Topics in AI (CPSC 532S): Multimodal Learning with Vision, Language and Sound

Lecture 14: Unsupervised Learning, Autoencoders [Part 3]

Logistics

- Project pitches next week (November 1 \& 3)

9 groups per class (~ 8 minutes / group, 5-6 min presentation + questions)

- Project proposals are NOT due next week (due November 15th)
- Assignment 4 - Remember you only need to do 1 PART

Final Project (40\% of grade total)

- Group project (groups of 3 are encouraged, but fewer maybe possible)
- Groups are self-formed, you will not be assigned to a group
- You need to come up with a project proposal and then work on the project as a group (each person in the group gets the same grade for the project)
- Project needs to be research oriented (not simply implementing an existing paper); you can use code of existing paper as a starting point though

Correlated Representations vs. Joint Embeddings

Correlated Representations: Find representations $f_{1}\left(\mathbf{x}_{1}\right), f_{2}\left(\mathbf{x}_{2}\right)$ for each view that maximize correlation:

$$
\operatorname{corr}\left(f_{1}\left(\mathbf{x}_{1}\right), f_{2}\left(\mathbf{x}_{2}\right)\right)=\frac{\operatorname{cov}\left(f_{1}\left(\mathbf{x}_{1}\right), f_{2}\left(\mathbf{x}_{2}\right)\right)}{\sqrt{\operatorname{var}\left(f_{1}\left(\mathbf{x}_{1}\right)\right) \cdot \operatorname{var}\left(f_{2}\left(\mathbf{x}_{2}\right)\right)}}
$$

Joint Embeddings: Models that minimize distance between ground truth pairs of samples:

$$
\min _{f_{1}, f_{2}} D\left(f_{1}\left(\mathbf{x}_{1}^{(i)}\right), f_{2}\left(\mathbf{x}_{2}^{(i)}\right)\right)
$$

Joint Embeddings

Joint Embeddings

Joint Embeddings

Nearest images

[Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, 2014]

Joint Embeddings

Nearest images

[Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, 2014]

Object Classification

Category Prediction

Dog	No
Cat	No
Couch	No
Flowers	No
Leopard	Yes

Problem: For each image predict which category it belongs to out of a fixed set

Object Classification

Category Prediction

Dog	No
Cat	No
Couch	No
Flowers	No
Leopard	Yes

Problem: For each image predict which category it belongs to out of a fixed set

Object Classification

Problem: For each image predict which category it belongs to out of a fixed set

Discriminative Embeddings

Images and class labels are embedded into the same space

Discriminative Embeddings

Images and class labels are embedded into the same space
Image Embedding 듬ㅁ
$\Psi\left(I_{i}\right)=\mathbf{W} \cdot C N N\left(I_{i} ; \boldsymbol{\Theta}\right): \mathbb{R}^{D} \rightarrow \mathbb{R}^{d} \quad \mathbb{R}^{d}$

Discriminative Embeddings

Images and class labels are embedded into the same space
Image Embedding 듬ㅁ
$\Psi\left(I_{i}\right)=\mathbf{W} \cdot C N N\left(I_{i} ; \boldsymbol{\Theta}\right): \mathbb{R}^{D} \rightarrow \mathbb{R}^{d} \quad \mathbb{R}^{d}$

Discriminative Embeddings

Images and class labels are embedded into the same space
Image Embedding 듬ㅁ
$\Psi\left(I_{i}\right)=\mathbf{W} \cdot C N N\left(I_{i} ; \boldsymbol{\Theta}\right): \mathbb{R}^{D} \rightarrow \mathbb{R}^{d}$

Discriminative Embeddings

Images and class labels are embedded into the same space

Image Embedding \quad ㅁㅁㅁ
$\Psi\left(I_{i}\right)=\mathbf{W} \cdot C N N\left(I_{i} ; \boldsymbol{\Theta}\right): \mathbb{R}^{D} \rightarrow \mathbb{R}^{d}$

Discriminative Embeddings

Images and class labels are embedded into the same space

Image Embedding ㅁㅁㅁ

$\Psi\left(I_{i}\right)=\mathbf{W} \cdot C N N\left(I_{i} ; \Theta\right): \mathbb{R}^{D} \rightarrow \mathbb{R}^{d}$

Label Embedding 0

$$
\Psi_{L}\left(\operatorname{word}_{i}\right)=\mathbf{u}_{i}:\{1, \ldots, L\} \rightarrow \mathbb{R}^{d}
$$

