THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 17: Generative Models [part 3]



Logistics

Project Proposal Document due Today, 11:59pm

Assignment 5 due December 6 (last day of classes)



Logistics

Research Paper Presentations:

— List of 35 papers and Quiz published
— Quiz is due tomorrow, 11:59pm

— Paper assignments by Thursday

— Presentations by Friday, November 25th

Research Paper Readings:
— We will not have many of these. | expect 4 papers ~ 3.5 weeks

— First paper reading will be for next class (in prep for Diffusion Models)



Variational Autoencoders
(VAE)




So far ...

Pixel CNNs define tractable density function, optimize likelihood of training data:

n

p(z) = Hp(a:i\a:l, ooy Ti—1)

1=1

VAES define intractable density function with latent variables z (that we need to
marginalize):

po(z) = [ po(2Ipa(alz)dz

cannot optimize directly, derive and optimize lower bound of likelihood instead

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder: Inference

Input Data £z

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder: Inference

M| 2.
Encoder network | z|
qo(2|T) \/
Input Data 4
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Variational Autoencoder: Inference

TN

MZ|£U Zzlx

Encoder network

qs(2|T)
Input Data 4
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Variational Autoencoder: Inference

Z
Sample z from z|x ~ N’(Mzm, 2z|x)

TN

M| 2.
Encoder network | z|
o (2|T) \/
Input Data 4
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Variational Autoencoder: Inference

M|z 2.
Decoder network \/
po(z|2)
yA
Sample z from z|:z: ~ N(Nz|m, 2z|a:)

TN

x|z

M| 2.
Encoder network | z|
o (2|T) \/
Input Data 4

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder: Inference

A

Xz
Sample x|z from x|z ~ N(Mx|z, Za:|z)

TN

M|z Zx‘z

Decoder network \/
po(z|2)

yA

Sample z from z|:z: ~ N(Nz|m, 2z|a:)

TN

M| 2.
Encoder network | z|
o (2|T) \/
Input Data 4

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

B, |logpo(2" | 2)| — Dicsas(= | 2) || pa(2))
g —
£(2,6,0)

Lets look at computing the bound (forward pass)
for a given mini batch of input data

Input Data 4

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

B, |logpo(2" | 2)| — Dicsas(= | 2) || pa(2))
g —
£(2,6,0)

M| 2.
Encoder network | z|
qo(2|T) \/
Input Data 4
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Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

B, |logpo(2" | 2)| — Dicsas(= | 2) || pa(2))
g —
£(2,0,0)

Make approximate

posterior distribution

close to prior / \

/“LZ‘SU zzlm

Encoder network

qs(2|z)
Input Data L
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Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

B, |logpo(2" | 2)| — Dicsas(= | 2) || pa(2))
g —
£(2,0,0)

Z
Sample z from z|x ~ N(/Lz|a;, 2z|a:)

Make approximate

posterior distribution

close to prior / \

M| 2.
Encoder network | z|
qe(2|T) \/
Input Data L
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Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

x|z

E. [logpo(+) | 2)| ~ Dicrlas(z | 2)[| po(2)) Ha|z 2
. ———— Decoder network
L(z 0, ¢) Do (:z:|z) \/
yA

Make approximate

Sample z from z|x ~ N(uz|m Zz|:c)

posterior distribution

close to prior / \

M| 2.
Encoder network | z|
qe(2|T) \/
Input Data L
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Variational Autoencoder: Learning

Putting it all together:

maximizing the likelihood lower Maximize fikelinood of T
HOUN] original input being
reconstructed Sample x|z from z|z ~ N (Ug|2, Xg|2)
B. [logpo(e | 2)] ~ Dicsasz ] 2) 1 o(2)) Haz 2z
e S Decoder network
L(xD,0,0)
pe(z|2)
yA

