Topics in AI (CPSC 532S): Mulltimodal Learning with Vision, Language and Sound

Lecture 14: Coordinated Representations and Joint Embeddings

Multimodal Representations

What is a good multimodal representation?

- Similarity in the representation (somehow)
implies similarity in corresponding concepts (we saw this in word2vec)
- Useful for various discriminative tasks (retrieval, mapping, fusion, etc.)
- Possible to obtain in absence of one or mere modalities
- Fill in missing modalities given others (map or translate between modalities)

Multimodal Representation Types

Joint representations:

- Simplest version: modality concatenation (early fusion)
- Can be learned supervised or unsupervised

Multimodal Representation Types

Joint representations:

Coordinated representations:

- Simplest version: modality concatenation (early fusion)
- Can be learned supervised or unsupervised
- Similarity-based methods (e.g., cosine distance)
- Structure constraints (e.g., orthogonality, sparseness)
- Examples: CCA, joint embeddings

Multimodal Representation Types

Joint representations:

- Simplest version: modality concatenation (early fusion)
- Can be learned supervised or unsupervised

Joint Representation: Simple Multimodal Autoencoders

Concatenating modalities is fine, but requires both modalities at test time
No ability to ensure there is indeed sharing in the representations space

Shared Representation

Shallow RBM

Shared Representation

Shallow Autoencoder

Joint Representation: Deep Multimodal Autoencoders

[Ngiam et al., 2011]

Each modality can be pre-trained

- using denoising autoencoder

To train the model, reconstruct both modalities using

- both Audio \& Video
- just Audio
- just Video

Multimodal Research: Historical Perspective

The McGurk Effect

McGurk Effect (1976)

Multimodal Research: Historical Perspective

The McGurk Effect

McGurk Effect (1976)

Joint Representation: Deep Multimodal Autoencoders

[Ngiam et al., 2011]

Table 3: McGurk Effect

Audio / Visual Setting	Model prediction		
	$/ g a /$	$/ b a /$	$/ d a /$
Visual $/ g a /$, Audio $/ g a /$	82.6%	2.2%	15.2%
Visual $/ b a /$, Audio $/ b a /$	4.4%	89.1%	6.5%
Visual $/ g a /$, Audio $/ b a /$	28.3%	13.0%	58.7%

Joint Representation: Deep Multimodal Autoencoders

[Ngiam et al., 2011]

Useful when you know you may only be conditioning on one modality at test time

Can be regarded as a form of regularization

Supervised Joint Representation

For supervised leaning tasks, we need to join unimodal representations

- Simple concatenation
- Element-wise multiplicative interactions
- many many others

Encoder-decoder Architectures

Multi-modal Sentiment Analysis

For supervised leaning tasks, we need to join unimodal representations

- Simple concatenation

MOSI dataset (Zadeh et al, 2016)

- 2199 subjective video segments
- Sentiment intensity annotations
- 3 modalities: text, video, audio

$$
\mathbf{h}_{m}=\sigma\left(\mathbf{W} \cdot\left[\mathbf{h}_{x}, \mathbf{h}_{y}, \mathbf{h}_{z}\right]^{T}\right)
$$

Sentiment Intensity [-3,+3]

Bilinear Pooling

For supervised leaning tasks, we need to join unimodal representations

- Simple concatenation
- Element-wise multiplicative interactions

$$
\mathbf{h}_{m}=\mathbf{h}_{x} \otimes \mathbf{h}_{y}
$$

[Tenenbaum and Freeman, 2000]

Multimodal Tensor Fusion Network (TFN)

For supervised leaning tasks, we need to join unimodal representations

- Simple concatenation
- Element-wise multiplicative interactions

$$
\mathbf{h}_{m}=\left[\begin{array}{c}
\mathbf{h}_{x} \\
1
\end{array}\right] \otimes\left[\begin{array}{c}
\mathbf{h}_{y} \\
1
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{h}_{x} & \mathbf{h}_{x} \otimes \mathbf{h}_{y} \\
1 & \mathbf{h}_{y}
\end{array}\right]
$$