Discriminative Embeddings

Images and class labels are embedded into the same space

Image Embedding ㅁㅁㅁㅁㅁ

$\Psi\left(I_{i}\right)=\mathbf{W} \cdot C N N\left(I_{i} ; \Theta\right): \mathbb{R}^{D} \rightarrow \mathbb{R}^{d}$

Label Embedding 0

$$
\Psi_{L}\left(\operatorname{word}_{i}\right)=\mathbf{u}_{i}:\{1, \ldots, L\} \rightarrow \mathbb{R}^{d}
$$

Similarity in Embedding Space

$$
D\left(\mathbf{u}, \mathbf{u}^{\prime}\right)=\left\|\mathbf{u}-\mathbf{u}^{\prime}\right\|_{2}^{2}
$$

Discriminative Embeddings

Images and class labels are embedded into the same space

Image Embedding ㅁㅁㅁㅁㅁ

$\Psi\left(I_{i}\right)=\mathbf{W} \cdot C N N\left(I_{i} ; \Theta\right): \mathbb{R}^{D} \rightarrow \mathbb{R}^{d}$

Label Embedding 0

$$
\Psi_{L}\left(\operatorname{word}_{i}\right)=\mathbf{u}_{i}:\{1, \ldots, L\} \rightarrow \mathbb{R}^{d}
$$

Similarity in Embedding Space

$$
D\left(\mathbf{u}, \mathbf{u}^{\prime}\right)=\frac{\mathbf{u}}{\|\mathbf{u}\|} \cdot \frac{\mathbf{u}^{\prime}}{\left\|\mathbf{u}^{\prime}\right\|}
$$

Discriminative Embeddings

Image Categorization / Annotation
which object category does image belong to?

$\Psi\left(I_{i}\right)=\mathbf{W} \cdot C N N\left(I_{i} ; \boldsymbol{\Theta}\right): \mathbb{R}^{D} \rightarrow \mathbb{R}^{d}$

Label Embedding 0

$$
\Psi_{L}\left(\operatorname{word}_{i}\right)=\mathbf{u}_{i}:\{1, \ldots, L\} \rightarrow \mathbb{R}^{d}
$$

Similarity in Embedding Space

$$
D\left(\mathbf{u}, \mathbf{u}^{\prime}\right)=\left\|\mathbf{u}-\mathbf{u}^{\prime}\right\|_{2}^{2}
$$

Discriminative Embeddings

Image Categorization / Annotation which object category does image belong to?

Image Embedding \square_{\square} ㅁㅁ
$\Psi\left(I_{i}\right)=\mathbf{W} \cdot C N N\left(I_{i} ; \boldsymbol{\Theta}\right): \mathbb{R}^{D} \rightarrow \mathbb{R}^{d}$

Label Embedding 0
$\Psi_{L}\left(\operatorname{word}_{i}\right)=\mathbf{u}_{i}:\{1, \ldots, L\} \rightarrow \mathbb{R}^{d}$

Similarity in Embedding Space

$$
D\left(\mathbf{u}, \mathbf{u}^{\prime}\right)=\left\|\mathbf{u}-\mathbf{u}^{\prime}\right\|_{2}^{2}
$$

Distance can be interpreted as probability

Discriminative Embeddings

Image Categorization / Annotation which object category does image belong to?

Image Embedding ㅁㅁㅁ
$\Psi\left(I_{i}\right)=\mathbf{W} \cdot C N N\left(I_{i} ; \Theta\right): \mathbb{R}^{D} \rightarrow \mathbb{R}^{d}$

Label Embedding 0
$\Psi_{L}\left(\right.$ word $\left._{i}\right)=\mathbf{u}_{i}:\{1, \ldots, L\} \rightarrow \mathbb{R}^{d}$

Similarity in Embedding Space

$$
D\left(\mathbf{u}_{i}, \mathbf{u}^{\prime}\right)=\mathbf{u}_{i} \cdot \mathbf{u}^{\prime}
$$

Distance can be interpreted as probability $\operatorname{Softmax}\left(\mathbf{U u}^{\prime}\right), \quad$ where $\mathbf{U}=\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{L}\right]$

Discriminative Embeddings

Search by Image

 most similar image to a query?
Image Embedding ㅁㅁㅁㅁㅁ

$\Psi\left(I_{i}\right)=\mathbf{W} \cdot C N N\left(I_{i} ; \Theta\right): \mathbb{R}^{D} \rightarrow \mathbb{R}^{d}$

Label Embedding 0

$$
\Psi_{L}\left(\operatorname{word}_{i}\right)=\mathbf{u}_{i}:\{1, \ldots, L\} \rightarrow \mathbb{R}^{d}
$$

Similarity in Embedding Space

$$
D\left(\mathbf{u}, \mathbf{u}^{\prime}\right)=\left\|\mathbf{u}-\mathbf{u}^{\prime}\right\|_{2}^{2}
$$

Discriminative Embeddings

Search by Label

most representative image for a label?

