
Lecture 14: Coordinated Representations and Joint Embeddings

Topics in AI (CPSC 532S): 
Multimodal Learning with Vision, Language and Sound



Multimodal Representations

What is a good multimodal representation? 

— Similarity in the representation (somehow) 
implies similarity in corresponding concepts 
(we saw this in word2vec) 
— Useful for various discriminative tasks 
(retrieval, mapping, fusion, etc.) 

— Possible to obtain in absence of one or 
mere modalities 

— Fill in missing modalities given others 
(map or translate between modalities)
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Multimodal Representation Types

Modality 1Modality 2

Representation

Joint representations:
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— Simplest version: modality 
concatenation (early fusion)  

— Can be learned supervised or 
unsupervised



Multimodal Representation Types

— Similarity-based methods (e.g., 
cosine distance) 

— Structure constraints (e.g., 
orthogonality, sparseness)  

— Examples: CCA, joint embeddings

Modality 1Modality 2

Representation

Modality 1Modality 2

Repres. 2 Repres. 1

Joint representations:

Coordinated representations:
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— Simplest version: modality 
concatenation (early fusion)  

— Can be learned supervised or 
unsupervised



Multimodal Representation Types

Modality 1Modality 2

Representation

Joint representations:
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— Simplest version: modality 
concatenation (early fusion)  

— Can be learned supervised or 
unsupervised



Joint Representation: Simple Multimodal Autoencoders

Concatenating modalities is fine, but requires both modalities at test time

No ability to ensure there is indeed sharing in the representations space 



Joint Representation: Deep Multimodal Autoencoders
[ Ngiam et al., 2011 ]

Each modality can be pre-trained 
— using denoising autoencoder 

To train the model, reconstruct both 
modalities using 

— both Audio & Video 
— just Audio 
— just Video
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Multimodal Research: Historical Perspective

1970 1980 1990 2000 2010

* Adopted from slides by Louis-Philippe Morency

McGurk Effect (1976)

* video credit: OK Science
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Joint Representation: Deep Multimodal Autoencoders
[ Ngiam et al., 2011 ]
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Joint Representation: Deep Multimodal Autoencoders
[ Ngiam et al., 2011 ]

Useful when you know you may only be 
conditioning on one modality at test time 

Can be regarded as a form of regularization
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Supervised Joint Representation
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For supervised leaning tasks, we need to join unimodal representations 

— Simple concatenation 

— Element-wise multiplicative interactions 

— many many others 

Encoder-decoder Architectures 



For supervised leaning tasks, we need to join unimodal representations 

— Simple concatenation 

Multi-modal Sentiment Analysis

hm = �(W · [hx,hy,hz]
T )
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Bilinear Pooling

For supervised leaning tasks, we need to join unimodal representations 

— Simple concatenation 

— Element-wise multiplicative interactions 

hm = hx ⌦ hy

[ Tenenbaum and Freeman, 2000 ]
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Multimodal Tensor Fusion Network (TFN)

For supervised leaning tasks, we need to join unimodal representations 

— Simple concatenation 

— Element-wise multiplicative interactions 

hm =


hx

1

�
⌦


hy

1

�
=


hx hx ⌦ hy

1 hy

�

[ Zadeh, Jones and Morency, EMNLP 2017 ]
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Multimodal Tensor Fusion Network (TFN)
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For supervised leaning tasks, we need to join unimodal representations 

— Simple concatenation 

— Element-wise multiplicative interactions 

[ Zadeh, Jones and Morency, EMNLP 2017 ]
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Low-rank Tensor Fusion 

Tucker tensor decomposition leads to MUTAN fusion 
[ Ben-younes et al., ICCV 2017 ] *slide from Louis-Philippe Morency



For supervised leaning tasks, we need to join unimodal representations 

— Simple concatenation 

— Element-wise multiplicative interactions 

Encoder-decoder Architectures 

Supervised Joint Representation



Multimodal Representation Types

— Similarity-based methods (e.g., 
cosine distance) 

— Structure constraints (e.g., 
orthogonality, sparseness)  

— Examples: CCA, joint embeddings
Modality 1Modality 2

Repres. 2 Repres. 1

Coordinated representations:
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Data with Multiple Views
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Correlated Representations

