
Lecture 16: Generative Models [part 2]

Topics in AI (CPSC 532S): 
Multimodal Learning with Vision, Language and Sound



Logistics
Project Proposals Presentation Slides due Today 11:59pm 

— Grades and comments by Monday (sorry!)  

Project Proposal Document due Tuesday, November 15th 

Assignment 4 is due today Today 11:59pm  

Leftovers until the end of term:  

— Assignment 5 
— Project  
— Paper presentation



PixelRNN and PixelCNN



PixelRNN

Likelihood of 
image x

Probability of i’th pixel value 
given all previous pixels

[ van der Oord et al., 2016 ]

Use chain rule to decompose likelihood of an image x into product of (many) 
1-d distributions

Explicit Density model

then maximize likelihood of training data

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford
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Likelihood of 
image x

Probability of i’th pixel value 
given all previous pixels

[ van der Oord et al., 2016 ]

Use chain rule to decompose likelihood of an image x into product of (many) 
1-d distributions

Explicit Density model

then maximize likelihood of training data
Complex distribution over pixel values,  
so lets model using neural network
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PixelRNN

Likelihood of 
image x

Probability of i’th pixel value 
given all previous pixels

[ van der Oord et al., 2016 ]

Use chain rule to decompose likelihood of an image x into product of (many) 
1-d distributions

Explicit Density model

then maximize likelihood of training data
Complex distribution over pixel values,  
so lets model using neural network

Also requires defining ordering of 
“previous pixels”

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Generate image pixels starting 
from the corner 

Dependency on previous pixels 
model using an RNN (LSTM)

PixelRNN [ van der Oord et al., 2016 ]

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



PixelRNN [ van der Oord et al., 2016 ]

Generate image pixels starting 
from the corner 

Dependency on previous pixels 
model using an RNN (LSTM)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



PixelRNN [ van der Oord et al., 2016 ]
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PixelRNN [ van der Oord et al., 2016 ]
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PixelRNN [ van der Oord et al., 2016 ]

Generate image pixels starting 
from the corner 

Dependency on previous pixels 
model using an RNN (LSTM)
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PixelRNN [ van der Oord et al., 2016 ]

Generate image pixels starting 
from the corner 

Dependency on previous pixels 
model using an RNN (LSTM)

Problem: sequential generation is slow

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Still generate image pixels 
starting from the corner 

Dependency on previous pixels 
now modeled using a CNN over 
context region 

PixelCNN [ van der Oord et al., 2016 ]
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PixelCNN [ van der Oord et al., 2016 ]

Still generate image pixels 
starting from the corner 

Dependency on previous pixels 
now modeled using a CNN over 
context region 

Training: maximize likelihood of 
training images

Softmax loss at each pixel

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



PixelRNN and PixelCNN

Improving PixelCNN performance 
— Gated convolutional layers 
— Short-cut connections 
— Discretized logistic loss 
— Multi-scale 
— Training tricks 
— Etc… 

Pros: 
— Can explicitly compute likelihood p(x) 
— Explicit likelihood of training data gives good 

evaluation metric 
— Good samples 

Con: 
— Sequential generation => slow

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoders 
(VAE)



So far …

PixelCNNs define tractable density function, optimize likelihood of training data:
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So far …

PixelCNNs define tractable density function, optimize likelihood of training data:

VAEs define intractable density function with latent variables z (that we need to 
marginalize):

cannot optimize directly, derive and optimize lower bound of likelihood instead

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Autoencoders Reminder …

Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Originally: Linear + nonlinearity (sigmoid) 
Later: Deep, fully-connected 
Later: ReLU CNN

Input data
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Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Originally: Linear + nonlinearity (sigmoid) 
Later: Deep, fully-connected 
Later: ReLU CNN

z usually smaller than x 
(dimensionality reduction)

Input data
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Autoencoders Reminder …

Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Originally: Linear + nonlinearity (sigmoid) 
Later: Deep, fully-connected 
Later: ReLU CNN

z usually smaller than x 
(dimensionality reduction)