Image Embedding ㅁㅁㅁ

$\Psi\left(I_{i}\right)=\mathbf{W} \cdot C N N\left(I_{i} ; \Theta\right): \mathbb{R}^{D} \rightarrow \mathbb{R}^{d}$

Label Embedding 0

$$
\Psi_{L}\left(\operatorname{word}_{i}\right)=\mathbf{u}_{i}:\{1, \ldots, L\} \rightarrow \mathbb{R}^{d}
$$

Similarity in Embedding Space

$$
D\left(\mathbf{u}, \mathbf{u}^{\prime}\right)=\left\|\mathbf{u}-\mathbf{u}^{\prime}\right\|_{2}^{2}
$$

Discriminative Embeddings

Image Embedding ㅁㅁㅁ

$$
\Psi\left(I_{i}\right)=\mathbf{W} \cdot C N N\left(I_{i} ; \boldsymbol{\Theta}\right): \mathbb{R}^{D} \rightarrow \mathbb{R}^{d}
$$

$$
\mathcal{L}_{C}\left(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}\right)=\sum\left[1+D\left(\Psi\left(I_{i}\right), \mathbf{u}_{y_{i}}\right)-D\left(\Psi\left(I_{i}\right), \mathbf{u}_{y_{c}}\right)\right]
$$

Label Embedding

$$
\Psi_{L}\left(\operatorname{word}_{i}\right)=\mathbf{u}_{i}:\{1, \ldots, L\} \rightarrow \mathbb{R}^{d}
$$

Similarity in Embedding Space

$$
D\left(\mathbf{u}, \mathbf{u}^{\prime}\right)=\left\|\mathbf{u}-\mathbf{u}^{\prime}\right\|_{2}^{2}
$$

Objective Function:

$$
\min _{\mathbf{W}, \mathbf{U}} \sum_{i}^{N} \mathcal{L}_{C}\left(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}\right)+\lambda_{1}\|\mathbf{W}\|_{F}^{2}+\lambda_{2}\|\mathbf{U}\|_{F}^{2}
$$

Discriminative Embeddings

Image Embedding ㅁㅁㅁㅁ

Why not minimize distance directly?

$$
\mathcal{L}_{C}\left(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}\right)=\sum\left[1+D\left(\Psi\left(I_{i}\right), \mathbf{u}_{y_{i}}\right)-D\left(\Psi\left(I_{i}\right), \mathbf{u}_{y_{c}}\right)\right]
$$

$\Psi\left(I_{i}\right)=\mathbf{W} \cdot C N N\left(I_{i} ; \boldsymbol{\Theta}\right): \mathbb{R}^{D} \rightarrow \mathbb{R}^{d}$

Label Embedding 0 OO

$$
\Psi_{L}\left(\operatorname{word}_{i}\right)=\mathbf{u}_{i}:\{1, \ldots, L\} \rightarrow \mathbb{R}^{d}
$$

Similarity in Embedding Space

$$
D\left(\mathbf{u}, \mathbf{u}^{\prime}\right)=\left\|\mathbf{u}-\mathbf{u}^{\prime}\right\|_{2}^{2}
$$

Objective Function:

$$
\min _{\mathbf{W}, \mathbf{U}} \sum_{i}^{N} \mathcal{L}_{C}\left(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}\right)+\lambda_{1}\|\mathbf{W}\|_{F}^{2}+\lambda_{2}\|\mathbf{U}\|_{F}^{2}
$$

Discriminative Embeddings

Image Embedding ㅁㅁㅁㅁ

$\Psi\left(I_{i}\right)=\mathbf{W} \cdot C N N\left(I_{i} ; \boldsymbol{\Theta}\right): \mathbb{R}^{D} \rightarrow \mathbb{R}^{d}$

Label Embedding 0 ○○

$$
\Psi_{L}\left(\operatorname{word}_{i}\right)=\mathbf{u}_{i}:\{1, \ldots, L\} \rightarrow \mathbb{R}^{d}
$$