Make approximate Sample z from z|x ~ N(/Lz|a;, Zzl:c)

posterior distribution

close to prior / \

M| 2.
Encoder network | z|
qe(2|T) \/
Input Data L
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Variational Autoencoder: Learning

Putting it all together:

maximizing the likelihood lower Maximize fikelinood of T
HOUN] original input being
reconstructed Sample x|z from z|z ~ N (Ug|2, Xg|2)
B. [logpo(e | 2)] ~ Dicsasz ] 2) 1 o(2)) Haz 2z
e S Decoder network
L(xD,0,0)
pe(z|2)
yA

Make approximate Sample z from z|x ~ N(/Lz|a;, Zzl:c)

posterior distribution

close to prior / \

M| 2.
Encoder network | z|
qe(2|T) \/
Input Data L

For every minibatch of input data: compute this forward pass, and then backprop!

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Reparametrization Irick

B, 0, = M(x),3(x) Push x through encoder
e ~N(0,1) Sample noise
Z=€0, + W, Reparameterize

Reparam. trick @
for differentiability

Computed
analytically

Source: https://gregorygundersen.com/blog/2018/04/29/reparameterization/



Variational Autoencoders

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:

- Principled approach to generative models
- Allows inference of g(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANS)

Active area of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal Gaussian
- Incorporating structure in latent variables (our submission to CVPR)




VAE /w (powerful) Pixel CNN Decoder

Problem: If the decoder is too powerful, it may just ignore the latent variables
(.e. posterior collapse). This happens when the decoder can make the
reconstruction loss incredibly small, such that the regularization term dominates
the loss function. In such a case, the encoder will learn to reduce the
regularization term, and produce meaningless latents to match p(z) = N(O, 1).



Vector Quantized

Variational Autoencoders
(VQ-VAE)



AutOenCOders Reminder o Source: http://www.tomviering.nl/talks/slides/2018 01 09.pdf

How to discretize?

For the example:
We take this to be a 4 x 4 image
with 2 channels.

Output

Latent variable (reconstruction)

Z (x)

Encoder Decoder

We can train this system end-to-end
using MSE (reconstruction loss)


http://www.tomviering.nl/talks/slides/2018_01_09.pdf

Autoencoders Reminder o Source: http://www.tomviering.nl/talks/slides/2018 01 09.pdf

How to discretize?

4 x 4 image with 2 channels.
We plot all pixel values (16) in 2D
(since we have 2 channels)

Channel 2

Channel 1


http://www.tomviering.nl/talks/slides/2018_01_09.pdf

Vector Quantized - VAE Source: hitp://www.tomviering.nl/talks/slides/2018 01 _09.pdf

Make dictionary of vectors

4 x 4 image with 2 channels.

Each e; has 2 dimensions.



http://www.tomviering.nl/talks/slides/2018_01_09.pdf

Vector Quantized - VAE Source: hitp://www.tomviering.nl/talks/slides/2018 01 _09.pdf

Make dictionary of vectors

4 x 4 image with 2 channels.
Each e; has 2 dimensions.

For each latent pixel, look up
nearest dictionary element e

Encoder



http://www.tomviering.nl/talks/slides/2018_01_09.pdf

Vector Quantized - VAE Source: hitp://www.tomviering.nl/talks/slides/2018 01 _09.pdf

4 x 4 image with 2 channels. Each e; has 2 dimensions.

89,9,

CNN

Encoder Decoder


http://www.tomviering.nl/talks/slides/2018_01_09.pdf

Vector Quantized - VAE Source: http://www.tomviering.nl/talks/slides/2018 01 09.pdf

Embedding

Np— Output

(reconstruction)

Latent variable

q(z|x) 3

3 ®ss

z |l | |2 Z,(X)
53 ‘

Encoder

Latent is 1 channel image and Decoder

contains the id of each e for
each pixel (discrete).


http://www.tomviering.nl/talks/slides/2018_01_09.pdf

Source: http://www.tomviering.nl/talks/slides/2018 01 09.pdf

VQ-VAE — Training

* How to backpropegate through the discretization?