[Zadeh, Jones and Morency, EMNLP 2017]

Multimodal Tensor Fusion Network (TFN)

For supervised leaning tasks, we need to join unimodal representations

- Simple concatenation
- Element-wise multiplicative interactions

$$
\mathbf{h}_{m}=\left[\begin{array}{c}
\mathbf{h}_{x} \\
1
\end{array}\right] \otimes\left[\begin{array}{c}
\mathbf{h}_{y} \\
1
\end{array}\right] \otimes\left[\begin{array}{c}
\mathbf{h}_{z} \\
1
\end{array}\right]
$$

[^0]

Low-rank Tensor Fusion

Tucker tensor decomposition leads to MUTAN fusion

Supervised Joint Representation

For supervised leaning tasks, we need to join unimodal representations

- Simple concatenation
- Element-wise multiplicative interactions

Encoder-decoder Architectures

Multimodal Representation Types

Coordinated representations:

- Similarity-based methods (e.g., cosine distance)
- Structure constraints (e.g., orthogonality, sparseness)
- Examples: CCA, joint embeddings

Data with Multiple Views

$$
x_{1}^{(i)} \quad x_{2}^{(i)}
$$

demographic properties

responses to survey

audio features at time i

video features at time i

Correlated Representations

Goal: Find representations $f_{1}\left(\mathbf{x}_{1}\right), f_{2}\left(\mathbf{x}_{2}\right)$ for each view that maximize correlation:

$$
\operatorname{corr}\left(f_{1}\left(\mathbf{x}_{1}\right), f_{2}\left(\mathbf{x}_{2}\right)\right)=\frac{\operatorname{cov}\left(f_{1}\left(\mathbf{x}_{1}\right), f_{2}\left(\mathbf{x}_{2}\right)\right)}{\sqrt{\operatorname{var}\left(f_{1}\left(\mathbf{x}_{1}\right)\right) \cdot \operatorname{var}\left(f_{2}\left(\mathbf{x}_{2}\right)\right)}}
$$

Correlated Representations

Goal: Find representations $f_{1}\left(\mathbf{x}_{1}\right), f_{2}\left(\mathbf{x}_{2}\right)$ for each view that maximize correlation:

$$
\operatorname{corr}\left(f_{1}\left(\mathbf{x}_{1}\right), f_{2}\left(\mathbf{x}_{2}\right)\right)=\frac{\operatorname{cov}\left(f_{1}\left(\mathbf{x}_{1}\right), f_{2}\left(\mathbf{x}_{2}\right)\right)}{\sqrt{\operatorname{var}\left(f_{1}\left(\mathbf{x}_{1}\right)\right) \cdot \operatorname{var}\left(f_{2}\left(\mathbf{x}_{2}\right)\right)}}
$$

Finding correlated representations can be useful for

- Gaining insights into the data
- Detecting of asynchrony in test data
- Removing noise uncorrelated across views
- Translation or retrieval across views

Correlated Representations

Goal: Find representations $f_{1}\left(\mathbf{x}_{1}\right), f_{2}\left(\mathbf{x}_{2}\right)$ for each view that maximize correlation:

$$
\operatorname{corr}\left(f_{1}\left(\mathbf{x}_{1}\right), f_{2}\left(\mathbf{x}_{2}\right)\right)=\frac{\operatorname{cov}\left(f_{1}\left(\mathbf{x}_{1}\right), f_{2}\left(\mathbf{x}_{2}\right)\right)}{\sqrt{\operatorname{var}\left(f_{1}\left(\mathbf{x}_{1}\right)\right) \cdot \operatorname{var}\left(f_{2}\left(\mathbf{x}_{2}\right)\right)}}
$$

Finding correlated representations can be useful for

- Gaining insights into the data
- Detecting of asynchrony in test data
- Removing noise uncorrelated across views
- Translation or retrieval across views

Has been applied widely to problems in computer vision, speech, NLP, medicine, chemometrics, metrology, neurology, etc.