Goal: Find representations                     for each view that maximize correlation: 

corr(f1(x1), f2(x2)) =
cov(f1(x1), f2(x2))p

var(f1(x1)) · var(f2(x2))

corr(f1(x1), f2(x2)) =
cov(f1(x1), f2(x2))p

var(f1(x1)) · var(f2(x2))
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Correlated Representations

Goal: Find representations                     for each view that maximize correlation: 

Finding correlated representations can be useful for 
— Gaining insights into the data  
— Detecting of asynchrony in test data 
— Removing noise uncorrelated across views 
— Translation or retrieval across views

corr(f1(x1), f2(x2)) =
cov(f1(x1), f2(x2))p

var(f1(x1)) · var(f2(x2))

corr(f1(x1), f2(x2)) =
cov(f1(x1), f2(x2))p

var(f1(x1)) · var(f2(x2))
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Correlated Representations

Goal: Find representations                     for each view that maximize correlation: 

Finding correlated representations can be useful for 
— Gaining insights into the data  
— Detecting of asynchrony in test data 
— Removing noise uncorrelated across views 
— Translation or retrieval across views 

Has been applied widely to problems in computer vision, speech, NLP, 
medicine, chemometrics, metrology, neurology, etc.

corr(f1(x1), f2(x2)) =
cov(f1(x1), f2(x2))p

var(f1(x1)) · var(f2(x2))

corr(f1(x1), f2(x2)) =
cov(f1(x1), f2(x2))p

var(f1(x1)) · var(f2(x2))
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CCA: Canonical Correlation Analysis
Classical technique to find linear correlated representations, i.e.,  

f1(x1) = WT
1 x1

f2(x2) = WT
2 x2

W1 2 Rd1⇥k

W2 2 Rd2⇥k

f1(x1) = WT
1 x1

f2(x2) = WT
2 x2

W1 2 Rd1⇥k

W2 2 Rd2⇥k

f1(x1) = WT
1 x1

f2(x2) = WT
2 x2

W1 2 Rd1⇥k

W2 2 Rd2⇥k

where
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CCA: Canonical Correlation Analysis
Classical technique to find linear correlated representations, i.e.,  

The first columns                     of the matrices        and         are found to 
maximize the correlation of the projections: 

f1(x1) = WT
1 x1

f2(x2) = WT
2 x2

W1 2 Rd1⇥k

W2 2 Rd2⇥k

f1(x1) = WT
1 x1

f2(x2) = WT
2 x2

W1 2 Rd1⇥k

W2 2 Rd2⇥k

f1(x1) = WT
1 x1

f2(x2) = WT
2 x2

W1 2 Rd1⇥k

W2 2 Rd2⇥k

where

(w1,:1,w2,:1) W1 W2

(w1,:1,w2,:1) = argmax corr(wT
1,:1X1,w

T
2,:1X2)
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CCA: Canonical Correlation Analysis
Classical technique to find linear correlated representations, i.e.,  

The first columns                     of the matrices        and         are found to 
maximize the correlation of the projections: 

Subsequent pairs are constrained to be uncorrelated with previous 
components (i.e., for          )

f1(x1) = WT
1 x1

f2(x2) = WT
2 x2

W1 2 Rd1⇥k

W2 2 Rd2⇥k

f1(x1) = WT
1 x1

f2(x2) = WT
2 x2

W1 2 Rd1⇥k

W2 2 Rd2⇥k

f1(x1) = WT
1 x1

f2(x2) = WT
2 x2

W1 2 Rd1⇥k

W2 2 Rd2⇥k

where

(w1,:1,w2,:1) W1 W2

corr(wT
1,:iX1,w

T
1,:jX1) = corr(wT

2,:iX2,w
T
2,:jX2) = 0

(w1,:1,w2,:1) = argmax corr(wT
1,:1X1,w

T
2,:1X2)

j < i
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CCA Illustration

X2 2 R2

f2(X2) = wT
2 X2f1(X1) = wT

1 X1

X1 2 R2

Two views of each instance have the same color
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CCA: Canonical Correlation Analysis
1. Estimate covariance matrix with regularization:  
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CCA: Canonical Correlation Analysis
1. Estimate covariance matrix with regularization:  

2. Form normalized covariance matrix:                                    and its singular                         
    value decomposition  
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CCA: Canonical Correlation Analysis
1. Estimate covariance matrix with regularization:  