* Lets say a gradient is incoming to a dictionary vector
* We do not update the dictionary vector (fixed)
* |Instead we apply the gradient of e to the non-discretized vector

& €,e,e, e, \
Embedding
Space
b L | S
\ — D 3 > sz — 4 2 - ‘
,/\ TT T e - ¥
) —45r- ﬂ"’- - : q(z|x) ) — —5 .831 || " CNN ’
CNN [ | [S2 | . p(x|z,)
11 e
3 = e 8
Ze(X) Z 2 ZQ(X)
53

Encoder Decoder


http://www.tomviering.nl/talks/slides/2018_01_09.pdf

Source: http://www.tomviering.nl/talks/slides/2018 01 09.pdf

VQ-VAE — Training

2 |, 2
2q(7)) + ||sglze(z)] —ell2 + 5 2.

L = logp(x ze(z) — sgle]

* How to backpropegate through the discretization?
* Lets say a gradient is incoming to a dictionary vector
* We do not update the dictionary vector (fixed)
* |Instead we apply the gradient of e to the non-discretized vector

(eee, &)
Embedding
Space
. =
R \
A /l
N D o~ X ‘£ 1 o :
\_\ p > ' /| ¥ Vo ’
! v imnnzi P
= e. Tl
i S —ﬁo@ 5 —» | €3 | " CNN
CNN N | INECE | (xlz,
\ﬁk &5 |
z,(x) . z (x)
” y

Encoder Decoder


http://www.tomviering.nl/talks/slides/2018_01_09.pdf

Source: http://www.tomviering.nl/talks/slides/2018 01 09.pdf

VQ-VAE — Training

. 2 2
L = logp(z|zq(x)) + [|sglze(z)] — ell2 + Bl[ze(z) — sgle]||2,
Reconstruction loss, which optimizes Regularization, ensures that encoder
both the encoder and decoder does not grow arbitrarily

VQ loss, which moves the embedding
vectors towards encoder outputs


http://www.tomviering.nl/talks/slides/2018_01_09.pdf

VQ-VAE — Sampling / Generation

Class: pickup

Embedding
Space

|
INEER el 1D
PixelCNN — 32 1 T 2(x)

[ b3 [ |




VQ-VAE — Sampling / Generation

* Comparable with VAE on CIFAR-10 in terms of density estimation
* Reconstructions on ImageNet are very good

4

.

- - -
\K\ ,,' )|

Figure 2: Left: ImageNet 128x128x3 images, right: reconstructions from a VQ-VAE with a 32x32x1
latent space, with K=512.



VQ-VAE vs. G

VQ-VAE (Proposed)



API RESEARCH BLOG ABOUT

Y ereate realistic images

2 SIGN UP

® FOLLOW ON INSTAGRAM



Relationship of VQ-VAE to VAE

VAE: Assumes Gaussian prior over continuous latent space

VQ-VAE: Assumes uniform categorical distribution over discrete keywords (all
keywords are equally likely)



Comparison

Variational Pixel CNN VQ-VAE
Autoencoder (This talk)
X

Compute exact likelihood p(x)

Has latent variable z

Compute latent variable z (inference)

N N N X

Stable training?

Sharp images?

v v %
X v X
Discrete latent variable X X X
x v v
v X v



Multi-stage VQ-VAE

»000 3 latentsin [0,512]

Encoder _ h:‘ PixelCNN
* Decoder
Discretelatents 21 X 21 x1in
' [0,512]
[\
Encoder / \ / \ Decoder
Before: 84 * 84 *3 * 8 =
21168 bits =3 Kb
After
84X84X3 3*9=27b|t5

In [0,256]
Reconstruction not very

accurate but powerful
representation




So far ...

