

THE UNIVERSITY OF BRITISH COLUMBIA

Topics in AI (CPSC 532S): **Multimodal Learning with Vision, Language and Sound**

Lecture 14: Unsupervised Learning, Autoencoders [Part 3]

Logistics

- Project pitches next week (November 1 & 3)

9 groups per class (~8 minutes / group, 5-6 min presentation + questions)

- Project proposals are **NOT** due next week (due **November 15th**)

Assignment 4 — Remember you only need to do 1 PART

Final **Project** (40% of grade total)

- Group project (groups of 3 are encouraged, but fewer maybe possible)
- Groups are self-formed, you will not be assigned to a group
- You need to come up with a project proposal and then work on the project as a group (each person in the group gets the same grade for the project)
- Project needs to be research oriented (not simply implementing an existing) paper); you can use code of existing paper as a starting point though

Project proposal + class presentation: 15% Project + final presentation (during finals week): 25%

Correlated Representations vs. **Joint Embeddings**

that maximize correlation:

of samples:

 $min_{f_1,f_2} D\left(f_1(\mathbf{x}_1^{(i)}), f_2(\mathbf{x}_2^{(i)})\right)$

Correlated Representations: Find representations $f_1(\mathbf{x}_1), f_2(\mathbf{x}_2)$ for each view

 $\operatorname{corr}(f_1(\mathbf{x}_1), f_2(\mathbf{x}_2)) = \frac{\operatorname{cov}(f_1(\mathbf{x}_1), f_2(\mathbf{x}_2))}{\sqrt{\operatorname{var}(f_1(\mathbf{x}_1)) \cdot \operatorname{var}(f_2(\mathbf{x}_2)))}}$

Joint Embeddings: Models that minimize distance between ground truth pairs

Image features s

Text: a parrot rides a tricycle

Image features s

Fixed

[Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, 2014]

Nearest images

[Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, 2014]

Nearest images

Object Classification

Problem: For each image predict which category it belongs to out of a fixed set

Object Classification

	Category	Predictio
	Dog	No
	Cat	No
	Couch	No
	Flowers	No
	Leopard	Yes

Problem: For each image predict which category it belongs to out of a fixed set

Object Classification

Problem: For each image predict which category it belongs to out of a fixed set

 \mathbf{x}^t

Images and class labels are embedded into the same space

Images and class labels are embedded into the same space

Image Embedding

 $\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \boldsymbol{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$

Images and class labels are embedded into the same space

Image Embedding

 $\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \boldsymbol{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$

Images and class labels are embedded into the same space

Image Embedding

 $\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \boldsymbol{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$

 \mathbb{R}^{d}

Images and class labels are embedded into the same space

Image Embedding

 $\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \boldsymbol{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$

Images and class labels are embedded into the same space

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding 💿 🔍 🔍

 $\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$

Images and class labels are embedded into the same space

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding 💿 🔍 🔍

 $\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$

Similarity in Embedding Space

 $D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$

Images and class labels are embedded into the same space

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding 💿 🔍 🔍

 $\Psi_L(word_i) = \mathbf{u}_i : \{1, \dots, L\} \to \mathbb{R}^d$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = \frac{\mathbf{u}}{||\mathbf{u}||} \cdot \frac{\mathbf{u}'}{||\mathbf{u}'||}$$

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding 💿 🔵 🔵

 $\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Image Categorization / Annotation

which object category does image belong to?

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding 💿 🔍 🔍

 $\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$

Similarity in Embedding Space

 $D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$

Distance can be interpreted as probability

Image Categorization / Annotation

which object category does image belong to?

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding 💿 🔍 🔍

 $\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$

Similarity in Embedding Space

 $D(\mathbf{u}_i, \mathbf{u}') = \mathbf{u}_i \cdot \mathbf{u}'$

Distance can be interpreted as probability Softmax($\mathbf{U}\mathbf{u}'$), where $\mathbf{U} = [\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_L]$

Image Categorization / Annotation

which object category does image belong to?