Want features that capture 
meaningful factors of variation 

Input data

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Autoencoders Reminder …

Encoder

Input data

Features

Train such that features can reconstruct original data best they can

Reconstructed 
input data

Decoder

Input data
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Autoencoders Reminder …

Encoder

Input data

Features

Train such that features can reconstruct original data 
best they can

Reconstructed 
input data

Decoder

Reconstructed data

Input data

Encoder: 4-layer conv 
Decoder: 4-layer upconv
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Autoencoders Reminder …

Encoder

Input data

Features

Reconstructed 
input data

Decoder

L2 Loss function: Reconstructed data

Input data

Encoder: 4-layer conv 
Decoder: 4-layer upconv
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Autoencoders Reminder …

Encoder

Input data

Features

Reconstructed 
input data

Decoder

L2 Loss function: 

Doesn’t use labels!
Reconstructed data

Input data

Encoder: 4-layer conv 
Decoder: 4-layer upconv

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Autoencoders Reminder …

Encoder

Input data

Features

Classifier

Loss function 
(e.g., softmax)

Fine-tune 
encoder 
jointly with 
classifier 

plane
dog deer

bird
truck

Train for final task 
(sometimes with small data)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoders

Probabilistic spin on autoencoder - will let us sample from the model to generate 
Assume training data is generated from underlying unobserved (latent) 
representation z

Sample from 
true conditional

Sample from 
true prior

[ Kingma and Welling, 2014 ]
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Variational Autoencoders

Probabilistic spin on autoencoder - will let us sample from the model to generate 
Assume training data is generated from underlying unobserved (latent) 
representation z

Sample from 
true conditional

Sample from 
true prior

Intuition: x is an image, z is latent 
factors used to generate x (e.g., 
attributes, orientation, etc.)

[ Kingma and Welling, 2014 ]
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Variational Autoencoders

Sample from 
true conditional

Sample from 
true prior

We want to estimate the true parameters !* of this generative model

[ Kingma and Welling, 2014 ]
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Variational Autoencoders

Sample from 
true conditional

Sample from 
true prior

We want to estimate the true parameters !* of this generative model

How do we represent this model?

[ Kingma and Welling, 2014 ]
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Variational Autoencoders

Sample from 
true conditional

Sample from 
true prior

Choose prior p(z) to be simple, e.g., Gaussian  
Reasonable for latent attributes, e.g., pose, amount of smile

We want to estimate the true parameters !* of this generative model

How do we represent this model?

[ Kingma and Welling, 2014 ]
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Variational Autoencoders

Sample from 
true conditional

Sample from 
true prior

We want to estimate the true parameters !* of this generative model

How do we represent this model?

Choose prior p(z) to be simple, e.g., Gaussian  
Reasonable for latent attributes, e.g., pose, amount of smile

Conditional p(x|z) is complex (generates image) 
Represent with Neural Network

Decoder 
Network

[ Kingma and Welling, 2014 ]
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Variational Autoencoders

Sample from 
true conditional

Sample from 
true prior

We want to estimate the true parameters !* of this generative model

How do we train this model?

Decoder 
Network

[ Kingma and Welling, 2014 ]
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Variational Autoencoders

Sample from 
true conditional

Sample from 
true prior

We want to estimate the true parameters !* of this generative model

How do we train this model?

Remember the strategy from earlier — learn 
model parameters to maximize likelihood of 
training data

(now with latent z that we need to marginalize)

Decoder 
Network

[ Kingma and Welling, 2014 ]
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Variational Autoencoders

Sample from 
true conditional

Sample from 
true prior

We want to estimate the true parameters !* of this generative model

How do we train this model?

Remember the strategy from earlier — learn 
model parameters to maximize likelihood of 
training data

(now with latent z that we need to marginalize)

Decoder 
Network

What is the problem with this?