Pixel CNNs define tractable density function, optimize likelihood of training data:
n
p(z) = Hp(:vz-|a:1, veey Ti—1)
i=1

VAES define intractable density function with latent variables z (that we need to
marginalize):

po(z) = / po(2)po(2]2)dz

cannot optimize directly, derive and optimize lower bound of likelihood instead

What if we give up on explicitly modeling density, and just want to sample”?

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



So far ...

Pixel CNNs define tractable density function, optimize likelihood of training data:
n
p(z) = Hp(a:z-|a:1, veey Ti—1)
i=1

VAES define intractable density function with latent variables z (that we need to
marginalize):

po(z) = / po(2)po(z]2)dz

cannot optimize directly, derive and optimize lower bound of likelihood instead

What if we give up on explicitly modeling density, and just want to sample”?

GANSs: don’t work with any explicit density function

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



(Generative Adversarial
Networks (GANS)



Generative Adversarial Networks [ Goodfellow et al., 2014 ]

Problem: \Want to sample from complex, high-dimensional
training distribution. There Is no direct way to do this!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Generative Adversarial Networks [ Goodfellow et al., 2014 ]

Problem: \Want to sample from complex, high-dimensional
training distribution. There Is no direct way to do this!

Solution: Sample from a simple distributions, e.g., random
noise. Learn transtormation to the training distribution
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Generative Adversarial Networks [ Goodfellow et al., 2014 ]

Problem: \Want to sample from complex, high-dimensional
training distribution. There Is no direct way to do this!

Solution: Sample from a simple distributions, e.g., random
noise. Learn transtormation to the training distribution

Question: \What can we use to represent complex
transformation function®?
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Generative Adversarial Networks [ Goodfellow et al., 2014 ]

Problem: \Want to sample from complex, high-dimensional
training distribution. There Is no direct way to do this!

Solution: Sample from a simple distributions, e.g., random
noise. Learn transtormation to the training distribution

Question: \What can we use to represent complex
transformation function®?

Input: Random noise

Output: Sample from
training distribution

1

Generator Network

A

Z

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Training GANs: Two-player Game [ Goodfellow et al., 2014]

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Training GANs: Two-player Game [ Goodfellow et al., 2014]

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

t

Discriminator Network

Fake Images ’ Real Images
(from generator) [ :’ (from training set)

Generator Network

t

Random noise Z

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Training GANs: Two-player Game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Realworld ——
images

Real
I O ~
ISCcriminacor =" " brd
9 . 7
0
S O Fake
E
_§ O -~ Generator —  Sample v
® 1O
@ 48 —— Backprop error to
9 update discriminator
weights

https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016



Training GANs: Two-player Game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real

Discriminator - ‘ ——>
/ o
Generator ——= Sample

Backprop error to
update generator
weights

@)
SSO]

Latent random variable
OO0

https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016



Training GANs: Two-player Game [ Goodfellow et al., 2014]

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Irain jointly In minimax game
Minimax objective function: Discriminator outputs likelihood in (0,1) of real image

min max | Egnp,,,, 108 Do, (2) + Eznp(z) log(1 — Do, (Go, (2)))

99 9d " —— .
Discriminator output Discriminator output for
for real data x generated fake data G(z)

- Discriminator (84 wants to maximize objective such that D(x) is close to 1 (real) and D(G(2)) is

close to O (fake)
- Generator (56, wants to minimize objective such that D(G(z)) is close to 1 (discriminator is fooled

into thinking generated G(z) is real)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Training GANs: Two-player Game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Irain jointly In minimax game
Minimax objective function: Discriminator outputs likelihood in (0,1) of real image

min max 4ZSL'NJPazata, log D9d (:I:) T 4:A"a"vp(z) log(]‘ - Ded (GM)_

0, 064 L S
Discriminator output Discriminator output for
for real data x generated fake data G(z)

The Nash equilibrium of this particular game Is achieved when:

Pdata() = Dgen(Go, (2)), YV Dy, (x) =0.5, Vx



Training GANs: Two-player Game [ Goodfellow et al., 2014]