CCA: Canonical Correlation Analysis

Classical technique to find linear correlated representations, i.e.,

$$
\begin{array}{ll}
f_{1}\left(\mathbf{x}_{1}\right)=\mathbf{W}_{1}^{T} \mathbf{x}_{1} \\
f_{2}\left(\mathbf{x}_{2}\right)=\mathbf{W}_{2}^{T} \mathbf{x}_{2} & \text { where }
\end{array} \quad \mathbf{W}_{1} \in \mathbb{R}^{d_{1} \times k}, \mathbf{W}_{2} \in \mathbb{R}^{d_{2} \times k}
$$

CCA: Canonical Correlation Analysis

Classical technique to find linear correlated representations, i.e.,

$$
\begin{array}{lll}
f_{1}\left(\mathbf{x}_{1}\right)=\mathbf{W}_{1}^{T} \mathbf{x}_{1} \\
f_{2}\left(\mathbf{x}_{2}\right)=\mathbf{W}_{2}^{T} \mathbf{x}_{2} & \text { Where } & \mathbf{W}_{1} \in \mathbb{R}^{d_{1} \times k} \\
\mathbf{W}_{2} \in \mathbb{R}^{d_{2} \times k}
\end{array}
$$

The first columns ($\mathbf{w}_{1,: 1}, \mathbf{w}_{2,11}$) of the matrices \mathbf{W}_{1} and \mathbf{W}_{2} are found to maximize the correlation of the projections:

$$
\left(\mathbf{w}_{1,: 1}, \mathbf{w}_{2,: 1}\right)=\arg \max \operatorname{corr}\left(\mathbf{w}_{1,: 1}^{T} \mathbf{X}_{1}, \mathbf{w}_{2,: 1}^{T} \mathbf{X}_{2}\right)
$$

CCA: Canonical Correlation Analysis

Classical technique to find linear correlated representations, i.e.,

$$
\begin{array}{ll}
f_{1}\left(\mathbf{x}_{1}\right)=\mathbf{W}_{1}^{T} \mathbf{x}_{1} \\
f_{2}\left(\mathbf{x}_{2}\right)=\mathbf{W}_{2}^{T} \mathbf{x}_{2} & \text { Where }
\end{array} \quad \begin{aligned}
& \mathbf{W}_{1} \in \mathbb{R}^{d_{1} \times k} \\
& \mathbf{W}_{2} \in \mathbb{R}^{d_{2} \times k}
\end{aligned}
$$

The first columns ($\mathbf{w}_{1,: 1}, \mathbf{w}_{2, i 1}$) of the matrices \mathbf{W}_{1} and \mathbf{W}_{2} are found to maximize the correlation of the projections:

$$
\left(\mathbf{w}_{1,: 1}, \mathbf{w}_{2,: 1}\right)=\arg \max \operatorname{corr}\left(\mathbf{w}_{1,: 1}^{T} \mathbf{X}_{1}, \mathbf{w}_{2,: 1}^{T} \mathbf{X}_{2}\right)
$$

Subsequent pairs are constrained to be uncorrelated with previous components (i.e., for $j<i$)

$$
\boldsymbol{\operatorname { c o r r }}\left(\mathbf{w}_{1,: i}^{T} \mathbf{X}_{1}, \mathbf{w}_{1,: j}^{T} \mathbf{X}_{1}\right)=\boldsymbol{\operatorname { c o r r }}\left(\mathbf{w}_{2,: i}^{T} \mathbf{X}_{2}, \mathbf{w}_{2,: j}^{T} \mathbf{X}_{2}\right)=0
$$

