THE UNIVERSITY OF BRITISH COLUMBIA

Topics Iin Al (CPSC 532S):

Multimodal Learning with Vision, Language and Sound

Lecture 15: Generative Models



Supervised vs. Unsupervised Learning

Supervised Learning

Data: (X, )
X IS data, vy Is label

Goal: Learn a function to map x—vy

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Classification

This image is CCO public domain

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford


https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs. Unsupervised Learning

Supervised Learning

Data: (X, y)
X IS data, vy Is label

Goal: Learn a function to map x—vy

Examples: Classification, DOG, DOG, CAT
regression, object detection, | |
semantic segmentation, image Object Detection

captioning, etc.

This image is CCO public domain

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford
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Supervised vs. Unsupervised Learning

Supervised Learning

Data: (x, y)
X IS data, vy is label

Goal: Learn a function to map x—y

Examples: Classification, GRASS, . TREE, SKY
regression, object detection,
semantic segmentation, image Semantic Segmentation

captioning, etc.

This image is CCO public domain

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford


https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs. Unsupervised Learning

Supervised Learning

Data: (X, )
X IS data, vy Is label

Goal: Learn a function to map x—vy

e . A cat sitting on a suitcase on the floor
Examples: Classification, °

regression, object detection,
semantic SegmeﬂtaﬂOﬂ, image \mage Cap’[ioning
captioning, etc.

This image is CCO public domain

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford


https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs. Unsupervised Learning

Unsupervised [earning

Data: x
Just data, no labels! 7
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Examples: Clustering,
dimensionality reduction, feature K-means clustering
learning, density estimation, etc.

This image is CCO public domain

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford


https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs. Unsupervised Learning

Unsupervised [earning

Data: x
Just data, no labels!

original data space

component space

Goal: Learn some underlying hidden
structure of the data

R
1)
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Examples: Clustering,
dimensionality reduction, feature dimensionality reduction
learning, density estimation, etc.

This image is CCO public domain

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford


https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs. Unsupervised Learning

Unsupervised [earning

Data: x
Just data, no labels! | | -
1-dim density estimation
Goal: Learn some underlying hidden
structure of the data

Examples: Clustering, |
dimensionality reduction, feature 2-dim density estimation
learning, density estimation, etc.

left right CCO public domain

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford


https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs. Unsupervised Learning

Supervised Learning

Unsupervised [earning

Data: (x, V)
X IS data, vy Is label

Goal: Learn a function to map x—y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Data: x
Just data, no labels!

Goal: Learn some underlying hidden
structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Generative Models

Given training data, generate new samples from the same distribution

A :-ilq

Training data ~ pya(x) Generated samples ~ Pmodel(X)

Want 1o learn pmodel(x) similar 10 pyata(x)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Generative Models

Given training data, generate new samples from the same distribution

2,

Training data ~ pya(x) Generated samples ~ Pmodel(X)

Want 1o learn pmodel(x) similar 10 pyata(x)

Addresses density estimation, a core problem In unsupervised learning
— Explicit density estimation: explicitly define and solve for ppodel(x)

— Implicit density estimation: learn model that can sample from ppeqa(x) W/0 explicitly defining it

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Taxonomy of Generative Models

Direct
GAN
Generative models
Explicit density Implicit density
Tractable density Approximate density Markov Chain
Fully Visible Belief Nets / T .
- NADE
_ MADE Variational Markov Chain
- PixelRNN/CNN Variational Autoencoder Boltzmann Machine

Change of variables models
(nonlinear ICA)

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Taxonomy of Generative Models

Direct
GAN
Generative models
Explicit density Implicit density
Tractable density Approximate density Markov Chain
Fully Visible Belief Nets / T .
~ NADE
_ MADE Variational Markov Chain
- PixelRNN/CNN Variational Autoencoder Boltzmann Machine

Change of variables models
(nonlinear ICA)

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Why Generative Models”?

— Realistic samples for artwork, super-resolution, colorization, etc.

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Why Generative Models”?

— Realistic samples for artwork, super-resolution, colorization, etc.

