THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 16: Generative Models [part 2]



Logistics
Project Proposals Presentation Slides due Today 11:59pm
— Grades and comments by Monday (sorry!)
Project Proposal Document due Tuesday, November 15th

Assignment 4 is due today Today 11:59pm

Leftovers until the end of term:

— Assignment 5
— Project

— Paper presentation



PixelRNN and PixelCNN



PixelRN N [ van der Oord et al., 2016 ]

Explicit Density model

Use chain rule to decompose likelihood of an image x into product of (many)
1-d distributions

Likelihood of Probability of i'th pixel value
Image x given all previous pixels

then maximize likelihood of training data

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelRNN [ van der Oord et al., 2016 ]

Explicit Density model

Use chain rule to decompose likelihood of an image x into product of (many)
1-d distributions

b=
Likelihood of Probability of i’th pixel value
Image x given all previous pixels

Complex distribution over pixel values,

so lets model using neural network

then maximize likelihood of training data
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PixelRNN [ van der Oord et al., 2016 ]

Explicit Density model

Use chain rule to decompose likelihood of an image x into product of (many)
1-d distributions

T

p(z) = | | pl@ile, .. zio1)
T =1

Likelihood of Probability of i’th pixel value
Image x given all previous pixels

Complex distribution over pixel values,

L T . so lets model using neural network
then maximize likelihood of training data .

Also requires defining ordering of
“previous pixels”

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelRN N [ van der Oord et al., 2016 ]

Generate image pixels starting
from the corner

Dependency on previous pixels
model using an RNN (LSTM)

o O O O @
o O O O O
o O O 0O O
o O O O O
o O O O O
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PixelRN N [ van der Oord et al., 2016 ]

Generate image pixels starting E—Q © O ©
from the corner o O O O
. . O O O O O

Dependency on previous pixels
model using an RNN (LSTM) o O O O O
o O O O O
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PixelRN N [ van der Oord et al., 2016 ]

Generate image pixels starting
from the corner

Dependency on previous pixels
model using an RNN (LSTM)

o O

o O O

o O O O
o O O O O
o O O O O
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Pixel=RNN

£z n2

A
[ van der Oord et al., 2016 |
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PixelRN N [ van der Oord et al., 2016 ]

Generate image pixels starting
from the corner

Dependency on previous pixels
model using an RNN (LSTM)

O @

o O

o O O
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o O O O O
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PixelRN N [ van der Oord et al., 2016 ]

Generate image pixels starting
from the corner

model using an RNN (LSTM)

o O O O O

Dependency on previous pixels g
O

o O O
o O O O

O
O
Problem: sequential generation is slow

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelCN N [ van der Oord et al., 2016 |

Still generate image pixels
starting from the corner

e

0 T 255

Dependency on previous pixels
now Mmodeled using a CNN over

context region /

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



AR
PixelCN N [ van der Oord et al., 2016 |

Still generate image pixels

starting from the corner
Softmax loss at each pixel

e

0 ? 255

g \‘
/ N
71 Bl
Iy .
/
/
/

Dependency on previous pixels
now Mmodeled using a CNN over

context region

Training: maximize likelihood of
training images

Hp (xi|T1,y ..y Ti—1)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelRNN and PixelCNN

Pros: Improving PixelCNN performance
— Can explicitly compute likelihood p(x) — Gated convolutional layers
— Explicit likelihood of training data gives good — Short-cut connections
evaluation metric — Discretized logistic loss
— Good samples — Multi-scale
— Training tricks
— Ete...
Con:

— Sequential generation => slow

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoders
(VAE)




So far ...

Pixel CNNs define tractable density function, optimize likelihood of training data:

n

p(z) = Hp(a:z-\asl, ooy Ti—1)

=1

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



So far ...

Pixel CNNs define tractable density function, optimize likelihood of training data:

n

p(z) = Hp(a:i\a:l, ooy Ti—1)

1=1

VAES define intractable density function with latent variables z (that we need to
marginalize):

po(z) = [ po(2Ipa(alz)dz

cannot optimize directly, derive and optimize lower bound of likelihood instead

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Autoencoders Reminder ...

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Originally: Linear + nonlinearity (sigmoid)
Later: Deep, fully-connecteo
Later: ReLU CNN

Features <

ut da_ta

[ Encoder E
RN
Input data b SQN
a7l < [0S

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Autoencoders Reminder ...