[ Kingma and Welling, 2014 ]
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Variational Autoencoders

Sample from 
true conditional

Sample from 
true prior

We want to estimate the true parameters !* of this generative model

How do we train this model?

Remember the strategy from earlier — learn 
model parameters to maximize likelihood of 
training data

(now with latent z that we need to marginalize)

Decoder 
Network

Intractable ! 

[ Kingma and Welling, 2014 ]

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Intractability in Variational Autoencoder [ Kingma and Welling, 2014 ]

Data likelihood: 
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Intractability in Variational Autoencoder [ Kingma and Welling, 2014 ]

Data likelihood: 

Simple Gaussian Prior
!
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Intractability in Variational Autoencoder [ Kingma and Welling, 2014 ]

Data likelihood: 

Decoder Neural Network

!

Simple Gaussian Prior
!
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Intractability in Variational Autoencoder [ Kingma and Welling, 2014 ]

Data likelihood: 

Decoder Neural Network

!
☹

Intractable to compute for every z

Simple Gaussian Prior
!
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Intractability in Variational Autoencoder [ Kingma and Welling, 2014 ]

Data likelihood: 

Decoder Neural Network

!
☹

Intractable to compute for every z

Simple Gaussian Prior
!

Posterior density is also intractable: 
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Intractability in Variational Autoencoder [ Kingma and Welling, 2014 ]

Data likelihood: 

Decoder Neural Network

!
☹

Intractable to compute for every z

Simple Gaussian Prior
!

Posterior density is also intractable: 
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Intractability in Variational Autoencoder [ Kingma and Welling, 2014 ]

Data likelihood: 

Decoder Neural Network

!
☹

Intractable to compute for every z

Simple Gaussian Prior
!

Posterior density is also intractable: 

Solution: In addition to decoder network modeling pθ(x|z), define additional 
encoder network qɸ(z|x) that approximates pθ(z|x)  
— Will see that this allows us to derive a lower bound on the data likelihood that is tractable, which we can optimize 

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoder [ Kingma and Welling, 2014 ]

Decoder NetworkEncoder Network

Mean and (diagonal) covariance of z | x Mean and (diagonal) covariance of x | z

Since we are modeling probabilistic generation of data, encoder and decoder 
networks are probabilistic (they model distributions)
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Variational Autoencoder [ Kingma and Welling, 2014 ]

Decoder NetworkEncoder Network

Mean and (diagonal) covariance of z | x Mean and (diagonal) covariance of x | z

Since we are modeling probabilistic generation of data, encoder and decoder 
networks are probabilistic (they model distributions)

Why?

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoder [ Kingma and Welling, 2014 ]

Decoder NetworkEncoder Network

Sample z from: Sample x | z from:

Since we are modeling probabilistic generation of data, encoder and decoder 
networks are probabilistic (they model distributions)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Derivation of lower bound of the data likelihood
Variational Autoencoder

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

Taking expectation with respect to z 
(using encoder network) will come in 

handy later

[ Kingma and Welling, 2014 ]
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Derivation of lower bound of the data likelihood
Variational Autoencoder

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

[ Kingma and Welling, 2014 ]
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Derivation of lower bound of the data likelihood
Variational Autoencoder

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

[ Kingma and Welling, 2014 ]
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Derivation of lower bound of the data likelihood
Variational Autoencoder

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

[ Kingma and Welling, 2014 ]
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Derivation of lower bound of the data likelihood
Variational Autoencoder

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

Expectation with respect to z 
(using encoder network) leads to nice KL terms

[ Kingma and Welling, 2014 ]

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Derivation of lower bound of the data likelihood
Variational Autoencoder

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

pθ(z|x) intractable (saw earlier), can’t 
compute this KL term :(  

But we know KL divergence always >= 0.

This KL term (between Gaussians 
for encoder and z prior) has nice 

closed-form solution!

Decoder network gives pθ(x|z), can 
compute estimate of this term through 

sampling. (Sampling differentiable through 
reparam. trick, see paper.)