— Generative models of time-series data can be used for simulation,
predictions and planning (reinforcement learning applications)

— [raining generative models can also enable inference of latent representation
that can be useful as general features

— Dreaming / hypothesis visualization

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelRNN and PixelCNN



PixelRN N [ van der Oord et al., 2016 ]

Explicit Density model

Use chain rule to decompose likelihood of an image x into product of (many)
1-d distributions

Likelihood of Probability of i'th pixel value
Image x given all previous pixels

then maximize likelihood of training data

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Pixel=RNN




PixelRNN [ van der Oord et al., 2016 ]

Explicit Density model

Use chain rule to decompose likelihood of an image x into product of (many)
1-d distributions

b=
Likelihood of Probability of i’th pixel value
Image x given all previous pixels

Complex distribution over pixel values,

so lets model using neural network

then maximize likelihood of training data

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelRNN [ van der Oord et al., 2016 ]

Explicit Density model

Use chain rule to decompose likelihood of an image x into product of (many)
1-d distributions

T

p(z) = | | pl@ile, .. zio1)
T =1

Likelihood of Probability of i’th pixel value
Image x given all previous pixels

Complex distribution over pixel values,

L T . so lets model using neural network
then maximize likelihood of training data .

Also requires defining ordering of
“previous pixels”

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Pixel=RNN

£z n2

A
[ van der Oord et al., 2016 |

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelRN N [ van der Oord et al., 2016 ]

Generate image pixels starting
from the corner

Dependency on previous pixels
model using an RNN (LSTM)

o O O O @
o O O O O
o O O 0O O
o O O O O
o O O O O

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelRN N [ van der Oord et al., 2016 ]

Generate image pixels starting E—Q © O ©
from the corner o O O O
. . O O O O O

Dependency on previous pixels
model using an RNN (LSTM) o O O O O
o O O O O

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelRN N [ van der Oord et al., 2016 ]

Generate image pixels starting
from the corner

Dependency on previous pixels
model using an RNN (LSTM)

o O

o O O

o O O O
o O O O O
o O O O O

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Pixel=RNN

£z n2

A
[ van der Oord et al., 2016 |

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelRN N [ van der Oord et al., 2016 ]

Generate image pixels starting
from the corner

Dependency on previous pixels
model using an RNN (LSTM)

O @
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* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelRN N [ van der Oord et al., 2016 ]

Generate image pixels starting
from the corner

model using an RNN (LSTM)

o O O O O

Dependency on previous pixels g
O

o O O
o O O O

O
O
Problem: sequential generation is slow

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelCN N [ van der Oord et al., 2016 |

Still generate image pixels
starting from the corner

e

0 T 255

Dependency on previous pixels
now Mmodeled using a CNN over

context region /

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



AR
PixelCN N [ van der Oord et al., 2016 |

Still generate image pixels

starting from the corner
Softmax loss at each pixel

e

0 ? 255

g \‘
/ N
71 Bl
Iy .
/
/
/

Dependency on previous pixels
now Mmodeled using a CNN over

context region

Training: maximize likelihood of
training images

Hp (xi|T1,y ..y Ti—1)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelCNN [ van der Oord et al., 2016 |

Still generate image pixels
starting from the corner

Dependency on previous pixels
now modeled using a CNN over

context region / /

Training: maximize likelihood of
training images

H p(T3| T, ooy Ti1) Generation is still slow (sequential),

but learning is faster

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Generated Samp‘es [ van der Oord et al., 2016 ]
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* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelRNN and PixelCNN

Pros: Improving PixelCNN performance
— Can explicitly compute likelihood p(x) — Gated convolutional layers
— Explicit likelihood of training data gives good — Short-cut connections
evaluation metric — Discretized logistic loss
— Good samples — Multi-scale
— Training tricks
— Ete...
Con:

— Sequential generation => slow

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Multi-scale PixelRNN [ van der Oord et al., 2016 |

Take sub-sampled pixels as
additional input pixels

Can capture better global
iInformation (more visually
coherent)

H H B

* slide from Hsiao-Ching Chang, Ameya Patil, Anand Bhattad



Multi-scale PixelRNN [ van der Oord et al., 2016 |

* slide from Hsiao-Ching Chang, Ameya Patil, Anand Bhattad



Conditional Image Generation [ van der Oord et al., 2016

Similar to PixelRNN/CNN but conditioned on a high-level image description
vector h

p(x) = p(T1, 22, ..., Tp2)

!

p(x/h) = p(x1, 29, ..., z,2|h)

* slide from Hsiao-Ching Chang, Ameya Patil, Anand Bhattad



Conditional Image Generation [ van der Oord et al., 2016

Sandbar

* slide from Hsiao-Ching Chang, Ameya Patil, Anand Bhattad