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

z usually smaller than x Originally: Linear + nonlinearity (sigmoid)
(dimensionality reduction) Later: Deep, fully-connected
V\ Later: ReLU CNN
Features A

ut da_ta

[ Encoder a
Input data b sﬂn
a7l < NI

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Autoencoders Reminder ...

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

z usually smaller than x Originally: Linear + nonlinearity (sigmoid)
(dimensionality reduction) Later: Deep, fully-connected

A Later: ReLU CNN
Want features that capture
meaningful factors of variation

Features A

Inputldata
[ Encoder uiﬁ > .H
2 WY 1
Input data T n sﬂw
el Rl T

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Autoencoders Reminder ...

Train such that features can reconstruct original data best they can

I:;AH@
e VLRGBS
s < B

Reconstructed A
iInput data £z
T Decoder
Features <
ut data
Encoder o e T
h

Input data

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Autoencoders Reminder ...

Train such that features can reconstruct original data Reconstructed data

best they can E=§‘==
Reconstructed n.sg

i P sl < S
D d T
ecoder Encoder: 4-layer conv

Decoder: 4- Iayer upconv

Features 2
ut data

Encoder E ..

b

I-Kllﬁ
e MRS
s < B

Input data

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Autoencoders Reminder ...

| 2 |oss function: Reconstructed data

e . I
ENiLal0E
o [ RE el

|z — 2|

—

I-KAIE
e MRS
s < B

Input data

Reconstructed A —
input data L -EH 4 .E
D d T
ecoder Encoder: 4-layer conv
Decoder: 4- Iayer upconv
Features 2
ut data
Encoder E
L
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Autoencoders Reminder ...

| 2 |oss function: Reconstructed data

[ -
Doesn’t use labels! |z —2||° !H-.h.u-

P oS
e ] RS
-Eq:.ﬁ

—

Reconstructed
input data

Decoder Encoder: 4-layer conv
Decoder: 4- Iayer upconv
ut data
Encoder a ..

T
Features <
XL

I BY 1T
IIQSQE
s < B

Input data

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Autoencoders Reminder ...

Loss function
(e.qg., softmax)

/ \

7 Fine-tune Train for final task
encoder (sometimes with small data)
Classifier ointly with
classifier
Features z
pird plane
=neoder deer  truck
Input data T i l*-

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoders [ Kingma and Welling, 2014 |

Probabllistic spin on autoencoder - will let us sample from the model to generate

Assume training data is generated from underlying unobserved (latent)
representation z

Sample from
true conditional 4

po~(z | 2V)

Sample from
true prior yA

po~(2)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoders [ Kingma and Welling, 2014 |

Probabillistic spin on autoencoder - will let us sample from the model to generate

Assume training data is generated from underlying unobserved (latent)
representation z

Sample from
true conditional £z

| Intuition: x is an image, z Is latent
po- (x | ) factors used to generate x (e.g.,
attributes, orientation, etc.)

Sample from
true prior yA

po~(2)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoders [ Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

Sample from
true conditional 4

po~(z | 2V)

Sample from
true prior yA

po~(2)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoders [ Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

How do we represent this model?

Sample from
true conditional 4

po~(z | 2V)

Sample from
true prior yA

po~(2)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoders [ Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

How do we represent this model?

sample from Choose prior p(z) to be simple, e.g., Gaussian
true conditional 4 b | |
Reasonable for latent attributes, e.g., pose, amount of smile

po~(z | 2V)

Sample from
true prior yA

po~(2)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoders [ Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

How do we represent this model?

sample from Choose prior p(z) to be simple, e.g., Gaussian
true conditional 4 b | |
Reasonable for latent attributes, e.g., pose, amount of smile

po~(z | 2V)

Decoder

network  Conditional p(x|z) is complex (generates image)

Sample from Represent with Neural Network
true prior yA

po~(2)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoders

| Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

Sample from
true conditional

po~(z | 2V)

Sample from
true prior

po~(2)

XL

Decoder
Network

<

How do we train this model?

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoders

| Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

Sample from
true conditional

po~(z | 2V)

Sample from
true prior

po~(2)

XL

Decoder
Network

<

How do we train this model?

Remember the strategy from earlier — learn
Model parameters to maximize likelihood of

training data
po(a) = [ po(2)pa(alz)dz

(now with latent z that we need to marginalize)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoders [ Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

How do we train this model?