Similarity in Embedding Space

$$
D\left(\mathbf{u}, \mathbf{u}^{\prime}\right)=\frac{\mathbf{u}}{\|\mathbf{u}\|} \cdot \frac{\mathbf{u}^{\prime}}{\left\|\mathbf{u}^{\prime}\right\|}
$$

Objective Function:

$$
\mathcal{L}_{C}\left(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}\right)=\sum \max \left\{0, \alpha-\underline{D\left(\Psi\left(I_{i}\right), \mathbf{u}_{y_{i}}\right)}+\underline{\left.D\left(\Psi\left(I_{i}\right), \mathbf{u}_{y_{c}}\right)\right\}}\right.
$$

Discriminative Embeddings

This is a very convenient model

Discriminative Embeddings

This is a very convenient model

Inducing semantics on the embedding space

word2vec: Unsupervised Word Embedding

Distributional Semantics Hypothesis: words that are used and occur in the same context tend to have similar meaning

Label Embedding 0

$$
\Psi_{L}\left(\operatorname{word}_{i}\right)=\mathbf{u}_{i}:\{1, \ldots, L\} \rightarrow \mathbb{R}^{d}
$$

word2vec: Unsupervised Word Embedding

Distributional Semantics Hypothesis: words that are used and occur in the same context tend to have similar meaning

Label Embedding 0

$\Psi_{L}\left(\operatorname{word}_{i}\right)=\mathbf{u}_{i}:\{1, \ldots, L\} \rightarrow \mathbb{R}^{d}$
$L=310,000$
e.g., Horse breeds are loosely divided into three categories

Skip-gram Model: unsupervised semantic representation for words (trained from 7 billion word linguistic corpus)

Semi-supervised Vocabulary Informed Learning [Fu etal, 2016]

Image Embedding ㅁㅁㅁㅁ
$\Psi\left(I_{i}\right)=\mathbf{W} \cdot C N N\left(I_{i} ; \boldsymbol{\Theta}\right): \mathbb{R}^{D} \rightarrow \mathbb{R}^{d}$

Label Embedding 0 O

$$
\begin{array}{r}
\Psi_{L}\left(\text { word }_{i}\right)=\mathbf{u}_{i}:\{1, \ldots, L\} \rightarrow \mathbb{R}^{d} \\
L=310,000
\end{array}
$$

Semi-supervised Vocabulary Informed Learning [Fu etal, 2016]

Image Embedding ㅁㅁㅁㅁ

$$
\Psi\left(I_{i}\right)=\mathbf{W} \cdot C N N\left(I_{i} ; \boldsymbol{\Theta}\right): \mathbb{R}^{D} \rightarrow \mathbb{R}^{d}
$$

Label Embedding 0

$$
\begin{aligned}
& \Psi_{L}\left(\text { word }_{i}\right)=\mathbf{u}_{i}:\{1, \ldots, L\} \rightarrow \mathbb{R}^{d} \\
& L=310,000
\end{aligned}
$$

Similarity in Embedding Space

$$
D\left(\mathbf{u}, \mathbf{u}^{\prime}\right)=\left\|\mathbf{u}-\mathbf{u}^{\prime}\right\|_{2}^{2}
$$

Semi-supervised Vocabulary Informed Learning

Image Embedding ㅁㅁㅁㅁ

$$
\Psi\left(I_{i}\right)=\mathbf{W} \cdot C N N\left(I_{i} ; \boldsymbol{\Theta}\right): \mathbb{R}^{D} \rightarrow \mathbb{R}^{d}
$$

Label Embedding 0

$$
\begin{array}{r}
\Psi_{L}\left(\text { word }_{i}\right)=\mathbf{u}_{i}:\{1, \ldots, L\} \rightarrow \mathbb{R}^{d} \\
\quad L=310,000
\end{array}
$$

Similarity in Embedding Space

$$
D\left(\mathbf{u}, \mathbf{u}^{\prime}\right)=\left\|\mathbf{u}-\mathbf{u}^{\prime}\right\|_{2}^{2}
$$

Objective Function:

$$
\min _{\mathbf{W}} \sum_{i}^{N} \mathcal{L}_{C}\left(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}\right)+\mathcal{L}_{R}\left(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}\right)+\mu\|V\|_{F}^{2}
$$