[ Kingma and Welling, 2014 ]
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Derivation of lower bound of the data likelihood
Variational Autoencoder

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

 Tractable lower bound which we can take gradient of 
and optimize! (pθ(x|z) differentiable, KL term differentiable)

[ Kingma and Welling, 2014 ]

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Derivation of lower bound of the data likelihood
Variational Autoencoder

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

Training: Maximize lower bound

Variational lower bound (“ELBO”)

[ Kingma and Welling, 2014 ]
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Derivation of lower bound of the data likelihood
Variational Autoencoder

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

Training: Maximize lower bound

Variational lower bound (“ELBO”)

Reconstruct  
Input Data

Make approximate posterior  
close to the prior

[ Kingma and Welling, 2014 ]

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Input Data

Putting it all together: 
maximizing the likelihood lower 
bound

Lets look at computing the bound (forward pass) 
for a given mini batch of input data

Variational Autoencoder: Learning

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Encoder network

Input Data

Putting it all together: 
maximizing the likelihood lower 
bound

Variational Autoencoder: Learning

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Encoder network

Input Data

Putting it all together: 
maximizing the likelihood lower 
bound

Make approximate 
posterior distribution 

close to prior

Variational Autoencoder: Learning
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Encoder network

Sample z from

Input Data

Putting it all together: 
maximizing the likelihood lower 
bound

Make approximate 
posterior distribution 

close to prior

Variational Autoencoder: Learning
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Encoder network

Decoder network

Sample z from

Input Data

Putting it all together: 
maximizing the likelihood lower 
bound

Make approximate 
posterior distribution 

close to prior

Variational Autoencoder: Learning
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Encoder network

Decoder network

Sample z from

Sample x|z from

Input Data

Putting it all together: 
maximizing the likelihood lower 
bound

Maximize likelihood of 
original input being 

reconstructed

Make approximate 
posterior distribution 

close to prior

Variational Autoencoder: Learning
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Encoder network

Decoder network

Sample z from

Sample x|z from

Input Data

Putting it all together: 
maximizing the likelihood lower 
bound

Maximize likelihood of 
original input being 

reconstructed

For every minibatch of input data: compute this forward pass, and then backprop!

Make approximate 
posterior distribution 

close to prior

Variational Autoencoder: Learning

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoder: Learning

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73



Decoder network

Sample z from

Sample x|z from

Variational Autoencoder: Generating Data
Use decoder network and sample z from prior

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Variational Autoencoder: Generating Data



Decoder network

Sample z from

Sample x|z from

Variational Autoencoder: Generating Data
Use decoder network and sample z from prior Data manifold for 2-d z

Vary z1

Vary z2

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoder: Generating Data
Data manifold for 2-d z

Vary z1 

(degree of smile)

Vary z2 

(head pose)

Diagonal prior on z => 
independent latent variables 

Different dimensions of z encode 
interpretable factors of variation
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Variational Autoencoder: Generating Data
Data manifold for 2-d z

Vary z1 

(degree of smile)

Vary z2 

(head pose)

Diagonal prior on z => 
independent latent variables 

Different dimensions of z encode 
interpretable factors of variation

Also good feature representation that can 
be computed using qɸ(z|x)! 

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoder: Generating Data

32x32 CIFAR-10
Labeled Faces in the Wild

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Conditional VAEs



Conditional VAE: Diverse Image Colorization 

[ Deshpande et al., 2017 ]



Conditional VAE: Temporal Predictions [ Xue et al., 2016 ]



Variational Autoencoder (VAE)

Latent Space 

[ He et al., 2018 ]



Variational Autoencoder (VAE) + LSTM

Latent Space 

[ He et al., 2018 ]



VAE + LSTM with Structured Latent Space

Initial  
Approximate  

Posterior

Conditional  
Approximate  

Posterior

Dynamic 
Approximate  

Posterior
Prior

Controlled 
Appearance

Residual 
Appearance

[ He et al., 2018 ]