CCA Illustration

Two views of each instance have the same color

CCA: Canonical Correlation Analysis

1. Estimate covariance matrix with regularization:

$$
\begin{array}{ll}
\Sigma_{11}=\frac{1}{N-1} \sum_{i=1}^{N}\left(\mathbf{x}_{1}^{(i)}-\overline{\mathbf{x}}_{1}\right)\left(\mathbf{x}_{1}^{(i)}-\overline{\mathbf{x}}_{1}\right)^{T}+r_{1} \mathbf{I} & \Sigma_{12}=\frac{1}{N-1} \sum_{i=1}^{N}\left(\mathbf{x}_{1}^{(i)}-\overline{\mathbf{x}}_{1}\right)\left(\mathbf{x}_{2}^{(i)}-\overline{\mathbf{x}}_{2}\right)^{T} \\
\Sigma_{12}=\frac{1}{N-1} \sum_{i=1}^{N}\left(\mathbf{x}_{1}^{(i)}-\overline{\mathbf{x}}_{1}\right)\left(\mathbf{x}_{2}^{(i)}-\overline{\mathbf{x}}_{2}\right)^{T} & \Sigma_{22}=\frac{1}{N-1} \sum_{i=1}^{N}\left(\mathbf{x}_{2}^{(i)}-\overline{\mathbf{x}}_{2}\right)\left(\mathbf{x}_{2}^{(i)}-\overline{\mathbf{x}}_{2}\right)^{T}+r_{2} \mathbf{I}
\end{array}
$$

CCA: Canonical Correlation Analysis

1. Estimate covariance matrix with regularization:

$$
\begin{aligned}
& \Sigma_{11}=\frac{1}{N-1} \sum_{i=1}^{N}\left(\mathbf{x}_{1}^{(i)}-\overline{\mathbf{x}}_{1}\right)\left(\mathbf{x}_{1}^{(i)}-\overline{\mathbf{x}}_{1}\right)^{T}+r_{1} \mathbf{I} \quad \Sigma_{12}=\frac{1}{N-1} \sum_{i=1}^{N}\left(\mathbf{x}_{1}^{(i)}-\overline{\mathbf{x}}_{1}\right)\left(\mathbf{x}_{2}^{(i)}-\overline{\mathbf{x}}_{2}\right)^{T} \\
& \Sigma_{12}=\frac{1}{N-1} \sum_{i=1}^{N}\left(\mathbf{x}_{1}^{(i)}-\overline{\mathbf{x}}_{1}\right)\left(\mathbf{x}_{2}^{(i)}-\overline{\mathbf{x}}_{2}\right)^{T} \\
& \Sigma_{22}=\frac{1}{N-1} \sum_{i=1}^{N}\left(\mathbf{x}_{2}^{(i)}-\overline{\mathbf{x}}_{2}\right)\left(\mathbf{x}_{2}^{(i)}-\overline{\mathbf{x}}_{2}\right)^{T}+r_{2} \mathbf{I} \\
& \Sigma=\left[\begin{array}{c:c}
\Sigma_{11} & \Sigma_{12} \\
\hdashline \Sigma_{12} & \Sigma_{22}
\end{array}\right] \\
& {\left[\begin{array}{ccc:ccc}
1 & 0 & 0 & \lambda_{1} & 0 & 0 \\
0 & 1 & 0 & 0 & \lambda_{2} & 0 \\
0 & 0 & 1 & 0 & 0 & \lambda_{3} \\
\hdashline \lambda_{1} & 0 & 0 & 1 & 0 & 0 \\
0 & \lambda_{2} & 0 & 0 & 1 & 0 \\
0 & 0 & \lambda_{3} & 0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

CCA: Canonical Correlation Analysis

1. Estimate covariance matrix with regularization:

$$
\begin{array}{ll}
\Sigma_{11}=\frac{1}{N-1} \sum_{i=1}^{N}\left(\mathbf{x}_{1}^{(i)}-\overline{\mathbf{x}}_{1}\right)\left(\mathbf{x}_{1}^{(i)}-\overline{\mathbf{x}}_{1}\right)^{T}+r_{1} \mathbf{I} & \Sigma_{12}=\frac{1}{N-1} \sum_{i=1}^{N}\left(\mathbf{x}_{1}^{(i)}-\overline{\mathbf{x}}_{1}\right)\left(\mathbf{x}_{2}^{(i)}-\overline{\mathbf{x}}_{2}\right)^{T} \\
\Sigma_{12}=\frac{1}{N-1} \sum_{i=1}^{N}\left(\mathbf{x}_{1}^{(i)}-\overline{\mathbf{x}}_{1}\right)\left(\mathbf{x}_{2}^{(i)}-\overline{\mathbf{x}}_{2}\right)^{T} & \Sigma_{22}=\frac{1}{N-1} \sum_{i=1}^{N}\left(\mathbf{x}_{2}^{(i)}-\overline{\mathbf{x}}_{2}\right)\left(\mathbf{x}_{2}^{(i)}-\overline{\mathbf{x}}_{2}\right)^{T}+r_{2} \mathbf{I}
\end{array}
$$