Minimax objective function:

min max [ znpaata 108 Doy (2) + Eznp(z) log(1 — Do, (G, (Z)))]
g d

Alternate between:
1. Gradient ascent on discriminator

mMax | Bonpiei, 108 Do, (2) + Eonp(z) l0g(1 — D, (Go, (2)))

2. Gradient descent on generator

H;in L ~op(2) log(1 — Da, (GGQ (2)))

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Training GANs: Two-player Game [ Goodfellow et al., 2014]

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.

for number of training
for k steps do

e Sample minibatch of m noise samples {21, ..., z("™)} from noise prior p,(2).
e Sample minibatch of m examples {x1),... (™} from data generating distribution

iterations do

Discriminator

pdata( )
updates e Update the discriminator by ascending its stochastic gradient:

Vo, L3 [1og D (2) + 108 (1- D (c (=9)))].

1=1
end for
e Sample minibatch of m noise samples {z'*/, ..., 2\" } from noise prior p,
Generator e Update the generator by descending its stochastic gradient:

updates

o, 2tos (120 (6(=))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum 1n our experiments.




Training GANs: Two-player Game [ Goodfellow et al., 2014]

Minimax objective function:

min max [ o~ paata 108 Doy (T) + Eznp(z) log(1 — Do, (G, (Z)))]
g d

Alternate between:
1. Gradient ascent on discriminator

HESX _ U ~paata 108 Do, (T) + Ezp(z) log(1 — De, (Go, (Z)))

2. Gradient descent on generator

r%in *:sz(z) log(1 — D, (GGQ (2)))

In practice, optimizing this generator

objective does not work well!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Training GANs: Two-player Game [ Goodfellow et al., 2014]

Minimax objective function:

min max [ L rnpaata 108 Do, () + Eznp(z) 10g(1 — Do, (G, (Z)))]
g d

Alternate between:
1. Gradient ascent on discriminator

Gradient signal
dominated by region
where sample Is
already good

4 \
min K, log(l — Dy ,(Gg (2 | | | — e\ D060
o, P ( (Go, (2)) When sample is likely |

I%%X _ U ~paata 108 Doy (2) + Europ(z) log(1 — Dy, (G, (z)))

2. Gradient descent on generator

fake, want to learn

from it to improve = |
In practice, optimizing this generator generator. But 7 |
objective does not work well! gradient inthis region [\

S relatively flat!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Training GANs: Two-player Game [ Goodfellow et al., 2014]

Minimax objective function:

min max [ znpaata 108 Doy (2) + Eznp(z) log(1 — Do, (G, (Z)))]
g d

Alternate between:
1. Gradient ascent on discriminator

mMax | Bonpiei, 108 Do, (2) + Eonp(z) l0g(1 — D, (Go, (2)))

2. Instead, gradient ascent on generator, different objective

— log(1-D(G(z)))

II]GZZ,X 4JZNp(Z) log(ng (G99 (Z)))

Instead of minimizing likelihood of discriminator being :
correct, now maximize likelihood of discriminator N j
being wrong. _

D(G(=))

— —logD(G(z))

Same objective of fooling discriminator, but now
higher gradient signal for bad samples => works

much better! Standard in practice.
* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Sampling GANSs

t

Generator Network

t

Random noise Z

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Year of the GAN

Text -> Image Synthesis

this small bird has a pink this magnificent fellow is

Better training and generation Source->Target domain transfer ueast ARd.eown,and ilack almost il iackwith Azed

primaries and secondaries. crest, and white cheek patch.
! - Output

[nput Input Output

.

Many GAN applications

0 /]

(c) Kitchen. (d) Conference room.

LSGAN. Mao et al. 2017.

1 - winter Yosemite

CycleGAN. Zhu et al. 2017.

Pix2pix. Isola 2017. May emples at
https://phillipi.github.io/pix2pix/

BEGAN. Bertholet et al. 2017.