2. Form normalized covariance matrix:                                    and its singular                         
    value decomposition  

3. Total correlation at     is 

⌃11 =
1

N � 1

NX

i=1

(x(i)
1 � x̄1)(x

(i)
1 � x̄1)

T + r1I

⌃22 =
1

N � 1

NX

i=1

(x(i)
2 � x̄2)(x

(i)
2 � x̄2)

T + r2I⌃12 =
1

N � 1

NX

i=1

(x(i)
1 � x̄1)(x

(i)
2 � x̄2)

T

⌃12 =
1

N � 1

NX

i=1

(x(i)
1 � x̄1)(x

(i)
2 � x̄2)

T

T = ⌃�1/2
11 ⌃12⌃

�1/2
22 T = UDVT

T = ⌃�1/2
11 ⌃12⌃

�1/2
22 T = UDVT

kX

i=1

Diik

*slide from Andrew, Arora, Bilmes, Livescu



CCA: Canonical Correlation Analysis
1. Estimate covariance matrix with regularization:  

2. Form normalized covariance matrix:                                    and its singular                         
    value decomposition  

3. Total correlation at     is 

4. The optimal projection matrices are: 

    where       is the first    columns of    .
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KCCA: Kernel CCA

There maybe non-linear functions                      that produce more highly 
correlated (better) representations than linear projections  

Kernel CCA is a principal method for finding such function 
— Learns functions from any reproducing kernel Hilbert space 
— May use different kernels for each view 

Using RBF (Gaussian) kernel in KCCA is akin to finding sets of instances that 
form clusters in both views

corr(f1(x1), f2(x2)) =
cov(f1(x1), f2(x2))p

var(f1(x1)) · var(f2(x2))
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KCCA vs. CCA

Pros: 
— More complex function space of KCCA can yield dramatically higher 
correlations 

Cons: 
— KCCA is slower to train 
— For KCCA training set must be stored and referenced at test time 
— KCCA model is more difficult to interpret 
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Deep CCA
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Benefits of Deep CCA 

Pros: 
— Better suited for natural, real-world data 
— Parametric model 
— The training set can be disregarded once the model is learned 
— Computational speed at test time is fast 
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Deep CCA: Training

Training a Deep CCA model: 

1. Pretrain the layers of each side individually  

2. Jointly fine-tune all parameters to maximize 
the total correlation of the output layers. 
Requires computing correlation gradient:  

	 — Forward propagate activations on both sides.  
	 — Compute correlation and its gradient w.r.t. output layers.  

	 — Backpropagate gradient on both sides.  
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Deep CCA: Training

Training a Deep CCA model: 

1. Pretrain the layers of each side individually  

2. Jointly fine-tune all parameters to maximize 
the total correlation of the output layers. 
Requires computing correlation gradient:  

	 — Forward propagate activations on both sides.  
	 — Compute correlation and its gradient w.r.t. output layers.  

	 — Backpropagate gradient on both sides.  

Correlation is a population objective, so instead 
of one instance (or minibatch) training, requires 
L-BFGS second-order method (with full-batch) 
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Deep Canonically Correlated Autoencoders (DCCAE)

Jointly optimize for DCCA and auto encoders 
loss functions 
— A trade-off between multi-view correlation 
and reconstruction error from individual views 

[ Wang et al., ICML 2015 ]



Multimodal Representation Types

— Similarity-based methods (e.g., 
cosine distance) 

— Structure constraints (e.g., 
orthogonality, sparseness)  

— Examples: CCA, joint embeddings
Modality 1Modality 2

Repres. 2 Repres. 1

Coordinated representations:
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Correlated Representations vs. Joint Embeddings

Correlated Representations: Find representations                      for each view 
that maximize correlation:

corr(f1(x1), f2(x2)) =
cov(f1(x1), f2(x2))p

var(f1(x1)) · var(f2(x2))

corr(f1(x1), f2(x2)) =
cov(f1(x1), f2(x2))p

var(f1(x1)) · var(f2(x2))

Joint Embeddings: Models that minimize distance between ground truth pairs 
of samples:

minf1,f2D
⇣
f1(x

(i)
1 ), f2(x

(i)
2 )

⌘



Joint Embeddings



Joint Embeddings

Fixed

FixedFixed



Joint Embeddings

[ Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, 2014 ]



Joint Embeddings

[ Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, 2014 ]


