPM).
0
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® Diffusion Models

® Score-based generative modeling through SDEs
® Faster Sampling

@ Conditional Generation with Diffusion Models

® Applications
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@ Diffusion Models




Diffusion Models (Overview)

® Forward process: creating pure noise from the data by slowly adding noise to it.

® Reverse Process: creating data from noise by inverting the forward process.
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Forward Process

@ q(xe|x¢—1)
B P E——

(Ho et al., 2020)

Consider a sequence of noise scales 0 < 1, B2, ..., 8y < 1. Let xg ~ D be a data point. A Markov
chain is constructed such that

q(x1.7[%0) : Hq X¢[%¢-1) q(x¢[xe—1) = N(xe5V/1 = B x¢—1, BeI).

The noise scales are prescribed such that approximately ¢(xr|xg) ~ N (0, I) for any xo.
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Reverse Process
Po(x¢— 1\Xt
@H —@— @2 H

(Ho et al., 2020)

po(Xo.1) = p(xT) Hpa(Xt—1|Xt)7 Po(xe—1|x¢) == N(x¢—1; po(xe, 1), Bo(x¢, t)).
t=1

® p(xr) =N(0,I)

® When the noise levels §; are small enough, Gaussian conditionals in the reverse Markov chain
ensure enough expressivity.

e To ensure ¢(xr|q(x0)) ~ N (0, I), we require many diffusion steps 7T'.
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Training

Training objective is to minimize the negative log-likelihood (NLL) of the data:

0* = argmin Ex.p [— log pp(x)]
0
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Training

Training objective is to minimize the negative log-likelihood (NLL) of the data:

0* = argmin Ex.p [— log pp(x)]
0

In diffusion models we instead optimize the Evidence Lower Bound (ELBO):

Po(X0.7) } Po(X¢—1]%¢)
lo x0) > E, |log =—~—""_| =E, |logp(xr) + ) log———""""~
gpe( 0) q |: g q(xlzT|XO) q gp( T) tzzl g q(xt|xt71)
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Training

Training objective is to minimize the negative log-likelihood (NLL) of the data:

0* = argmin Ex.p [— log pp(x)]
0

In diffusion models we instead optimize the Evidence Lower Bound (ELBO):

Po(X0.7) } Po(X¢—1]%¢)
lo x0) > E, |log =—~—""_| =E, |logp(xr) + ) log———""""~
gpe( 0) q |: g q(xlzT|XO) q gp( T) tzzl g q(xt|xt71)

Challenge: this objective is expensive to compute. Can we sub-sample ¢?
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Properties of the Forward Process

(Ho et al., 2020)

Because all the distributions in the forward process are Gaussian, we can analytically compute
various marginals and posteriors (Sohl-Dickstein et al., 2015). In particular,

o Timestep skipping:

t

q(xilx0) = N (x5 arxo, (1 —a)I),  ap:=[](1-8))

j=1
® Posterior:
q(xe—1]x¢,%0) = N (x¢—1; ﬂ(Xt,Xo)7BtI),
X L=l —ay U
where  ji(xz,Xo) i= Vo 15tX0+ VI =31 —ay 1)Xt and By = ﬁﬁt
1—ay 1—oy 1—ay
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Making training feasible

Sohl-Dickstein et al. (2015) proposed the following objective function

L =E, |logp(xr) + Zlogw
=1 Q(Xt|xt71)
= B, [ KL (g(r o) lp0er)) + 3 KL (¢ xe, x0) [po Gxa1 1)) — log po Gxox1) |
t>1
LT Lt—l LO
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Training: Ly

L=E, [KL( (xrlx0)llp(xr)) + 3 KL (g xt_1|xt7x0)||p9(xt_1|xt))—logpg(x0|x1)]. J

t>1
LT Lt—l LO

This term is constant.
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Training: Ly