Sample from Remember the strategy from earlier — learn
true conditional L model parameters to maximize likelihood of
po~(z | 2V) Decod training data
e po(z) = [ pol()po(al2)d:
Sample from
true prior yA (now with latent z that we need to marginalize)
Po-(2) What is the problem with this?

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoders [ Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

How do we train this model?

Sample from Remember the strategy from earlier — learn
true conditional b L 0y
Model parameters to maximize likelihood of
po+(z | V) ecoder | lrAININg data
Network po(z) = [ po(2)pe(z|z)dz
Sample from
true prior yA (now with latent z that we need to marginalize)

po-(2) —iniractablel

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford




Intractability in Variational Autoencoder [ Kingma and Welling, 2014

Data likelihood: po(z) = /pg(z)pg(:c\z)dz

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Intractability in Variational Autoencoder [ Kingma and Welling, 2014

Data likelihood: po(z) = /pg(z)pg(a:\z)dz

@

Simple Gaussian Prior

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Intractability in Variational Autoencoder [ Kingma and Welling, 2014

Decoder Neural Network

@
Data likelihood:  po(z) = /pg(z)pg(a:\z)dz

@

Simple Gaussian Prior

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Intractability in Variational Autoencoder [ Kingma and Welling, 2014

Intractable to compute for eva Z

Decoder Neural Network
@
Data likelihood: po(a:) = po(z)pg(a:\z)dz

@

Simple Gaussian Prior

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Intractability in Variational Autoencoder [ Kingma and Welling, 2014

Intractable to compute for eva Z

Decoder Neural Network

@
Data likelihood:  po(x) =| || pe(2)pe(z|2)dz

@

Simple Gaussian Prior

Posterior density Is also intractable: Po(z |37) — Pe(iv \Z)Po(z)/ Pe(iv)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Intractability in Variational Autoencoder [ Kingma and Welling, 2014

Intractable to compute for eva Z

Decoder Neural Network

@
Data likelihood:  po(x) =| || pe(2)pe(z|2)dz

@

Simple Gaussian Prior

Posterior density Is also intractable: Po(z |£B) — po(w\Z)pg(z) 9(33)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Intractability in Variational Autoencoder [ Kingma and Welling, 2014

Intractable to compute for eva Z

Decoder Neural Network

@
Data likelihood:  po(x) =| || pe(2)pe(z|2)dz

@

Simple Gaussian Prior

Posterior density Is also intractable: Pe(z |~’L‘) — po(SB |z)p9(z) 9(33)

Solution: In addition to decoder network modeling pg(x|z), define additional
encoder network g¢(zlx) that approximates pg(z|x)

— Will see that this allows us to derive a lower bound on the data likelihood that is tractable, which we can optimize

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder

A
| Kingma and Welling, 2014 |

Since we are modeling probabillistic generation of data, encoder and decoder
networks are probabillistic (they model distributions)

Mean and (diagonal) covariance of z | x

N\

Hz|z

Encoder Network

4¢(2|z)

(parameters ¢)

z|a:

Mean and (diagonal) covariance of x | z

\

\

M|z

:z:lz

Decoder Network

po(|2)

(parameters )

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder

A
| Kingma and Welling, 2014 |

Since we are modeling probabillistic generation of data, encoder and decoder
networks are probabillistic (they model distributions)

Why*/ Mean and (diagonal) covariance of z | x

N\

Hz|z

Encoder Network

4¢(2|z)

(parameters ¢)

z|a:

Mean and (diagonal) covariance of x | z

\

\

M|z

:z:lz

Decoder Network

po(|2)

(parameters )

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder [ Kingma and Weliing, 2014 |

Since we are modeling probabillistic generation of data, encoder and decoder
networks are probabillistic (they model distributions)

Sample z from: z|z ~ N (U2, X2z) Sample x | z from: x|z ~ N (tz|, Xz|2)
Hz|x z|:c M|z :z:lz
Encoder Network Decoder Network
q4(2|x) pe(z|2)
(parameters ¢) (parameters )
4 b Z

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder [ Kingma and Weliing, 2014 |

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pp (V) = E. q,(z]z) —logpg(:c(i))— (po (") Does not depend on 2)

——

Taking expectation with respect to z
(using encoder network) will come In
handy later

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder [ Kingma and Weliing, 2014 |

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pp (V) = E. g, (a0 -logpg(:c(i))- (po(2'?) Does not depend on z)

po(2® | 2)po(z)’
po(z | 2)

(Bayes’ Rule)