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Year of the GAN

GAN - Generative Adversarial Networks

3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
acGAN - Face Aging With Conditional Generative Adversarial Networks

AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs

AdaGAN - AdaGAN: Boosting Generative Models

AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets

AffGAN - Amortised MAP Inference for Image Super-resolution

AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts

ALl - Adversarially Learned Inference

AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization

AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs

b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks

Bayesian GAN - Deep and Hierarchical Implicit Models

BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks

BiGAN - Adversarial Feature Learning

BS-GAN - Boundary-Seeking Generative Adversarial Networks

CGAN - Conditional Generative Adversarial Nets

CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters

with Generative Adversarial Networks

CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks

CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks
CoGAN - Coupled Generative Adversarial Networks

Context-RNN-GAN - Contextual RNN-GANs for Abstract Reasoning Diagram Generation
C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training

* CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets

CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training

CycleGAN - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
DTN - Unsupervised Cross-Domain Image Generation

DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
DualGAN - DualGAN: Unsupervised Dual Learning for Image-to-Image Translation

EBGAN - Energy-based Generative Adversarial Network

f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
FF-GAN - Towards Large-Pose Face Frontalization in the Wild

GAWWN - Learning What and Where to Draw

GeneGAN - GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
Geometric GAN - Geometric GAN

GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking

GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending

IAN - Neural Photo Editing with Introspective Adversarial Networks

iGAN - Generative Visual Manipulation on the Natural Image Manifold

IcGAN - Invertible Conditional GANs for image editing

ID-CGAN - Image De-raining Using a Conditional Generative Adversarial Network

Improved GAN - Improved Techniques for Training GANs

InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets

LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
Synthesis

LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Generative Adversarial Nets

Generated Samples




Deep Convolutional GANs (DCGANS) [ Radford et al., 2016

Key ideas:

* Replace FC hidden layers with
Convolutions

* Generator: Fractional-Strided

convolutions
128 Q§§§§§s

e Use Batch Normalization after
each layer

Generator Architecture
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* Inside Generator

 Use RelU for hidden layers
* Use Tanh for the output layer

Stride 2 16

Project and reshape

CONV 1

CONV 2




GANSs with Convolutional Architectures [ Radford et al., 2016 |

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



GANSs with Convolutional Architectures [ Radford et al., 2016 |

Interpolating between points in latent space

HD £ el

‘K

. 0‘ v
“~‘&‘ . &,ﬁs“% - '~-

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



GANSs: Interpretable Vector Math [ Radford et al., 2016

Smiling woman  Neutral womar  Neutral man

Samples
from the
model

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



GANSs: Interpretable Vector Math [ Radford et al., 2016

Smiling woman  Neutral womar  Neutral man

Samples
from the
model

- Average z
vectors, do - — +
arithmetic ~

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford




GANSs: Interpretable Vector Math [ Radford et al., 2016

Smiling woman  Neutral womar  Neutral man

Smiling man

Samples
from the
model

- Average z
vectors, do
arithmetic

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



GANSs: Interpretable Vector Math [ Radford et al., 2016

Glasses Man No Glasses Man No Glasses \Woman

Samples
from the
model

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



GANSs: Interpretable Vector Math [ Radford et al., 2016

Glasses Man No Glasses Man No Glasses \Woman

Samples
from the
model

Average z C

vectors, do n H I

arithmetic
* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford




GANSs: Interpretable Vector Math [ Radford et al., 2016
Glasses Man No Glasses Man No Glasses Woman :zaféogg 19(’; al,

Samples Woman with Glasses

from the
model

vectors, do
arithmetic

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Conditional GAN: Text-to-Image Synthesis

T'his flower has small, round violet This flower has small, round violet
petals with a dark purple center petals with a dark purple center
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Discriminator Network

Figure 2 in the original paper.