L=E, [KL (q(xrlx0)llp(x7)) + > KL (q(xt—1|%¢, %0)||po (xe—1[%¢)) — 10gp9(><0|x1)} : J

t>1
Lt Ly Lo

This term is a likelihood term corresponding to the last step of the reverse process. In practice, it
is usually a Gaussian distribution or a discretized Gaussian distribution.
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Training: L7

t>1

L=E, [KL (a(xrlx0)|lp(x7)) + > KL (q(x¢—1]x1,%0)|[ps (xs-1]x+)) — log po (x0/x1) ] . J
Lt Ly Lo

These terms are KL divergences between two Gaussians, hence are analytically computable.
e Remember that pg(x;_1|x¢) := N (x¢—1; o (x¢, 1), Do (x4, t)).

e Further, let 3g(x¢,t) = 021 where o? is a fixed hyperparameter. Then,

Ly = E ”ﬂt(xtvxo) - “9(Xtat)”2 +C

71207

* In practice, 02 = f; (from q(x¢|x;_1)) or 02 = f; (from q(x;_1|x,%o)) works well (Ho et al.,
2020).
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Re-parameterizations of the reverse process

1 N
Li 1 =E, 257 | fe (x4, %0) — N@(Xtvt)”2 +C
t

Recall that q(x¢|x0) = N (x¢; /a¢Xo, (1 — o) I). Therefore,

xt:\/@—l—vl—ate, ENN(O,I)

Then we can rewrite f1(X¢,Xo) as

Alxe, o) = ¢11—*5 (Xt B J%) |

Ho et al. (2020) proposed a different parameterization of the reverse process in which

po(xe,t) = ﬁ ( ﬂﬁa(xtat)) :
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Re-parameterizations of the reverse process

Using this re-parameterization of the reverse process, we can rewrite L;_1 as

Bt
207(1— B,)(1 — o)

Yt

Li_y =Ey, . le — ea(xe, )| | + C.
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Re-weighting the training objective

Ly =E By le - eaxe, )
Tt 2020 - A0 — o) )

Tt

The particular coefficients 4 ensure that the training objective is weighted properly for the
maximum data likelihood training. However, 7; is often very large for smaller ¢’s.

Ho et al. (2020) observed that the following objective derived by simply setting 7 = 1 leads to
higher image quality:

Lsimple = ]Et7xo7e |:H€ - €9<Xtat)H2:| .
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e For image data, Ho et al. (2020) proposed using a Xt €p(Xt,t)
particular type of U-Net architecture ( Cir ] [ C+ ]

(Ronneberger et al., 2015) as the architecture for v X
€g. r- ~)[ ResBlock ResBlock ](— -

® In this U-Net model shown on the right, there are
self-attention layers added to a few of the '
lower-resolution ResBlocks. :

L T N |
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Different parameterizations of the reverse process

)‘ NN Ko
t
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Different parameterizations of the reverse process

® [
Xt
t
° ét
Xt
| W > &
t
® Xo

)‘ NN Ko
t
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Different parameterizations of the reverse process

®
Xt
t
° ét
Xt
:l W p—> & = \/1177& (xt — \/fjiatét) , then x; 1 ~ N (fuy, 0 I).
¢
® Xo,¢

)‘ NN Ko
t
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Different parameterizations of the reverse process

® py
Xt
)@-» i xi_1 ~ N, o0 1).
t
° ét
Xt
:l N S f = \/117—& <Xt - \/ff—atét) , then xy 1 ~ N (fag, 01).
t
® Xo,¢
Xt
)‘ W — %o fre = (X4, Xo,¢), then x; 1 ~ N (fag, o0 1).
t

20 /58
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DDPM Recap

Po(Xi-1|%)
O O R & = H

(Xr|X: 1)

Reverse Process

Forward Process

T
po(xo.7) := p(xr) [ [ po(xi-1lx1),

Po(xe—1]x¢) 1= N (x¢—1; po(x¢, 1), Xo (X, 1))

v

(Simple) objective function
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DDPM Recap