= E. |log

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder

Derivation of lower bound of the data likelihood

A
| Kingma and Welling, 2014 |

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pg(z\”) = E

z~qe (2]z(9) log po (x(i))

log

log

po(2® | 2)po(z)’

(po(2'?) Does not depend on z)

. Baves’

po(z |2y | (B
po(z\V) | 2)pe(2) qp(z | )
po(z | W) gp(z | z®)_

Rule)

(Multiply by constant)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder [ Kingma and Weliing, 2014 |

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pp (V) = E. g, (a0 -logpg(:c(i))- (po(2'?) Does not depend on z)
po (2 | 2)pe(2)

po(z |z)
po (2" | 2)po(2) gp(z | 2)

(Bayes’ Rule)

= E. |log

= E. |lo . . Multiply by constant
BT P [20)  gp(z o] Y DY constant)
| — ! (1)) - (1))

= E. |logpy(z'V | 2)| — E, |log 4(z]2") + E. |log 4(7 | @ . ) (Logarithms)
- : _ po(z) T pe(z | 2W)_

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder

Derivation of lower bound of the data likelihood

| Kingma and Welling, 2014 |

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pg(z\”) = E

= E. |log

= E, |log

= H, -lngg(CL'(i) | 2)

— E, —logpg(az(i) | z)

sy (220 108 Po(z)

po(z® | 2)pa(z)
po(z | 20)

pe(z® | 2)pa(2) ap(2

(po (") Does not depend on 2)

(Bayes’ Rule)

x(i))‘

po(z | xV)  qg(z

—E,

log

()

gy (2 | V)

+ B
po(2)

—

log q¢(z

(Multiply by constant)

MOMN

Pe(z

2(@)

(Logarithms)

— Drr(gs(z | 27) || po(2)) + Drr(gs(2 | ) || po(z | )

——

Expectation with respect to z
(using encoder network) leads to nice KL terms

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



A
| Kingma and Welling, 2014 |

Variational Autoencoder

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pe (') = E (po(2'?) Does not depend on z)

z~qe (2]z(9) log po (x(i))

po(2® | 2)po(z)’

log (Bayes’ Rule)

po(z | (V)

2s(29 | 2)pp(2) ao (2

x(i))‘

. 1o .
O T ez | 2®)

. |log po(z® | 2)

. -10g]?9(fl3(i) | Z)-

Decoder network gives pg(x|z), can

compute estimate of this term through

sampling. (Samplin

g differentiable through

reparam. trick, see paper.)

qe (2

— E, |log

x(i))_
gs(z | D)

po(z)

+ E,

This KL term (between Gaussians
for encoder and z prior) has nice
closed-form solution!

log

e (2

(Multiply by constant)

MOMN

Pe(z

2(@)

(Logarithms)

— Drr(gs(z | 27) || po(2)) + Drr(gs(2 | ) || po(z | )

Pp(z|x) intractable (saw earlier), can't

compute this KL term :(

But we know KL divergence always >= 0.

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder

Derivation of lower bound of the data likelihood

| Kingma and Welling, 2014 |

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pg(z\”) = E

= E. |log

= E, |log

sy (220 108 Po(z)

po(2z® | 2)po(z)’
po(z | 2)

pa(2 | 2)ps(2) ap(2

(pe (")) Does not depend on 2)

(Bayes’ Rule)

x(i))‘

po(z | xV)  qg(z

= E, -lngg(ZL'(i) | z) —E,

=E, :1ng0(33(i) | Z)-

log

()

gy (2 | V)

(Multiply by constant)

+ E,

po(z)

—_— e —
L(z™,0,9)

Tractable lower bound which we can take gradient of
and optimize! (pB(x|z) differentiable, KL term differentiable)

log

qp(2

MOMN

pe(z

2(@)

(Logarithms)

— Drr(gs(z | 27) || po(2)) + Drr(gs(2 | ) || po(z | )

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder [ Kingma and Weliing, 2014 |

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pg(z\”) = E

2mogy (2]2 ) —logpg(:c(i))— (po (") Does not depend on 2)

po(2z® | 2)po(z)’
po(z | 2®)
po(z'V | 2)pe(2) qp(z | V)

(Bayes’ Rule)

= E. |log

= E. |lo . . Multiply by constant
T T ez [ 2) gz 2@ ( )
- | - i (4)) i (4))