Semi-supervised Vocabulary Informed Learning

$$
\mathcal{L}_{C}\left(\mathbf{W}, \mathbf{U}, \mathbf{x}_{i}, y_{i}\right)=\sum\left[1+D\left(\mathbf{W} \mathbf{x}_{i}, \mathbf{u}_{y_{i}}\right)-D\left(\mathbf{W} \mathbf{x}_{i}, \mathbf{u}_{c}\right)\right]
$$

$\Psi\left(I_{i}\right)=\mathbf{W} \cdot C N N\left(I_{i} ; \boldsymbol{\Theta}\right): \mathbb{R}^{D} \rightarrow \mathbb{R}^{d}$

Label Embedding 0 ○○

$$
\begin{aligned}
& \Psi_{L}\left(\operatorname{word}_{i}\right)=\mathbf{u}_{i}:\{1, \ldots, L\} \rightarrow \mathbb{R}^{d} \\
& L=310,000
\end{aligned}
$$

Similarity in Embedding Space

$$
D\left(\mathbf{u}, \mathbf{u}^{\prime}\right)=\left\|\mathbf{u}-\mathbf{u}^{\prime}\right\|_{2}^{2}
$$

Objective Function:

$$
\min _{\mathbf{W}} \sum_{i}^{N} \mathcal{L}_{C}\left(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}\right)+\mathcal{L}_{R}\left(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}\right)+\mu\|V\|_{F}^{2}
$$

Intuition

DeViSE: A Deep Visual-Semantic Embedding Model

$$
\text { loss }(\text { image, label })=\sum_{j \neq \text { label }} \max \left[0, \text { margin }-\vec{t}_{\text {label }} M \vec{v}(i m a g e)+\vec{t}_{j} M \vec{v}(\text { image })\right]
$$

DeViSE: A Deep Visual-Semantic Embedding Model

Supervised Results

	Flat hit@ $k(\%)$						Hierarchical precision@ k			
	dim	1	2	5	10	2	5	10	20	
Softmax baseline	N/A	$\mathbf{5 5 . 6}$	$\mathbf{6 7 . 4}$	$\mathbf{7 8 . 5}$	$\mathbf{8 5 . 0}$	0.452	0.342	0.313	0.319	
DeViSE	500	53.2	65.2	76.7	83.3	0.447	$\mathbf{0 . 3 5 2}$	$\mathbf{0 . 3 3 1}$	$\mathbf{0 . 3 4 1}$	
	1000	54.9	66.9	78.4	$\mathbf{8 5 . 0}$	$\mathbf{0 . 4 5 4}$	0.351	0.325	0.331	
Random embeddings	500	52.4	63.9	74.8	80.6	0.428	0.315	0.271	0.248	
	1000	50.5	62.2	74.2	81.5	0.418	0.318	0.290	0.292	
Chance	N/A	0.1	0.2	0.5	1.0	0.007	0.013	0.022	0.042	

Zero-shot Results

Model	200 labels	1000 labels
DeViSE	31.8%	9.0%
Mensink et al. 2012 [12]	35.7%	1.9%
Rohrbach et al. 2011 [17]	34.8%	-

Semi-supervised Vocabulary Informed Learning

$$
\mathcal{L}_{C}\left(\mathbf{W}, \mathbf{U}, \mathbf{x}_{i}, y_{i}\right)=\sum\left[1+D\left(\mathbf{W} \mathbf{x}_{i}, \mathbf{u}_{y_{i}}\right)-D\left(\mathbf{W} \mathbf{x}_{i}, \mathbf{u}_{c}\right)\right]
$$

$\Psi\left(I_{i}\right)=\mathbf{W} \cdot C N N\left(I_{i} ; \boldsymbol{\Theta}\right): \mathbb{R}^{D} \rightarrow \mathbb{R}^{d}$

Label Embedding 0 ○○

$$
\begin{aligned}
& \Psi_{L}\left(\operatorname{word}_{i}\right)=\mathbf{u}_{i}:\{1, \ldots, L\} \rightarrow \mathbb{R}^{d} \\
& L=310,000
\end{aligned}
$$

Similarity in Embedding Space

$$
D\left(\mathbf{u}, \mathbf{u}^{\prime}\right)=\left\|\mathbf{u}-\mathbf{u}^{\prime}\right\|_{2}^{2}
$$

Objective Function:

$$
\min _{\mathbf{W}} \sum_{i}^{N} \mathcal{L}_{C}\left(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}\right)+\mathcal{L}_{R}\left(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}\right)+\mu\|V\|_{F}^{2}
$$