Po(Xi-1|%)
O O R & = H

(Xt|Xt 1)
Algorithm 1 Training Algorithm 2 Sampling
1: repeat 1: xr ~ N(0,I)
- XOND_ 2: fort=1T,...,1do
i: tNIj{/{I(I(f)O}II)l({l"“’T}) 33 z~NOI)ift>1elsez=0
: €~ 9 . _ 1 _ Bt
5: Xt = /arxg + /1 — o€ & Xt-1 = /15, <Xt Vi—ap Ge(xt’t)) +0:2
6 Take gradient descent step on 5: end for
Vo |le — eo(xe, 1) 6: return xg
7: until converged
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® Score-based generative modeling through SDEs




Forward Process as Stochastic Differential Equation

Forward process: q(x¢|x;—1) = N (x¢; V1 — Bexi—1, Be1).

Consider the limit of infinitely many small steps:

x¢=1—Bxs1+ \/EN(O,I)
=V 1- ﬁ(t)Atthl + V ﬂ(t)AtN(O’ I)’ (ﬁt = ﬁ(t)At)

ﬂ(tgAtxt_1+\/MN(0’I)’ (Taylor expansion)
> dx, = — g Bt /FDdw

—_——
drift term

N X1 —

diffusion term

It is a special case of the more general SDE formulation used in generative diffusion models (Song
et al., 2020b)
dXt = f(t)xtdt—F g(t)dw
— ——

drift term  diffusion term
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Differential Equations

Ordinary Differential Equation (ODE)

dx = f(x,t)dt

t

Solution:

x(t) = x(0) + /O F(x,7)dr

Numerical solution:
x(t + At) ~ x(t) + f(x(t), ) At

https://cvpr2022-tutorial-diffusion-models.github.io/
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Differential Equations

Ordinary Differential Equation (ODE) Stochastic Differential Equation (SDE)

dx = f(x,t)dt dx = f(x,t)dt + g(x,t)dw

t
Solution: t

t
x(t) = x(0) + /0 f(x,7)dr x(t+At) & x(t)+ f(x(t), t) At +g(x(t), ) VALN (0, I)

Numerical solution:
x(t + At) =~ x(t) + f(x(t),t) At

https://cvpr2022-tutorial-diffusion-models.github.io/
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Forward Process as Stochastic Differential Equation

@ Forward diffusion process (fixed)

—

https://cvpr2022-tutorial-diffusion-models.github.io/

SDEs of the form dx; = f(t)x.dt + g(t)dw admit closed-from ¢;(x;|x¢). For example, for

dx, — —%6(t)xtdt + VB dw,

we have
@ (X¢|x0) = N (%45 auxo, 07 1)

oo (1 [s0a) ot e (- [ atos)
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Reverse Process as Stochastic Differential Equation

@ Forward diffusion process (fixed)

According to Anderson (1982), for a forward-time SDE of the form
dx; = f(t)xdt + g(t)dw

the reverse-time SDE is

Score Function

——
dx, = [ f(t)x — g(1)* Ticlogai(xo) [dt + glt)dw
N——

drift term diffusion term

which can be solved using any numerical method for SDEs.
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Reverse Process as Stochastic Differential Equation

@ Forward diffusion process (fixed)

According to Anderson (1982), for a forward-time SDE of the form
dx; = f(t)xdt + g(t)dw

the reverse-time SDE is

Score Function

——
dx, = [ f(t)x — g(1)* Ticlogai(xo) [dt + glt)dw
N——

drift term diffusion term

which can be solved using any numerical method for SDEs.
Q: How to estimate the score function?
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Reverse Process as Stochastic Differential Equation

@ Forward diffusion process (fixed)

According to Anderson (1982), for a forward-time SDE of the form
dx; = f(t)xdt + g(t)dw

the reverse-time SDE is

Score Function

——
dx, = [ f(t)x — g(1)* Ticlogai(xo) [dt + glt)dw
N——

drift term diffusion term

which can be solved using any numerical method for SDEs.
Q: How to estimate the score function? A: Score matching
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Score Matching

Train a network sg(x¢,t) to estimate Vy, log g:(x:).
mgin IEtNU(O,T) [EXOND [Extr\/qt(xdxo) [”59 (Xta t) - vxt IOg qt (Xt)|‘§:|:|:|

But Vy, log g:(x¢) is intractable!