—E. lngg(ZL'(z) 1 2)| — E, |log 4p(2 | 27 + E. |log 4p(2 | @ . ) (Logarithms)
: : _ po(z) T pe(z | 2W)

=E, |logpe(z™) | 2)| — Drr(gs(2 | 29) || po(2)) + Drcr(gs(z | 27) || po(z | 2)))
D ———————

(2)
| | L i) Training: Maximize lower bound
log po(zV)) > L(x'", 6, ¢) N
Variational lower bound (‘ELBO”) 0", 9" = arg r%’%x L(z*,0,0)
=1

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder [ Kingma and Weliing, 2014 |

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pp (V) = E. q,(z]z) —logpg(a:(i))— (pe (")) Does not depend on 2)

po (x| 2)pg(z)
po(z | xz))
po (x| 2)pe(2) qp(z | V)
po(z | )  qu(z|2®)

(Bayes’ Rule)

= E. |log

(Multiply by constant)

= E, |log

Reconstruct Make approximate posterior
Input Data close to the prior

= E. [logpa(a? | 2)] — Dir(gaz | #@) | pa(2)) + Drcr(as(z | =) || po(z | =)
e —— e

(2)
| | L i) Training: Maximize lower bound
log po(zV)) > L(x'", 6, ¢) N
Variational lower bound (“ELBO”) 0", 9" = arg I%%X L(xz*,0,9)
=1

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

B, |logpo(2" | 2)| — Dicsas(= | 2) || pa(2))
g —
£(2,6,0)

Lets look at computing the bound (forward pass)
for a given mini batch of input data

Input Data 4

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

B, |logpo(2" | 2)| — Dicsas(= | 2) || pa(2))
g —
£(2,6,0)

M| 2.
Encoder network | z|
qo(2|T) \/
Input Data 4

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

B, |logpo(2" | 2)| — Dicsas(= | 2) || pa(2))
g —
£(2,0,0)

Make approximate

posterior distribution

close to prior / \

/“LZ‘SU zzlm

Encoder network

qs(2|z)
Input Data L

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

B, |logpo(2" | 2)| — Dicsas(= | 2) || pa(2))
g —
£(2,0,0)

Z
Sample z from z|x ~ N(/Lz|a;, 2z|a:)

Make approximate

posterior distribution

close to prior / \

M| 2.
Encoder network | z|
qe(2|T) \/
Input Data L

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

x|z

E. [logpo(+) | 2)| ~ Dicrlas(z | 2)[| po(2)) Ha|z 2
. ———— Decoder network
L(z 0, ¢) Do (:z:|z) \/
yA

Make approximate

Sample z from z|x ~ N(uz|m Zz|:c)

posterior distribution

close to prior / \

M| 2.
Encoder network | z|
qe(2|T) \/
Input Data L

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder: Learning

Putting it all together:

maximizing the likelihood lower Maximize fikelinood of T
HOUN] original input being
reconstructed Sample x|z from z|z ~ N (Ug|2, Xg|2)
B. [logpo(e | 2)] ~ Dicsasz ] 2) 1 o(2)) Haz 2z
e S Decoder network
L(xD,0,0)
pe(z|2)
yA

Make approximate Sample z from z|x ~ N(/Lz|a;, Zzl:c)

posterior distribution

close to prior / \

M| 2.
Encoder network | z|
qe(2|T) \/
Input Data L

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder: Learning

Putting it all together:

maximizing the likelihood lower Maximize fikelinood of T
HOUN] original input being
reconstructed Sample x|z from z|z ~ N (Ug|2, Xg|2)
B. [logpo(e | 2)] ~ Dicsasz ] 2) 1 o(2)) Haz 2z
e S Decoder network
L(xD,0,0)
pe(z|2)
yA

Make approximate Sample z from z|x ~ N(/Lz|a;, Zzl:c)

posterior distribution

close to prior / \

M| 2.
Encoder network | z|
qe(2|T) \/
Input Data L

For every minibatch of input data: compute this forward pass, and then backprop!