2. Form normalized covariance matrix: $\mathbf{T}=\Sigma_{11}^{-1 / 2} \Sigma_{12} \Sigma_{22}^{-1 / 2}$ and its singular value decomposition $\mathbf{T}=\mathbf{U D V}^{T}$

CCA: Canonical Correlation Analysis

1. Estimate covariance matrix with regularization:

$$
\begin{array}{ll}
\Sigma_{11}=\frac{1}{N-1} \sum_{i=1}^{N}\left(\mathbf{x}_{1}^{(i)}-\overline{\mathbf{x}}_{1}\right)\left(\mathbf{x}_{1}^{(i)}-\overline{\mathbf{x}}_{1}\right)^{T}+r_{1} \mathbf{I} & \Sigma_{12}=\frac{1}{N-1} \sum_{i=1}^{N}\left(\mathbf{x}_{1}^{(i)}-\overline{\mathbf{x}}_{1}\right)\left(\mathbf{x}_{2}^{(i)}-\overline{\mathrm{x}}_{2}\right)^{T} \\
\Sigma_{12}=\frac{1}{N-1} \sum_{i=1}^{N}\left(\mathbf{x}_{1}^{(i)}-\overline{\mathrm{x}}_{1}\right)\left(\mathbf{x}_{2}^{(i)}-\overline{\mathbf{x}}_{2}\right)^{T} & \Sigma_{22}=\frac{1}{N-1} \sum_{i=1}^{N}\left(\mathbf{x}_{2}^{(i)}-\overline{\mathbf{x}}_{2}\right)\left(\mathbf{x}_{2}^{(i)}-\overline{\mathrm{x}}_{2}\right)^{T}+r_{2} \mathbf{I}
\end{array}
$$

2. Form normalized covariance matrix: $\mathbf{T}=\Sigma_{11}^{-1 / 2} \Sigma_{12} \Sigma_{22}^{-1 / 2}$ and its singular value decomposition $\mathbf{T}=\mathbf{U D V}^{T}$
3. Total correlation at k is $\sum_{i=1}^{k} D_{i i}$

CCA: Canonical Correlation Analysis

1. Estimate covariance matrix with regularization:

$$
\begin{array}{ll}
\Sigma_{11}=\frac{1}{N-1} \sum_{i=1}^{N}\left(\mathbf{x}_{1}^{(i)}-\overline{\mathbf{x}}_{1}\right)\left(\mathbf{x}_{1}^{(i)}-\overline{\mathbf{x}}_{1}\right)^{T}+r_{1} \mathbf{I} & \Sigma_{12}=\frac{1}{N-1} \sum_{i=1}^{N}\left(\mathbf{x}_{1}^{(i)}-\overline{\mathbf{x}}_{1}\right)\left(\mathbf{x}_{2}^{(i)}-\overline{\mathbf{x}}_{2}\right)^{T} \\
\Sigma_{12}=\frac{1}{N-1} \sum_{i=1}^{N}\left(\mathbf{x}_{1}^{(i)}-\overline{\mathbf{x}}_{1}\right)\left(\mathbf{x}_{2}^{(i)}-\overline{\mathbf{x}}_{2}\right)^{T} & \Sigma_{22}=\frac{1}{N-1} \sum_{i=1}^{N}\left(\mathbf{x}_{2}^{(i)}-\overline{\mathbf{x}}_{2}\right)\left(\mathbf{x}_{2}^{(i)}-\overline{\mathbf{x}}_{2}\right)^{T}+r_{2} \mathbf{I}
\end{array}
$$