Saeid Naderiparizi Diffusion Models November 17, 2022



Score Matching

Train a network sg(x¢,t) to estimate Vy, log g:(x:).

mgin EtNU(O,T) [EXOND [Extr\/qt(xdxo) [”59 (Xta t) - vxt IOg qt (Xt)|‘§:|:|:|

But Vy, log g:(x¢) is intractable!

Hyvaérinen and Dayan (2005) proposed to equivalently optimize the following tractable objective

| 1 :
1110111 E[NU(U,T) {EX‘)"’D |:]Exf’v([f(xf,xu> {2 |s0(xt, />Hj + Tr(Vxso(x¢, />):| :H
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Denoising Score Matching

Train a network sg(x¢,t) to estimate Vy, log g:(x:).
mgin IEtNU(O,T) [EXOND [Extr\/qt(xdxo) [”59 (Xta t) - vxt IOg qt (Xt)|‘§:|:|:|

But Vy, log g:(x¢) is intractable!
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Denoising Score Matching

Train a network sg(x¢,t) to estimate Vy, log g:(x:).

mgin IEtNU(O,T) [EXOND [Extr\/qt(xdxo) [”59 (Xta t) - vxt IOg qt (Xt)|‘§:|:|:|

But Vy, log g:(x¢) is intractable!

Vincent (2011) proposed to instead optimize the following tractable objective
moin]EtNU(O,T) |:Exo~D [ExtNQt(xt\xo) lso(xt,t) — Vx, log qt(Xt|X0)||§}:H )

which has the same optimal solution as the original objective i.e., sg«(x¢,t) = Vx, log q:(x¢).
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DellOlSing SCOI’G 1\/’Iat011illg (R ameterziation)

Recall that q;(x¢|x0) = N (x¢; auXo, 021) for some oy and oy functions. Considering the
re-parameterization of this

X; = yXg + €, e~N(0,1),

We can derive the score function

2

Ot

1 - 2 -
V. log gy(xe[x0) = Vi, l_ (Xtath) B log(gt,@)] _ xi—ax €

Therefore, the denoising score matching objective simplifies to

. 1
momEt~U(0,T) |:EXOND [ExtNQt(xtxo) |:U2 H69<Xtvt) - 6”3”] :
t
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Denoising Score Matching (ross weighting)

In practice, one can re-weight the loss terms for different target metrics.

. At
melnEtNU(O,T) [EXO~D [Equt(xdxo) {0(2) llea(xe,t) — €||§]H .
i

e Perceptual quality (FID, etc.): A(t) =07  — Lgimple Objective

® Maximum log-likelihood: A(t) = 5(¢) — —ELBO
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Probability flow ODE

Recall the reverse-time SDE
dx; = [f(t)xt —g(t)*Vy log qt(xt)] dt + g(t)dw.

The following ODE is equivalent to this SDE in distribution (Song et al., 2020b):

dx; = [f(t)xt - %g(t)QVx log qt(xt)}dt.

Encoding with Probability Flow ODE

—~ B

 _
q(x0) Generation with Probability Flow ODE q(xT)

ESEICNES
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Probability flow ODE

Recall the reverse-time SDE
dx; = [f(t)xt —g(t)*Vy log qt(xt)] dt + g(t)dw.

The following ODE is equivalent to this SDE in distribution (Song et al., 2020b):

dx; = [f(t)xt - %g(t)QVx log qt(xt)}dt.

® Deterministic forward and reverse processes

e Allows evaluating the learned density
® Allows latent space interpolation

e Often slightly lower quality than SDE
e Allows using advanced ODE solvers
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® Faster Sampling




Initial idea
po(xe—1]%¢)
@H —~@®— O H

(thxr 1)

Skip some steps in the reverse process.

® Predict Xg from x;.

® xy ~ q(xy|xs,%Xo) for t <t — 1 which skips steps®.

However, it leads to lower quality samples.