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder: Learning

B [logpo(2” | 2)| — Dicr(as(= | 2”)| po(2))

L(z,0,¢)

what can happen without regularisation x V what we want to obtain with regularisation

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73



Variational Autoencoder: Generating Data

Use decoder network and sample z from prior

Sample x|z from x|z ~ N(ux|z, z:,;|z)

A

L

/

M|z

Decoder network

po(z|2)

™~

z:z:]z

~_

VA

Sample z from z ~ N (0, I)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder: Generating Data

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73



Data

[gle

Use decoder network and sample z from prior

Generat

Variational Autoencoder

Data manifold for 2-d z

DAY SNANNANAAANNNNNSNNNNNS
QAN iy e LLLLLWNYNNNN~
QUAVAININ L LLLVYYY NN~
QAUAVVDINnin g o o B YVVOVWY W -~~~
QOAVOVUHIHINLN LY 0 W VYOV Y W - - —
QAODHINININMHMEBPBDIIVIY W@ - - —
QOAQOOMHIMMMMNNMBDIOID D W - - —
QOO MHMNMMMON M W®D DD D @ e —
OO0DOMMMM M N0 WD DD D e —
QAN PP 00000000 n o o~ D~~~
RS N N Fa N Nl ol Ll Rl ol o e
S LR LG EGEGE ok kR SR Sl
il dogororrororraTT NN
Sdadadadadogororrorr T IIINNN
SddaddgororrrrrdFTITITRIXINN
A dTTTTTrrrrrrFrr2T22NN
% I g gl e i <l el ool ol ol ol ol O S N NN NN

TN

M|z

T
Sample x|z from x|z ~ N (g, 2

Decoder network
po(z|2)

xh)
Vary z;

Z.'Jz:\,z

Sample z from z ~ N (0, I)

Vaw Zo

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder: Generating Data

Data manifold for 2-d z

Diagonal prior on z => :—_:3_‘_: Rytey by I
wwm 4"1'7'7
;';3, t"qq-;s Ly

asx rbesfesfofesfe

-

iIndependent latent variables

Different dimensions of z encode

iNnterpretable factors of variation
Vary z;

(degree of smile)

AAAAERAS
S
SRR
BEEEEBBBBE

EEEEEEEE S S

-—m m m ——
Vary zo

(head pose)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder: Generating Data

Data manifold for 2-d z

Diagonal prior on z => ;_:!:!_‘_:; A g A
i S S
PPy 4
;;:;w v v“v*‘:;v >

asx feoferfesfeofesfs
%

iIndependent latent variables

Different dimensions of z encode

iNnterpretable factors of variation
Vary z;

AAAAAAAAS
BEEELLLLE

353
SEEEEEEEREE
e EEE

-—m m m ——
Vary zo

(degree of smile)

Also good feature representation that can
be computed using ge(z|x)!

(head pose)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder: Generating Data

L abeled Faces in the Wild
32x32 CIFAR-10

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Conditional VAEs

Image

Attributes




Color Image
(C)

Grey Image
(G)

MDN

Step 1

'

Training Procedure

Color Image
(C)

Step 2

Gr Image
(G)

Conditional VAE: Diverse Image Colorization

Testing Procedure

MDN

5
» 5>

Sa

mpling

Diverse
Colorizations

| Deshpande et al., 2017 |



Conditional VAE: Temporal Predictions [ Xue et al., 2016

‘-
‘.~

(a) Frame 1 (b) Frame 2 (c) Frame 2 (d) Frame 2
(ground truth) (Sample 1) (Sample 2)




Variational Autoencoder (VAE) [He et al., 2018]

_____ f____J

)
@




Variational Autoencoder (VAE) + LSTM [He etal., 2018]




VAE + LSTM with Structured Latent Space  (Heetal, 2018]

T TN T T T T TN T T T e T e a-— A S TN T T T . T e .

Dynamic
Prior @ Approximate
Posterior

Conditional
/N o\ Approximate

L ) & '

1+

__________ - L Residual
( | \/ A Approximate
,  Structured 1] Posterior Appearance

I Latent Space

( Encoder ﬂ

Holistic Attribute Control

Controlled
Appearance
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Results: Chair CAD dataset

@ Rotation

@ Identity @ Tilt

fix I

generate

ﬂﬂﬂﬂﬂﬂﬂ
Ml
LLIGICREREAER
“ NIRRT

(a) Partial control.