2. Form normalized covariance matrix: $\mathbf{T}=\Sigma_{11}^{-1 / 2} \Sigma_{12} \Sigma_{22}^{-1 / 2}$ and its singular value decomposition $\mathbf{T}=\mathbf{U D V}^{T}$
3. Total correlation at k is $\sum_{i=1}^{k} D_{i i}$
4. The optimal projection matrices are: $\mathbf{W}_{1}^{*}=\Sigma_{11}^{-1 / 2} \mathbf{U}_{k}$

$$
\mathbf{W}_{2}^{*}=\Sigma_{22}^{-1 / 2} \mathbf{V}_{k}
$$

where \mathbf{U}_{k} is the first k columns of \mathbf{U}.

KCCA: Kernel CCA

There maybe non-linear functions $f_{1}\left(\mathbf{x}_{1}\right), f_{2}\left(\mathbf{x}_{2}\right)$ that produce more highly correlated (better) representations than linear projections

Kernel CCA is a principal method for finding such function

- Learns functions from any reproducing kernel Hillbert space
- May use different kernels for each view

Using RBF (Gaussian) kernel in KCCA is akin to finding sets of instances that form clusters in both views

KCCA vs. CCA

Pros:

- More complex function space of KCCA can yield dramatically higher correlations

Cons:

- KCCA is slower to train
- For KCCA training set must be stored and referenced at test time
- KCCA model is more difficult to interpret

Deep CCA

Canonical Correlation Analysis

View 1

View 2

Benefits of Deep CCA

Pros:

- Better suited for natural, real-world data
- Parametric model
- The training set can be disregarded once the model is learned
- Computational speed at test time is fast

Deep CCA: Training

Training a Deep CCA model:

1. Pretrain the layers of each side individually
2. Jointly fine-tune all parameters to maximize the total correlation of the output layers.
Requires computing correlation gradient:

- Forward propagate activations on both sides.
- Compute correlation and its gradient w.r.t. output layers.
- Backpropagate gradient on both sides.

Deep CCA: Training

Training a Deep CCA model:

1. Pretrain the layers of each side individually
2. Jointly fine-tune all parameters to maximize the total correlation of the output layers.
Requires computing correlation gradient:

- Forward propagate activations on both sides.
- Compute correlation and its gradient w.r.t. output layers.
- Backpropagate gradient on both sides.

Correlation is a population objective, so instead of one instance (or minibatch) training, requires L-BFGS second-order method (with full-batch)

Deep Canonically Correlated Autoencoders (DCCAE)

Jointly optimize for DCCA and auto encoders loss functions

- A trade-off between multi-view correlation and reconstruction error from individual views

Multimodal Representation Types

Coordinated representations:

- Similarity-based methods (e.g., cosine distance)
- Structure constraints (e.g., orthogonality, sparseness)
- Examples: CCA, joint embeddings

Correlated Representations vs. Joint Embeddings

Correlated Representations: Find representations $f_{1}\left(\mathbf{x}_{1}\right), f_{2}\left(\mathbf{x}_{2}\right)$ for each view that maximize correlation:

$$
\operatorname{corr}\left(f_{1}\left(\mathbf{x}_{1}\right), f_{2}\left(\mathbf{x}_{2}\right)\right)=\frac{\operatorname{cov}\left(f_{1}\left(\mathbf{x}_{1}\right), f_{2}\left(\mathbf{x}_{2}\right)\right)}{\sqrt{\operatorname{var}\left(f_{1}\left(\mathbf{x}_{1}\right)\right) \cdot \operatorname{var}\left(f_{2}\left(\mathbf{x}_{2}\right)\right)}}
$$

Joint Embeddings: Models that minimize distance between ground truth pairs of samples:

$$
\min _{f_{1}, f_{2}} D\left(f_{1}\left(\mathbf{x}_{1}^{(i)}\right), f_{2}\left(\mathbf{x}_{2}^{(i)}\right)\right)
$$

Joint Embeddings

Joint Embeddings

Joint Embeddings

Nearest images

[Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, 2014]

Joint Embeddings

Nearest images

[Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, 2014]

[^0]: [Zadeh, Jones and Morency, EMNLP 2017]