Song et al. (2020a) proposed DDIM which is a particular discritization of a probability flow ODE.
DDIM produces higher quality samples after skipping steps.

INote that g(xy|xt,xo) for any 0 < ¢ < t admits a closed form
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Progressive Distillation

(@)
I™
(@)

® Recursively distills the model into 2374 = f(z1;n

one with half the steps. \j

Distillation
e It works on deterministic processes 2i/2 = f(2s/4:
only (related to probability flow

y
ODE) 214 = f(Z1/2;7 {

==

ll

v “x = f(z1:6)

v
X X

\_/ Distillation

® Can distill to 4 steps without
losing much perceptual quality. f(z1y05m

><<
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Denoising Diffusion GANs

(Xiao et al., 2021)

mein;Eq(xt) [Daav(q(xt—1[x¢)|[po (x¢—1[x+))]
With only 4 steps achieves comparable performance to DDPM with 1000 steps.

Forward diffusion
oz, | 2)
2
x,
Real / Fake? D(Zz heh t)
Posterior sampling
a@, |z, )

T @

Diffusion Models

Buiuonpuoy

November 17, 2022
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Diffusion Models in Latent Space

Diffusion Model + VAE (Vahdat et al., 2021)

Encoder

Datax

_—0— q(zo|x)
== NS
>

e
e
==
Reconst. < —
p(x|2o) Decoder KL(q(zo|x)||p(20)) Latent Space Denoising
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Diffusion Models in Latent Space

Diffusion Model + VQVAE (Rombach et al., 2022)

4 ) Latent Space Conditioning
£ o
a
Denoising U-Net €y Text

Repres
entations

&)
\o/

Pixel Space,

Bd

denoising step crossattention  switch  skip connection concat

ﬂ
—

Diffusion Models
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® Conditional Generation with Diffusion Models




Conditional Generation with Diffusion Models

So far, we focused on unconditional generation i.e., learning a distribution p(x) given a dataset of

i.i.d. samples from it D Sk p(x).
How can we generate conditional samples i.e., p(x|y) for some condition y?

Examples:

Class-conditional generation e.g., images of flamingos
® Image super-resolution

® Imputation e.g., image in-painting

Colorization

® etc.

Saeid Naderiparizi Diffusion Models November 17, 2022



Conditional Diffusion Models

Conditional Diffusion Models are the most straight-forward way to generate conditional samples. If
we have a dataset of (x,y) pairs, we can make the model learn p(x|y) by simply passing the
conditions y as input to the network as well.

Xt
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Controllable Generation

A unique and remarkable property of Diffusion models is their ability to sample from conditional
distributions at test time, without re-training (Sohl-Dickstein et al., 2015; Song et al., 2020b).

It is referred to as “Classifier Guidance” too, but note that this method is

not limited to class-conditional generation.

Remember the connection of diffusion models to score functions.
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Controllable Generation

A unique and remarkable property of Diffusion models is their ability to sample from conditional
distributions at test time, without re-training (Sohl-Dickstein et al., 2015; Song et al., 2020b).

It is referred to as “Classifier Guidance” too, but note that this method is

not limited to class-conditional generation.

Remember the connection of diffusion models to score functions.
® Assume we have a pre-trained unconditional diffusion model s.t. sp(X¢,t) & Vi, g+ (x¢).

e All we need is to estimate Vy, log g (x:]y)
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Controllable Generation

A unique and remarkable property of Diffusion models is their ability to sample from conditional
distributions at test time, without re-training (Sohl-Dickstein et al., 2015; Song et al., 2020b).

It is referred to as “Classifier Guidance” too, but note that this method is

not limited to class-conditional generation.

Remember the connection of diffusion models to score functions.
® Assume we have a pre-trained unconditional diffusion model s.t. sp(X¢,t) & Vi, g+ (x¢).

e All we need is to estimate Vy, log g (x:]y)

log q:(x¢]y) = log g:+(x:) +log q(y|x;) —logq(y)  (Bayes rule)
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Controllable Generation

A unique and remarkable property of Diffusion models is their ability to sample from conditional
distributions at test time, without re-training (Sohl-Dickstein et al., 2015; Song et al., 2020b).