@ Rotation

@ |dentity @ Tilt

fix | generate

[ OOCOEEE
b LiLdLILIEIR4ES
IR
L] LALALEIEIE LD
L1 IR
EILLILIEIEIES

(b) Full control.

| He et al., 2018 ]

Ablation

—C +C
-5 45 =-S5 +S5

Intra-E | 1.98 40.33 17.64 7.79 14.81 3.50
Inter-E T 1.39 042 0.73 1.35 1.02 1.37
I-Score T 4.01 128 1.83 3.63 2.56 3.94

Bound Static

Quantitative

Chair CAD [1, 40]
Bound Deep Rot. [40] VideoVAE (ours)

O O
Intra-E | 1.98 14.68 5.50
Inter-E 1T 1.39 1.34 1.37

I-Score 1T 4.01 3.39 3.94




Results: \Weizmann Human Action dataset [(Heetal, 2018]

@ ldentity =& | A | @ Action = @ walking | running | skipping | jumping jack |  side step

generate
| - - | .l . o X 3 4 l_."' I . a1
/

BRI R R A0 % o o ol ol B
o ¢ o o & & ¢ & & ¢ ¢ ¢ & o o
A A A A A A A A A A A A A A A

- - | : - | ' ".' |
| |
N ] o ] ] il O Bl

Weizmann Human Action [2]
Bound MoCoGAN [32] VideoVAE (ours)

O O @
Intra-E | 0.63 23.58 0.53 9.44
Inter-E 1T 4.49 2.91 4.37 4.37

[-Score 1 89.12 13.87 69.55 70.10




Results: MIT Flickr [ He et al., 2018 |

- ——
E
- )

YFCC [31] — MIT Flickr [34]
Bound VGAN [34] VideoVAE (ours)

O O @
Intra-E | 30.34 46.96 44.03  38.20
Inter-E 1 0.693 0.692 0.691 0.692

I-Score 1 1.87 1.58 1.62 1.81




Variational Autoencoders

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:

- Principled approach to generative models
- Allows inference of g(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANS)

Active area of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal Gaussian
- Incorporating structure in latent variables (our submission to CVPR)




VAE /w (powerful) Pixel CNN Decoder

Problem: If the decoder is too powerful, it may just ignore the latent variables
(.e. posterior collapse). This happens when the decoder can make the
reconstruction loss incredibly small, such that the regularization term dominates
the loss function. In such a case, the encoder will learn to reduce the
regularization term, and produce meaningless latents to match p(z) = N(O, 1).



Vector Quantized

Variational Autoencoders
(VQ-VAE)



AutOenCOders Reminder o Source: http://www.tomviering.nl/talks/slides/2018 01 09.pdf

How to discretize?

For the example:
We take this to be a 4 x 4 image
with 2 channels.

Output

Latent variable (reconstruction)

Z (x)

Encoder Decoder

We can train this system end-to-end
using MSE (reconstruction loss)


http://www.tomviering.nl/talks/slides/2018_01_09.pdf

Autoencoders Reminder o Source: http://www.tomviering.nl/talks/slides/2018 01 09.pdf

How to discretize?

4 x 4 image with 2 channels.
We plot all pixel values (16) in 2D
(since we have 2 channels)

Channel 2

Channel 1


http://www.tomviering.nl/talks/slides/2018_01_09.pdf

Vector Quantized - VAE Source: hitp://www.tomviering.nl/talks/slides/2018 01 _09.pdf

Make dictionary of vectors

4 x 4 image with 2 channels.

Each e; has 2 dimensions.



http://www.tomviering.nl/talks/slides/2018_01_09.pdf

Vector Quantized - VAE Source: hitp://www.tomviering.nl/talks/slides/2018 01 _09.pdf

Make dictionary of vectors

4 x 4 image with 2 channels.
Each e; has 2 dimensions.

For each latent pixel, look up
nearest dictionary element e

Encoder



http://www.tomviering.nl/talks/slides/2018_01_09.pdf

Vector Quantized - VAE Source: hitp://www.tomviering.nl/talks/slides/2018 01 _09.pdf

4 x 4 image with 2 channels. Each e; has 2 dimensions.

89,9,

CNN

Encoder Decoder


http://www.tomviering.nl/talks/slides/2018_01_09.pdf

Vector Quantized - VAE Source: http://www.tomviering.nl/talks/slides/2018 01 09.pdf

Embedding

Np— Output

(reconstruction)

Latent variable

q(z|x) 3

3 ®ss

z |l | |2 Z,(X)
53 ‘

Encoder

Latent is 1 channel image and Decoder

contains the id of each e for
each pixel (discrete).


http://www.tomviering.nl/talks/slides/2018_01_09.pdf

Source: http://www.tomviering.nl/talks/slides/2018 01 09.pdf

VQ-VAE — Training

* How to backpropegate through the discretization?