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding 💿 🔍 🔍

 $\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Search by Image

most similar image to a query?

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding 💿 🔵 🔵

 $\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Search by Label

most representative image for a label?

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding

 $\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:

$$\min_{\mathbf{W},\mathbf{U}} \sum_{i}^{N} \mathcal{L}_{C}(\mathbf{W},\mathbf{U},I_{i},y_{i}) + \lambda_{1} ||\mathbf{W}||_{F}^{2} + \lambda_{2} ||\mathbf{U}||_{F}^{2}$$

$\mathcal{L}_C(\mathbf{W}, \mathbf{U}, I_i, y_i) = \sum [1 + D(\Psi(I_i), \mathbf{u}_{y_i}) - D(\Psi(I_i), \mathbf{u}_{y_c})]$

 \mathbb{R}^{d}

[Bengio et al.,, NIPS'10] [Weinberger, Chapelle, NIPS'09]

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding

 $\Psi_L(word_i) = \mathbf{u}_i : \{1, \dots, L\} \to \mathbb{R}^d$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:

$$\min_{\mathbf{W},\mathbf{U}} \sum_{i}^{N} \mathcal{L}_{C}(\mathbf{W},\mathbf{U},I_{i},y_{i}) + \lambda_{1} ||\mathbf{W}||_{F}^{2} + \lambda_{2} ||\mathbf{U}||_{F}^{2}$$

Why not minimize distance directly?

$\mathcal{L}_C(\mathbf{W}, \mathbf{U}, I_i, y_i) = \sum [1 + D(\Psi(I_i), \mathbf{u}_{y_i}) - D(\Psi(I_i), \mathbf{u}_{y_c})]$

 \mathbb{R}^{d}

[Bengio et al.,, NIPS'10] [Weinberger, Chapelle, NIPS'09]

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \boldsymbol{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding 💿 🔍 🔍

 $\Psi_L(word_i) = \mathbf{u}_i : \{1, \dots, L\} \to \mathbb{R}^d$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = \frac{\mathbf{u}}{||\mathbf{u}||} \cdot \frac{\mathbf{u}'}{||\mathbf{u}'||}$$

Oh

 $\min_{\mathbf{W},\mathbf{U}} \sum_{i}^{N} \mathcal{L}_{C}(\mathbf{W},\mathbf{U},I_{i},y_{i}) + \lambda_{1} ||\mathbf{W}||_{F}^{2} + \lambda_{2} ||\mathbf{U}||_{F}^{2}$

$$\mathcal{L}_C(\mathbf{W}, \mathbf{U}, I_i, y_i) = \sum max\{0, \alpha - D(\Psi(I_i), \mathbf{u}_{y_i}) + D(\Psi(I_i), \mathbf{u}_{y_c})\}$$

 \mathbb{R}^{d}

[Bengio *et al.*,, NIPS'10] [Weinberger, Chapelle, NIPS'09]

This is a very **convenient model**

This is a very **convenient model**

Inducing semantics on the embedding space

word2vec: Unsupervised Word Embedding

same context tend to have similar meaning

Label Embedding 😑 🔵 🔵

 $\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$

Distributional Semantics Hypothesis: words that are used and occur in the

word2vec: Unsupervised Word Embedding

same context tend to have similar meaning

- **Distributional Semantics Hypothesis:** words that are used and occur in the
 - e.g., Horse breeds are loosely divided into three categories

Skip-gram Model: unsupervised semantic representation for words (trained from 7 billion word linguistic corpus)

Image Embedding

 $\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$

Label Embedding 💿 🔍 🔍

 $\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$

L = 310,000

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding 💿 🔍 🔍

 $\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$ L = 310,000

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding 💿 🔍 🔍

 $\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$ L = 310,000

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:

 $\min_{\mathbf{W}} \sum_{i} \mathcal{L}_C(\mathbf{W}, \mathbf{V}, I_i, y_i) + \mathcal{L}_R(\mathbf{W}, \mathbf{V}, I_i, y_i) + \mu ||V||_F^2$

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding 💿 🔍 🔍

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, \dots, L\} \to \mathbb{R}^d$$
$$L = 310,000$$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:

 $\min_{\mathbf{W}} \sum_{i} \mathcal{L}_{C}(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}) + \mathcal{L}_{R}(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}) + \mu ||V||_{F}^{2}$

$$\mathcal{L}_C(\mathbf{W}, \mathbf{U}, \mathbf{x}_i, y_i) = \sum [1 + D(\mathbf{W}\mathbf{x}_i, \mathbf{u}_{y_i}) - D(\mathbf{W}\mathbf{x}_i, \mathbf{u}_c)]$$

Intuition

DeViSE: A Deep Visual-Semantic Embedding Model

 $j \neq label$

[Frome et al., 2013]

 $loss(image, label) = \sum \max[0, margin - \vec{t}_{label}M\vec{v}(image) + \vec{t}_jM\vec{v}(image)]$

DeViSE: A Deep Visual-Semantic Embedding Model

Supervised Results

		Flat hit@k (%)			Hierarchical precision@k				
Model type	dim	1	2	5	10	2	5	10	20
Softmax baseline	N/A	55.6	67.4	78.5	85.0	0.452	0.342	0.313	0.319
DeViSE	500	53.2	65.2	76.7	83.3	0.447	0.352	0.331	0.341
	1000	54.9	66.9	78.4	85.0	0.454	0.351	0.325	0.331
Random embeddings	500	52.4	63.9	74.8	80.6	0.428	0.315	0.271	0.248
	1000	50.5	62.2	74.2	81.5	0.418	0.318	0.290	0.292
Chance	N/A	0.1	0.2	0.5	1.0	0.007	0.013	0.022	0.042

Zero-shot Results

Model

DeViSE

Mensink et al. 2012 [12 Rohrbach et al. 2011 [1

[Frome et al., 2013]

	200 labels	1000 labels
	31.8%	9.0%
2]	35.7%	1.9%
[7]	34.8%	-

Semi-supervised Vocabulary Informed Learning [Fu et al., 2016]

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding 💿 🔍 🔍

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, \dots, L\} \to \mathbb{R}^d$$
$$L = 310,000$$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:

 $\min_{\mathbf{W}} \sum_{i} \mathcal{L}_{C}(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}) + \mathcal{L}_{R}(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}) + \mu ||V||_{F}^{2}$

$$\mathcal{L}_C(\mathbf{W}, \mathbf{U}, \mathbf{x}_i, y_i) = \sum [1 + D(\mathbf{W}\mathbf{x}_i, \mathbf{u}_{y_i}) - D(\mathbf{W}\mathbf{x}_i, \mathbf{u}_c)]$$

Semi-supervised Vocabulary Informed Learning [Fu et al., 2016]

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding 💿 🔍 🔍

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, \dots, L\} \to \mathbb{R}^d$$
$$L = 310,000$$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:

 $\min_{\mathbf{W}} \sum_{i} \mathcal{L}_{C}(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}) + \mathcal{L}_{R}(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}) + \mu ||V||_{F}^{2}$

$$\mathcal{L}_C(\mathbf{W}, \mathbf{U}, \mathbf{x}_i, y_i) = \sum [1 + D(\mathbf{W}\mathbf{x}_i, \mathbf{u}_{y_i}) - D(\mathbf{W}\mathbf{x}_i, \mathbf{u}_c)]$$

 v_1

 v_1

unicycle

[Fu et al., 2016]

f(Image)

Zero-shot Results

Results with AWA

Method SS-Voc: full instances

Akata et al. CVPR 2015

TMV-BLP (Fu et al. ECCV 2014)