It is referred to as “Classifier Guidance” too, but note that this method is

not limited to class-conditional generation.

Remember the connection of diffusion models to score functions.
® Assume we have a pre-trained unconditional diffusion model s.t. sp(X¢,t) & Vi, g+ (x¢).

e All we need is to estimate Vy, log g (x:]y)
log q:(x¢|y) = log qi(x¢) +log q(y|x:) —logq(y)  (Bayes rule)
=V, logqu(xuly) = Vi, log au(x:) + Vi, log a(y[xi) ~ | so(x0,t) + f(x1,1) |
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Controllable Generation

A unique and remarkable property of Diffusion models is their ability to sample from conditional
distributions at test time, without re-training (Sohl-Dickstein et al., 2015; Song et al., 2020b).

It is referred to as “Classifier Guidance” too, but note that this method is

not limited to class-conditional generation.

Remember the connection of diffusion models to score functions.
® Assume we have a pre-trained unconditional diffusion model s.t. sp(X¢,t) & Vi, g+ (x¢).

e All we need is to estimate Vy, log g (x:]y)
log q:(x¢|y) = log qi(x¢) +log q(y|x:) —logq(y)  (Bayes rule)
=V, logqu(xuly) = Vi, log au(x:) + Vi, log a(y[xi) ~ | so(x0,t) + f(x1,1) |

where f(x¢,t) is a discriminative model that predicts the label y from the noisy input x;.
In practice, a coefficient is added to the guidance term sg(x¢,t) + wf(x¢,t) to control faithfulness of
the samples to the given condition.
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Controllable Generation

A unique and remarkable property of Diffusion models is their ability to sample from conditional
distributions at test time, without re-training (Sohl-Dickstein et al., 2015; Song et al., 2020b).

It is referred to as “Classifier Guidance” too, but note that this method is

not limited to class-conditional generation.

Remember the connection of diffusion models to score functions.
® Assume we have a pre-trained unconditional diffusion model s.t. sp(X¢,t) & Vi, g+ (x¢).

e All we need is to estimate Vy, log g (x:]y)
log q:(x¢|y) = log qi(x¢) +log q(y|x:) —logq(y)  (Bayes rule)
=V, logqu(xuly) = Vi, log au(x:) + Vi, log a(y[xi) ~ | so(x0,t) + f(x1,1) |

where f(x¢,t) is a discriminative model that predicts the label y from the noisy input x;.
In practice, a coefficient is added to the guidance term sg(x¢,t) + wf(x¢,t) to control faithfulness of
the samples to the given condition.

Example: in case of class-conditional generation, f(x¢,t) output of the softmax layer of a classifier
trained on noisy images generated by the forward process.

Saeid Naderiparizi Diffusion Models November 17, 2022



Classifier-Free Guidance

Instead of training a separate classifier, we can implicitly get the required gradient via jointly
training a conditional and unconditional model (Ho and Salimans, 2021).

log q(y|x¢) = log q(x¢|y) — log q(x¢) + log q(y)
=V, log q(y|x:) = Vx, log q(x¢|y) — Vx, log q(x:).

In practice, a single conditional diffusion model sy is trained that occasionally receives @ as
conditioning input to represent unconditional generation.

th IOg Q(Y|Xt) ~ SG(XtvtaY) - 59(X7t7 Q)

Like before, we can add the conditioning strength coefficient:

Vi, log gt (x:) + wVx, log q(y|xt) =~ (1 + w)se(Xt, t,y) — wsg(xe, t, D).

Saeid Naderiparizi Diffusion Models November 17, 2022



Imputation

Ho and Salimans (2021) shows that an unconditional diffusion model can do data imputation (e.g.

image in-painting) by simply replacing the observed part of the data with a noisy version of the
observation in each timestep t.