* Lets say a gradient is incoming to a dictionary vector
* We do not update the dictionary vector (fixed)
* |Instead we apply the gradient of e to the non-discretized vector

& €,e,e, e, \
Embedding
Space
b L | S
\ — D 3 > sz — 4 2 - ‘
,/\ TT T e - ¥
) —45r- ﬂ"’- - : q(z|x) ) — —5 .831 || " CNN ’
CNN [ | [S2 | . p(x|z,)
11 e
3 = e 8
Ze(X) 4 2 ZQ(X)
53

Encoder Decoder


http://www.tomviering.nl/talks/slides/2018_01_09.pdf

Source: http://www.tomviering.nl/talks/slides/2018 01 09.pdf

VQ-VAE — Training

2 |, 2
2q(7)) + ||sglze(z)] —ell2 + 5 2.

L = logp(x ze(z) — sgle]

* How to backpropegate through the discretization?
* Lets say a gradient is incoming to a dictionary vector
* We do not update the dictionary vector (fixed)
* |Instead we apply the gradient of e to the non-discretized vector

(eee, &)
Embedding
Space
. =
R \
A /l
N D o~ X ‘£ 1 o :
\_\ p > ' /| ¥ Vo ’
! v imnnzi P
= e. Tl
i S —ﬁo@ 5 —» | €3 | " CNN
CNN N | INECE | (xlz,
\ﬁk &5 |
z,(x) . z (x)
” y

Encoder Decoder


http://www.tomviering.nl/talks/slides/2018_01_09.pdf

Source: http://www.tomviering.nl/talks/slides/2018 01 09.pdf

VQ-VAE — Training

. 2 2
L = logp(z|zq(x)) + [|sglze(z)] — ell2 + Bl[ze(z) — sgle]||2,
Reconstruction loss, which optimizes Regularization, ensures that encoder
both the encoder and decoder does not grow arbitrarily

VQ loss, which moves the embedding
vectors towards encoder outputs


http://www.tomviering.nl/talks/slides/2018_01_09.pdf

VQ-VAE — Sampling / Generation

Class: pickup

Embedding
Space

|
INEER el 1D
PixelCNN — 32 1 T 2(x)

[ b3 [ |




VQ-VAE — Sampling / Generation

* Comparable with VAE on CIFAR-10 in terms of density estimation
* Reconstructions on ImageNet are very good

4

.

- - -
\K\ ,,' )|

Figure 2: Left: ImageNet 128x128x3 images, right: reconstructions from a VQ-VAE with a 32x32x1
latent space, with K=512.



VQ-VAE vs. G

VQ-VAE (Proposed)



Relationship of VQ-VAE to VAE

VAE: Assumes Gaussian prior over continuous latent space

VQ-VAE: Assumes uniform categorical distribution over discrete keywords (all
keywords are equally likely)



Comparison

Variational Pixel CNN VQ-VAE
Autoencoder (This talk)
X

Compute exact likelihood p(x)

Has latent variable z

Compute latent variable z (inference)

N N N X

Stable training?

Sharp images?

v v %
X v X
Discrete latent variable X X X
x v v
v X v



Multi-stage VQ-VAE

»000 3 latentsin [0,512]

Encoder _ h:‘ PixelCNN
* Decoder
Discretelatents 21 X 21 x1in
' [0,512]
[\
Encoder / \ / \ Decoder
Before: 84 * 84 *3 * 8 =
21168 bits =3 Kb
After
84X84X3 3*9=27b|t5

In [0,256]
Reconstruction not very

accurate but powerful
representation




So far ...

Pixel CNNs define tractable density function, optimize likelihood of training data:
n
p(z) = Hp(:vz-|a:1, veey Ti—1)
i=1

VAES define intractable density function with latent variables z (that we need to
marginalize):

po(z) = / po(2)po(2]2)dz

cannot optimize directly, derive and optimize lower bound of likelihood instead

What if we give up on explicitly modeling density, and just want to sample”?

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



So far ...

Pixel CNNs define tractable density function, optimize likelihood of training data:
n
p(z) = Hp(a:z-|a:1, veey Ti—1)
i=1

VAES define intractable density function with latent variables z (that we need to
marginalize):

po(z) = / po(2)po(z]2)dz

cannot optimize directly, derive and optimize lower bound of likelihood instead

What if we give up on explicitly modeling density, and just want to sample”?

GANSs: don’t work with any explicit density function

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