Generator Network

Positive Example: Negative Examples:
Real Image, Right Text Real Image, Wrong Text
Fake Image, Right Text

Reed et al., ICML 2016 |



Conditional GAN: Image-to-Image translation

Labels to Street Scene Labels to Facade BW to Color

-
'

!

output
Edges to Photo

iInput output

Figure 1 in the original paper.

| Isola et al., 2016 |



Conditional GAN: Image-to-Image translation

Positive examples Negative examples
. Real or fake pair? Real or fake pair?
Architecture: DCGAN-based ol 1
D | : } D : : |
I | l l | |

Training Is conditioned on the Images
from the source domain

<

EN

ITI :

G [ ] !
|

G tries to synthesize fake
Images that fool D

D tries to identify the fakes

Figure 2 in the original paper.

| Isola et al., 2016 |



CycleGAN: Unpaired Image-to-Image translation

Style transfer: change the style of an image while preserving the content

Monet —_ Photos . Zebras 7_* Horses | Summer Z_ Winter

Ll rele Oy SaTRs.
zebra —) horse

horse — zebra

Photograph Monet Van Gogh Cezane

Data: two unrelated collections of image, one for each style [Zhuetal., 2017 ]



CycleGAN: Unpaired Image-to-Image translation

Style transfer: change the style of an image while preserving the content

— Train two different generator networks to go from Style 1 to Style 2
and vice versa

— Make sure the generated (translated) samples of Style 2 are
indistinguishable from real images of Style 2 by a discriminator network

— Make sure the generated (translated) samples of Style 1 are
indistinguishable from real images of Style 1 by a discriminator network

— Make sure the generators are cycle-consistent: mapping Style1 ->
Style 2 -> Style 1 should give close to the original image

| Zhu et al., 2017 ]



CycleGAN: Unpaired Image-to-Image translation

The discriminator tries to
distinguish generated zebra
images from real ones

Discriminator loss: GAN
generator objective, i.e. negative
D log probability D assigns to the
sample being real

Reconstruction loss: squared
error between the original image
and the reconstruction

Input image Generator 1 learns to map Generated sample Generator 2 learns to map Reconstruction
(real horse image) from horse images to zebra from zebra images to horse
images while preserving the images while preserving the
structure structure

Total loss = discriminator loss + reconstruction loss [ Zhu et al-, 2017 ]



CycleGAN: Unpaired Image-to-Image translation
Ariel photos to maps:

BiGAN CoGAN CycleGAN p1X2pix Ground truth
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[ Zhu et al., 2017 ]



CycleGAN: Unpaired Image-to-Image translation

Images to semantic segmentation:

[ Zhu et al., 2017 ]



Laplacian Pyramid GAN

& 3 12 ) / 1
—ud Aﬂ{f ki
..]\7,2

Figure 1 in the original paper. (Edited for simplicity)

— Based on the Laplacian Pyramid representation of images

— Generates high resolution images by using hierarchical set of GANs by
teratively increasing image resolution and quality

| Denton et al., 2015 ]



Laplacian Pyramid GAN

Real/
Generated?

Real/
Generated?

Real/Generated?

Figure 2 in the original paper.

Real/Generated?

— Based on the Laplacian Pyramid representation of images

— Generates high resolution images by using hierarchical set of GANs by
teratively increasing image resolution and quality

| Denton et al., 2015 ]



InNfoGAN

‘ Emtropy
w w_
= 7 -

(a) GAN, DCGAN, LSGAN, WGAN (b) CGAN (c) InfoGAN

I

Maximizes mutual information between latent code and the generated

sample
| Chen et al., 2016 ]




Adversarial Autoencoder (GAN + VAE)

Encoder Decoder

q(z|x)

eI

Latent [

p(x|z)

ke

Discriminator

4 Draw samples N
from p(z)

. —>(Input )~

-

—

@vmirly

| Makhzani et al., 2015 ]
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Image Generation from Layout