Next

Iteration

Image credit: (Lugmayr et al., 2022)

sion Models
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® Applications




Image Super-Resolution

SR3 model: trains a conditional diffusion model that takes a lower-resolution image as input and
learns to generate it in higher-resolution. (Saharia et al., 2022c)!.

Bicubic Regression SR3 (ours) Reference

'https://iterative-refinement.github.io/
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Image-to-image translation

Palette: large-scale conditional diffusion models trained on various image-to-image translation
tasks (Saharia et al., 2022a)?.

Reference Reference

-

(c¢) Colorization

Ihttps://iterative-refinement.github.io/palette/
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Cascaded Diffusion Models

(Ho et al., 2022b)*.

256x256

32x32
Class ID = 213

“Irish Setter”
_
Model 2

Model 1 Model 3

Ihttps://cascaded-diffusion.github.io/
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Text-to-Image Generation

a cute sloth holding a a strawberry mug filled

Z;bsrzln\f agg;t]gztlti I;iglt?g 2ktaiigZa1;§a;no‘;ilrses small treasure chest. A with white sesame seeds.
robotic half face square bright golden glow is The mug is floating in a
d coming from the chest dark chocolate sea
1
DALL.E 2 (Ramesh et al., 2022) Imagen (Saharia et al., 2022b)?

'https://openai.com/dall-e-2/
’https://imagen.research.google/

Saeid Nad arizi Diffusion Models November 17, 2022 49 / 58



https://openai.com/dall-e-2/
https://openai.com/dall-e-2/
https://imagen.research.google/
https://imagen.research.google/

DreamFusion: uses a pre-trained text-to-image model to learn a Neural Radial Fields (NeRF)
modeling a 3D object (Poole et al., 2022)1.

a baby bunny sitting on top of a stack of pancakes Sydney opera house, aerial view

Ihttps://dreamfusion3d.github.io/
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Video Modeling

VDM (Ho et al., 2022¢): Imagen Video (Ho et al., 2022a)%:

® 3D convolutional layers ® Combines VDM with Imagen

® (Cascaded Diffusion in spatial and temporal ® Trained on large-scale datasets
dimensions

e (Conditioned on text

® Novel controllable generation

Thttps://video-diffusion.github.io/
2https://imagen.research.google/video/
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Video Modeling

FDM (Harvey et al., 2022)*

® Learns a single conditional diffusion model
that is able to generate any subset of video
frames conditioned on any other subset (as
long as it fits in GPU memory).

Video UNet

VK 8580
e Bk + At
et

VR dyaxe
ResNet Block + Atn
VI CIn1a0
ResNetslock + Atn
+ Upsample

® Can generate very long (lhour+) videos
without loss of quality.

VE <8nRaC

‘le'x]lx N2
ResNet Block + Upsample
VE iy
X+ 1

Ihttps://plai.cs.ubc.ca/2022/05/20/flexible-diffusion-modeling-of-long-videos/
d N i

i Dif on Models No
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Speech synthesis

Wavegrad: applies diffusion models to waveform data. Since it is much lower-dimensional than
images, it works with very few diffusion steps (Chen et al., 2020)!.

Ihttps://wavegrad.github.io/
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Adversarial Purification

(Nie et al., 2022)1.

AdVﬁg?.gl;; I;ﬂnage Diffused image Purified image

. 1

“Panda”

: ) : i LN
4=0 Forward SDE t=t* Reverse SDE t=0
= b P = MBI
é Purified
1= DiffPure : —> “Panda”
Adi‘;;fg?a‘ image | Classifier
.............................. »] - - -» “Gibbon”

I Adversarial attack (Backpropagation through SDE)

Ihttps://diffpure.github.io/
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Additional resources

Tutorial on diffusion models at CVPR 2022:
https://cvpr2022-tutorial-diffusion-models.github.io/!

® Yang Song’s blog post: https://yang-song.net/blog/2021/score/

Lilian Weng’s blog post:
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Curated list of diffusion model papers
® https://scorebasedgenerativemodeling.github.io/

® https://github.com/heejkoo/Awesome-Diffusion-Models

IMany of the slides in today’s talk were based on this tutorial.
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