Semi-supervised Vocabulary Informed Learning

$$
\mathcal{L}_{C}\left(\mathbf{W}, \mathbf{U}, \mathbf{x}_{i}, y_{i}\right)=\sum\left[1+D\left(\mathbf{W} \mathbf{x}_{i}, \mathbf{u}_{y_{i}}\right)-D\left(\mathbf{W} \mathbf{x}_{i}, \mathbf{u}_{c}\right)\right]
$$

$\Psi\left(I_{i}\right)=\mathbf{W} \cdot C N N\left(I_{i} ; \boldsymbol{\Theta}\right): \mathbb{R}^{D} \rightarrow \mathbb{R}^{d}$

Label Embedding 0 ○○

$$
\begin{aligned}
& \Psi_{L}\left(\text { word }_{i}\right)=\mathbf{u}_{i}:\{1, \ldots, L\} \rightarrow \mathbb{R}^{d} \\
& L=310,000
\end{aligned}
$$

Similarity in Embedding Space

$$
D\left(\mathbf{u}, \mathbf{u}^{\prime}\right)=\left\|\mathbf{u}-\mathbf{u}^{\prime}\right\|_{2}^{2}
$$

Objective Function:

$$
\min _{\mathbf{W}} \sum_{i}^{N} \mathcal{L}_{C}\left(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}\right)+\mathcal{L}_{R}\left(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}\right)+\mu\|V\|_{F}^{2}
$$

Vocabulary Informed Recognition

Vocabulary Informed Recognition
[Fu et al., 2016]

Vocabulary Informed Recognition

Vocabulary Informed Recognition

Vocabulary Informed Recognition

Zero-shot Results

Results with AWA

Method	Features	Accuracy
SS-Voc: full instances	CNNoverFeat	78.3
Akata et al. CVPR 2015		
TMV-BLP (Fu et al. ECCV 2014)	CNN	
AMP (SR +SE) (Fu et al. CVPR 2015)	CNNoverFeat	73.9
DAP (Lampert et al. TPAMI 2013)	CNNoverFeat	69.9
PST (Rohrbach et al. NIPS 2013)	CNNvGG19	66.0
DS (Rohrbach et al. CVPR 2010)	CNNoverFeat	57.5
IAP (Lampert et al. TPAMI 2013)	CNNoverFeat	53.2
HEX (Deng et al. ECCV 2014)	CNNDECAF	52.7

Zero-shot Results

Results with AWA

	Method	Features	Accuracy
3.3\% of training data	SS-Voc: full instances	CNNoverFeat	78.3
	800 instances (20 inst*40 class);	CNNoverFeat	74.4
	Akata et al. CVPR 2015	CNNGoogLeNet	73.9
	TMV-BLP (Fu et al. ECCV 2014)	CNNovereat	69.9
	AMP (SR+SE) (Fu et al. CVPR 2015)	CNNovereat	66.0
	DAP (Lampert et al. TPAMI 2013)	CNNvgG19	57.5
	PST (Rohrbach et al. NIPS 2013)	CNNovereat	53.2
	DS (Rohrbach et al. CVPR 2010)	CNNoverreat	52.7
	IAP (Lampert et al. TPAMI 2013)	CNNovereat	44.5
	HEX (Deng et al. ECCV 2014)	CNNDECAF	44.2

Zero-shot Results

Results with AWA

	Method	Features	Accuracy
	SS-Voc: full instances 800 instances (20 inst*40 class);	CNNOverFeat	78.3
		CNNOverFeat	74.4
$0.82 \% \text { of }$ training data	200 instances (5 inst*40 class);	CNNoverFeat	68.9
	Akata et al. CVPR 2015	CNNGoogLeNet	73.9
	TMV-BLP (Fu et al. ECCV 2014)	CNNOverFeat	69.9
	AMP (SR+SE) (Fu et al. CVPR 2015)	CNNOverFeat	66.0
	DAP (Lampert et al. TPAMI 2013)	CNNVGG19	57.5
	PST (Rohrbach et al. NIPS 2013)	CNNOverFeat	53.2
	DS (Rohrbach et al. CVPR 2010)	CNNOverFeat	52.7
	IAP (Lampert et al. TPAMI 2013)	CNNOverFeat	44.5
	HEX (Deng et al. ECCV 2014)	CNN ${ }_{\text {DECAF }}$	44.2

Weakly-supervised Visual Grounding of Phrases

Given image-sentence pairs learn how to localize arbitrary language phrase or sentence in new images

A large bus sitting next to a very tall building.