AMP (SR+SE) (Fu et al. CVPR 2015)

DAP (Lampert et al. TPAMI 2013)

PST (Rohrbach et al. NIPS 2013)

DS (Rohrbach et al. CVPR 2010)

IAP (Lampert et al. TPAMI 2013)

HEX (Deng et al. ECCV 2014)

Features	Accuracy	
CNN OverFeat	78.3	+4.4
CNNGoogLeNet	73.9	
CNN OverFeat	69.9	
CNN OverFeat	66.0	
CNNvgg19	57.5	
CNN OverFeat	53.2	
CNN OverFeat	52.7	
CNN OverFeat	44.5	
CNNDECAF	44.2	

Zero-shot Results

Results with AWA

3.3% of

training data

Method

SS-Voc: full instances

800 instances (20 inst*40 class);

Akata et al. CVPR 2015

TMV-BLP (Fu et al. ECCV 2014)

AMP (SR+SE) (Fu et al. CVPR 2015)

DAP (Lampert et al. TPAMI 2013)

PST (Rohrbach et al. NIPS 2013)

DS (Rohrbach et al. CVPR 2010)

IAP (Lampert et al. TPAMI 2013)

HEX (Deng et al. ECCV 2014)

Features	Accuracy	
CNNOverFeat	78.3	
CNNoverFeat	74.4	+0.5
CNNGoogLeNet	73.9	
CNN OverFeat	69.9	
CNNOverFeat	66.0	
CNNvgg19	57.5	
CNNOverFeat	53.2	
CNNOverFeat	52.7	
CNNOverFeat	44.5	
CNNDECAF	44.2	

Zero-shot Results

Results with AWA

Method

SS-Voc: full instances

800 instances (20 inst*40 class);

200 instances (5 inst*40 class);

Akata et al. CVPR 2015

TMV-BLP (Fu et al. ECCV 2014)

AMP (SR+SE) (Fu et al. CVPR 2015)

DAP (Lampert et al. TPAMI 2013)

PST (Rohrbach et al. NIPS 2013)

DS (Rohrbach et al. CVPR 2010)

IAP (Lampert et al. TPAMI 2013)

HEX (Deng et al. ECCV 2014)

0.82% of training data

Features	Accuracy
CNN OverFeat	78.3
CNN OverFeat	74.4
CNN OverFeat	68.9
CNNGoogLeNet	73.9
CNN OverFeat	69.9
CNN OverFeat	66.0
CNNvGG19	57.5
CNN OverFeat	53.2
CNN OverFeat	52.7
CNN OverFeat	44.5
CNNDECAF	44.2

or sentence in new images

The man at bat readies to swing at the pitch while the umpire looks on.

A large bus sitting next to a very tall building.

[Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollar, Zitnick, ECCV'14]

Given **image-sentence pairs** learn how to **localize** arbitrary language phrase

Given image-sentence pairs learn how to localize arbitrary language phrase or sentence in new images

The man at bat readies to swing at the pitch while the umpire looks on.

A large bus sitting next to a very tall building.

[Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollar, Zitnick, ECCV'14]

a man

Given image-sentence pairs learn how to localize arbitrary language phrase or sentence in new images

The man at bat readies to swing at the pitch while the umpire looks on.

A large bus sitting next to a very tall building.

[Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollar, Zitnick, ECCV'14]

a man

Given **image-sentence pairs** learn how to **localize** arbitrary language phrase or sentence in new images

The man at bat readies to swing at the pitch while the umpire looks on.

A large bus sitting next to a very tall building.

[Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollar, Zitnick, ECCV'14]

a table

Label Embedding 🔵 🔵 🔵

$$\Psi_L(phrase_i) = \mathbf{u}_i$$

Label Embedding <a> • • •

$$\Psi_L(phrase_i) = \mathbf{u}_i$$

Label Embedding 😑 🔵 🔵

$$\Psi_L(phrase_i) = \mathbf{u}_i$$

Label Embedding

$$\Psi_L(phrase_i) = \mathbf{u}_i$$

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta})$$

Label Embedding

$$\Psi_L(phrase_i) = \mathbf{u}_i$$

a table

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta})$$

Label Embedding

$$\Psi_L(phrase_i) = \mathbf{u}_i$$

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta})$$

Label Embedding

$$\Psi_L(phrase_i) = \mathbf{u}_i$$

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta})$$

Label Embedding

$$\Psi_L(phrase_i) = \mathbf{u}_i$$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:

Combination of previous discriminative similarity and linguistic regularization

DT

А

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta})$$

Label Embedding

$$\Psi_L(phrase_i) = \mathbf{u}_i$$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:

Combination of previous discriminative similarity and linguistic regularization

Weakly-supervised Visual Grounding of Phrases For **noun phrases**:

DT

А

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta})$$

Label Embedding

$$\Psi_L(phrase_i) = \mathbf{u}_i$$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:

Combination of previous discriminative similarity and **linguistic regularization**

siblings should have disjoint masks

Weakly-supervised Visual Grounding of Phrases For **noun phrases**:

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta})$$

Label Embedding

$$\Psi_L(phrase_i) = \mathbf{u}_i$$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:

Combination of previous discriminative similarity and **linguistic regularization**

siblings should have disjoint masks

Weakly-supervised Visual Grounding of Phrases [Xiao et al., 2017] For **noun phrases**:

- siblings should have disjoint masks
- parents should be union of children masks

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \boldsymbol{\Theta})$$

Label Embedding

$$\Psi_L(phrase_i) = \mathbf{u}_i$$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:

Combination of previous discriminative similarity and linguistic regularization

Weakly-supervised Visual Grounding of Phrases [Xiao et al., 2017] For **noun phrases**:

- siblings should have disjoin parents should be union of

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta})$$

Label Embedding

$$\Psi_L(phrase_i) = \mathbf{u}_i$$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:

Combination of previous discriminative similarity and **linguistic regularization**

Input:

guy in green t-shirt holding skateboard

[Xiao et al., 2017]

Input:

 \rightarrow

guy in green t-shirt holding skateboard

NO linguistic constraints

[Xiao et al., 2017]

Input:

 \rightarrow

guy in green t-shirt holding skateboard

NO linguistic constraints

[Xiao et al., 2017]

Input:

guy in green t-shirt holding skateboard

NO linguistic constraints

 \rightarrow

[Xiao et al., 2017]

Our Model

Input:

a person driving a boat

[Xiao et al., 2017]

NO linguistic constraints

Our Model

Input:

a child wearing black protective helmet

NO linguistic constraints [Xiao et al., 2017]

Our Model

Segmentation performance on COCO dataset

	IoU@0.3	IoU@0.4	IoU@0.5	Avg mAP
Non-strcutred	0.302	0.199	0.110	0.203
Parent-Child	0.327	0.213	0.118	0.219
Sibling	0.316	0.203	0.114	0.211
Ours	0.347	0.246	0.159	0.251

[Xiao et al., 2017]

[Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollar, Zitnick, ECCV'14]

Order Embeddings

[Vendrov et al., 2016]

Multimodal Representation Types

Joint representations:

Coordinated representations:

- Simplest version: modality concatenation (early fusion)
- Can be learned supervised or unsupervised

- Similarity-based methods (e.g., cosine distance)
- Structure constraints (e.g., orthogonality, sparseness)
- CCA (unsupervised), joint embeddings (supervised)

*slide from Louis-Philippe Morency

Final Words ...

Joint representations

- Project modalities to the same space
- Use when all the modalities are present during test time
- Suitable for multi-model fusion

Coordinated representations

- Project modalities to their own coordinated spaces
- Use when only one of the modalities is present during test-time
- Suitable for multimodal translation
- Good for multimodal retrieval _____

*slide from Louis-Philippe Morency