Results: Chair CAD dataset

Ablation

Quantitative

[ He et al., 2018 ]



Results: Weizmann Human Action dataset [ He et al., 2018 ]



Results: MIT Flickr [ He et al., 2018 ]



Variational Autoencoders

Probabilistic spin to traditional autoencoders => allows generating data 
Defines an intractable density => derive and optimize a (variational) lower bound 

Pros: 
- Principled approach to generative models 
- Allows inference of q(z|x), can be useful feature representation for other tasks 

Cons: 
- Maximizes lower bound of likelihood: okay, but not as good evaluation as PixelRNN/PixelCNN 
- Samples blurrier and lower quality compared to state-of-the-art (GANs) 

Active area of research: 
- More flexible approximations, e.g. richer approximate posterior instead of diagonal Gaussian 
- Incorporating structure in latent variables (our submission to CVPR)



VAE /w (powerful) PixelCNN Decoder 

Problem: If the decoder is too powerful, it may just ignore the latent variables 
(i.e. posterior collapse). This happens when the decoder can make the 
reconstruction loss incredibly small, such that the regularization term dominates 
the loss function. In such a case, the encoder will learn to reduce the 
regularization term, and produce meaningless latents to match p(z) = N(0, 1).  



Vector Quantized 
Variational Autoencoders 

(VQ-VAE)



Autoencoders Reminder … Source: http://www.tomviering.nl/talks/slides/2018_01_09.pdf

How to discretize?

http://www.tomviering.nl/talks/slides/2018_01_09.pdf


Source: http://www.tomviering.nl/talks/slides/2018_01_09.pdf

How to discretize?

Autoencoders Reminder …

http://www.tomviering.nl/talks/slides/2018_01_09.pdf


Vector Quantized - VAE Source: http://www.tomviering.nl/talks/slides/2018_01_09.pdf
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Vector Quantized - VAE Source: http://www.tomviering.nl/talks/slides/2018_01_09.pdf
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Vector Quantized - VAE Source: http://www.tomviering.nl/talks/slides/2018_01_09.pdf
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Vector Quantized - VAE Source: http://www.tomviering.nl/talks/slides/2018_01_09.pdf

http://www.tomviering.nl/talks/slides/2018_01_09.pdf


VQ-VAE — Training Source: http://www.tomviering.nl/talks/slides/2018_01_09.pdf

http://www.tomviering.nl/talks/slides/2018_01_09.pdf


VQ-VAE — Training Source: http://www.tomviering.nl/talks/slides/2018_01_09.pdf

http://www.tomviering.nl/talks/slides/2018_01_09.pdf


VQ-VAE — Training Source: http://www.tomviering.nl/talks/slides/2018_01_09.pdf

Reconstruction loss, which optimizes  
both the encoder and decoder

VQ loss, which moves the embedding 
vectors towards encoder outputs

Regularization, ensures that encoder 
does not grow arbitrarily

http://www.tomviering.nl/talks/slides/2018_01_09.pdf


VQ-VAE — Sampling / Generation



VQ-VAE — Sampling / Generation



VQ-VAE vs. GAN 



Relationship of VQ-VAE to VAE

VAE: Assumes Gaussian prior over continuous latent space 

VQ-VAE: Assumes uniform categorical distribution over discrete keywords (all 
keywords are equally likely) 



Comparison



Multi-stage VQ-VAE



So far …
PixelCNNs define tractable density function, optimize likelihood of training data:

VAEs define intractable density function with latent variables z (that we need to 
marginalize):

cannot optimize directly, derive and optimize lower bound of likelihood instead

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

What if we give up on explicitly modeling density, and just want to sample?



So far …
PixelCNNs define tractable density function, optimize likelihood of training data:

VAEs define intractable density function with latent variables z (that we need to 
marginalize):

cannot optimize directly, derive and optimize lower bound of likelihood instead

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

What if we give up on explicitly modeling density, and just want to sample?

GANs: don’t work with any explicit density function