[^0]
Weakly-supervised Visual Grounding of Phrases

Given image-sentence pairs learn how to localize arbitrary language phrase or sentence in new images
a man

A large bus sitting next to a very tall building.

Weakly-supervised Visual Grounding of Phrases

Given image-sentence pairs learn how to localize arbitrary language phrase or sentence in new images
a man

[^1]

Weakly-supervised Visual Grounding of Phrases [Xiao etal, 2017]

Given image-sentence pairs learn how to localize arbitrary language phrase or sentence in new images

a table

> A large bus sitting next to a very tall building.

Weakly-supervised Visual Grounding of Phrases

Label Embedding 0

$\Psi_{L}\left(\right.$ phrase $\left._{i}\right)=\mathbf{u}_{i}$

Weakly-supervised Visual Grounding of Phrases

Label Embedding 0 OOD

$\Psi_{L}\left(\right.$ phrase $\left._{i}\right)=\mathbf{u}_{i}$

Weakly-supervised Visual Grounding of Phrases [Xiao etal, 2017]

Label Embedding 0

$\Psi_{L}\left(\right.$ phrase $\left._{i}\right)=\mathbf{u}_{i}$

Weakly-supervised Visual Grounding of Phrases

Label Embedding ○○○○

$\Psi_{L}\left(\right.$ phrase $\left._{i}\right)=\mathbf{u}_{i}$

Weakly-supervised Visual Grounding of Phrases

$\Psi\left(I_{i}\right)=\mathbf{W} \cdot C N N\left(I_{i} ; \boldsymbol{\Theta}\right)$

Label Embedding ○○○○

$\Psi_{L}\left(\right.$ phrase $\left._{i}\right)=\mathbf{u}_{i}$

Weakly-supervised Visual Grounding of Phrases

Image Embedding $\square \square \square \square$
$\Psi\left(I_{i}\right)=\mathbf{W} \cdot C N N\left(I_{i} ; \boldsymbol{\Theta}\right)$

Latent Attention
16×16

Label Embedding ©O○○

$\Psi_{L}\left(\right.$ phrase $\left._{i}\right)=\mathbf{u}_{i}$

Weakly-supervised Visual Grounding of Phrases [Xiao etal, 2017]

Image Embedding ■■■
$\Psi\left(I_{i}\right)=\mathbf{W} \cdot C N N\left(I_{i} ; \boldsymbol{\Theta}\right)$

Latent Attention
16×16

Label Embedding ©○○

$\Psi_{L}\left(\right.$ phrase $\left._{i}\right)=\mathbf{u}_{i}$

Weakly-supervised Visual Grounding of Phrases

Image Embedding nina
$\Psi\left(I_{i}\right)=\mathbf{W} \cdot C N N\left(I_{i} ; \boldsymbol{\Theta}\right)$

Label Embedding ©○○
$\Psi_{L}\left(\right.$ phrase $\left._{i}\right)=\mathbf{u}_{i}$

Similarity in Embedding Space

$$
D\left(\mathbf{u}, \mathbf{u}^{\prime}\right)=\left\|\mathbf{u}-\mathbf{u}^{\prime}\right\|_{2}^{2}
$$

Objective Function:

Combination of previous discriminative similarity and linguistic regularization

Weakly-supervised Visual Grounding of Phrases

Image Embedding ㅌㅍㅁ
$\Psi\left(I_{i}\right)=\mathbf{W} \cdot C N N\left(I_{i} ; \boldsymbol{\Theta}\right)$

Label Embedding $\boldsymbol{\bullet \bullet \bullet}$

$\Psi_{L}\left(\right.$ phrase $\left._{i}\right)=\mathbf{u}_{i}$

Similarity in Embedding Space

$$
D\left(\mathbf{u}, \mathbf{u}^{\prime}\right)=\left\|\mathbf{u}-\mathbf{u}^{\prime}\right\|_{2}^{2}
$$

Objective Function:

Combination of previous discriminative similarity and linguistic regularization

Weakly-supervised Visual Grounding of Phrases

For noun phrases:

- siblings should have disjoint masks

Image Embedding ■■■
$\Psi\left(I_{i}\right)=\mathbf{W} \cdot \operatorname{CNN}\left(I_{i} ; \boldsymbol{\Theta}\right)$