Image Generation from Layout

boy

Layout Results



Image Generation from Layout: Challenges

— One-to-many mapping
— Information in layout is limited (but important)

— Important interactions between objects In overlap regions and with scene



Model Architecture: [raining
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Model Architecture: Runtime



Model Architecture: Runtime
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Experiments: Quantitative Results

Datasets:

Dataset Train Val. Test | # Obj. | # Obj. in Image

COCO [I] | 24972 | 1,024 | 2,048 171 3~ 8

VG [1¥] 62,565 | 5,506 | 5,088 178 3~ 30
Evaluation:

Inception Object Diversity
Score Classification Score
Score
Method COCO VG COCO VG COCO VG

Real Images (64 x 64) 163 204 139+05| 5516 49.13 - -
pix2pix [ ] 3.5£0.1  27+£0.02 | 12.06 9.20 0 0
sg2im (GT Layout) [ 7] | 7.3 £0.1 6.3 + 0.2 30.04 40.29 | 0.02 £001 0O.15+=0.12
Ours 9.1 £ 0.1 3.1 + 0.1 50.84 48.09 | 0.15 £ 0.06 0.17 £+ 0.09




Results on COCO
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Results on Visual Genome
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Results: Diversity
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Layout to Im:

Drag to draw bounding boxes and assign labels or simply load a pre-defined layout.

PERSON PERSONS INDOOR BEACH FOOD BOAT WINDOW CAR cow MONITOR

Labels Layout Images

Image Generation from Layout, Bo Zhao, Lili Meng, Weidong Yin and Leonid Sigal, CVPR 2019.

Web Application Developed by Mark (Ke) Ma



Layout to Im:

Drag to draw bounding boxes and assign labels or simply load a pre-defined layout.

PERSON PERSONS INDOOR BEACH FOOD BOAT WINDOW CAR cow MONITOR

Labels Layout Images

Image Generation from Layout, Bo Zhao, Lili Meng, Weidong Yin and Leonid Sigal, CVPR 2019.

Web Application Developed by Mark (Ke) Ma



Conclusions

We propose a novel layout2image model, that is able to:
— (Generate diverse results by sampling object appearances

— Qutperform state of the art methods on COCO and Visual Genome datasets



GANSs

Don’t work with an explicit density function

Take game-theoretic approach: learn to generate from training distribution
through 2-player game

Pros:
— Beautiful, state-of-the-art samples!

Cons:

— Trickier / more unstable to train
— Can’t solve inference queries such as p(x), p(z|x)

Active area of research:
— Better loss functions, more stable training (\Wasserstein GAN, LSGAN, many others)

— Conditional GANs, GANSs for all kinds of applications

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Non-Convergence

D & G nullifies each others learning in every iteration

Train for a long time — without generating good quality samples

Vix,y) =xy

V(x(t),y(t)) = x(t)y(t)

ax_

dy
a = x(t)
%y 0x
oz o YW

x(t) = x(0)cost(t) — y(0)sin(t)
y(t) = x(0)cost(t) — y(0)sin(t)

Khushboo Thaker

* Differential Equation’s solution has sinusoidal

terms

* Even with a small learning rate, it will not

converge

* Discrete time gradient descent can spiral

outward for large step size

27



Mode Collapse

Sample
Coverage

Sample
Accuracy

. Generator excels in a subspace but
Target . . does-not cover entire real distribution

Expected - ( > - . - °
s, -~ - n - .
Unroll GAN Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k
» -
Output - - -
GAN Luke et al. 2016

Khushboo Thaker 28



Why GANSs are hard to train®

— (Generator keeps generating similar images — so nothing to learn
— Maintain trade-oft of generating more accurate vs. high coverage samples

— Two learning tasks need to have balance to achieve stability
— If the discriminator is not sufficiently trained — it can worsen generator
— If the discriminator is too good — will produce no gradients