Label Embedding ○○○○

$\Psi_{L}\left(\right.$ phrase $\left._{i}\right)=\mathbf{u}_{i}$

$$
D\left(\mathbf{u}, \mathbf{u}^{\prime}\right)=\left\|\mathbf{u}-\mathbf{u}^{\prime}\right\|_{2}^{2}
$$

Objective Function:
Combination of previous discriminative similarity and linguistic regularization

Weakly-supervised Visual Grounding of Phrases

Image Embedding 뭄
$\Psi\left(I_{i}\right)=\mathbf{W} \cdot C N N\left(I_{i} ; \boldsymbol{\Theta}\right)$
Label Embedding 0 ○○
$\Psi_{L}\left(\right.$ phrase $\left._{i}\right)=\mathbf{u}_{i}$

Similarity in Embedding Space

$$
D\left(\mathbf{u}, \mathbf{u}^{\prime}\right)=\left\|\mathbf{u}-\mathbf{u}^{\prime}\right\|_{2}^{2}
$$

Objective Function:

For noun phrases:

- siblings should have disjoint masks

Combination of previous discriminative similarity and linguistic regularization

Weakly-supervised Visual Grounding of Phrases [Xiao etal, 2017]

Image Embedding 뭄
$\Psi\left(I_{i}\right)=\mathbf{W} \cdot C N N\left(I_{i} ; \boldsymbol{\Theta}\right)$

Label Embedding ©〇〇
$\Psi_{L}\left(\right.$ phrase $\left._{i}\right)=\mathbf{u}_{i}$

Similarity in Embedding Space

$$
D\left(\mathbf{u}, \mathbf{u}^{\prime}\right)=\left\|\mathbf{u}-\mathbf{u}^{\prime}\right\|_{2}^{2}
$$

Objective Function:

For noun phrases:

- siblings should have disjoint masks
- parents should be union of children masks

Combination of previous discriminative similarity and linguistic regularization

Weakly-supervised Visual Grounding of Phrases

Image Embedding 묨
$\Psi\left(I_{i}\right)=\mathbf{W} \cdot C N N\left(I_{i} ; \boldsymbol{\Theta}\right)$

Label Embedding ©○○
$\Psi_{L}\left(\right.$ phrase $\left._{i}\right)=\mathbf{u}_{i}$

Similarity in Embedding Space

$$
D\left(\mathbf{u}, \mathbf{u}^{\prime}\right)=\left\|\mathbf{u}-\mathbf{u}^{\prime}\right\|_{2}^{2}
$$

Objective Function:

For noun phrases:

- siblings should have disjoin
- parents should be union of

Combination of previous discriminative similarity and linguistic regularization

Qualitative Results

Input:

guy in green t-shirt holding skateboard

Qualitative Results

Input:

guy in green t-shirt holding skateboard

Qualitative Results

Input:

guy in green t-shirt holding skateboard

Qualitative Results

Input:

Our Model

guy in green t-shirt holding
skateboard

Qualitative Results

Input:

Qualitative Results

Input:

a child wearing black protective helmet

Quantitative Results

Segmentation performance on COCO dataset
[Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollar, Zitnick, ECCV'14]

	loU@0.3	IoU@0.4	loU@0.5	Avg mAP
Non-strcutred	0.302	0.199	0.110	0.203
Parent-Child	0.327	0.213	0.118	0.219
Sibling	0.316	0.203	0.114	0.211
Ours	$\mathbf{0 . 3 4 7}$	$\mathbf{0 . 2 4 6}$	$\mathbf{0 . 1 5 9}$	$\mathbf{0 . 2 5 1}$

Order Embeddings

[Vendrov et al., 2016]

Multimodal Representation Types

Joint representations:

- Simplest version: modality concatenation (early fusion)
- Can be learned supervised or unsupervised

Coordinated representations:

- Similarity-based methods (e.g., cosine distance)
- Structure constraints (e.g., orthogonality, sparseness)
- CCA (unsupervised), joint embeddings (supervised)

Final Words ...

Joint representations

- Project modalities to the same space
- Use when all the modalities are present during test time
- Suitable for multi-model fusion

Coordinated representations

- Project modalities to their own coordinated spaces
- Use when only one of the modalities is present during test-time
- Suitable for multimodal translation
- Good for multimodal retrieval

[^0]: [Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollar, Zitnick, ECCV'14]

[^1]: A large bus sitting next to a very tall building.

