

Topics in AI (CPSC 532S): Multimodal Learning with Vision, Language and Sound

Lecture 14: Coordinated Representations and Joint Embeddings

What is a **good** multimodal representation?

- Similarity in the representation (somehow)
 implies similarity in corresponding concepts
 (we saw this in word2vec)
- Useful for various discriminative tasks
 (retrieval, mapping, fusion, etc.)
- Possible to obtain in absence of one or mere modalities
- Fill in missing modalities given others
 (map or translate between modalities)

Joint representations:

- Simplest version: modality
 concatenation (early fusion)
- Can be learned supervised or unsupervised

Joint representations:

- Simplest version: modality
 concatenation (early fusion)
- Can be learned supervised or unsupervised

Coordinated representations:

- Similarity-based methods (e.g., cosine distance)
- Structure constraints (e.g., orthogonality, sparseness)
- Examples: CCA, joint embeddings

Joint representations:

- Simplest version: modality
 concatenation (early fusion)
- Can be learned supervised or unsupervised

Joint Representation: Simple Multimodal Autoencoders

Concatenating modalities is fine, but requires both modalities at test time

No ability to ensure there is indeed **sharing** in the representations space

Joint Representation: Deep Multimodal Autoencoders

[Ngiam et al., 2011]

Each modality can be pre-trained

using denoising autoencoder

To train the model, reconstruct both modalities using

- both Audio & Video
- just Audio
- just Video

Multimodal Research: Historical Perspective

McGurk Effect (1976)

^{*} video credit: **OK Science**

^{*} Adopted from slides by Louis-Philippe Morency

Multimodal Research: Historical Perspective

McGurk Effect (1976)

^{*} video credit: **OK Science**

^{*} Adopted from slides by Louis-Philippe Morency

Joint Representation: Deep Multimodal Autoencoders

[Ngiam et al., 2011]

Table 3: McGurk Effect

Audio / Visual	Model prediction		
Setting	/ga/	/ba/	/da/
Visual /ga/, Audio /ga/	82.6%	2.2%	15.2%
Visual /ba/, Audio /ba/	4.4%	89.1%	6.5%
Visual /ga/, Audio /ba/	28.3%	13.0%	58.7%

Joint Representation: Deep Multimodal Autoencoders

[Ngiam et al., 2011]

Useful when you know you may only be conditioning on one modality at test time

Can be regarded as a form of regularization

Supervised Joint Representation

For supervised leaning tasks, we need to join unimodal representations

- Simple concatenation
- Element-wise multiplicative interactions
- many many others

Encoder-decoder Architectures

Multi-modal Sentiment Analysis

For supervised leaning tasks, we need to join unimodal representations

Simple concatenation

MOSI dataset (Zadeh et al, 2016)

- 2199 subjective video segments
- Sentiment intensity annotations
- 3 modalities: text, video, audio

$$\mathbf{h}_m = \sigma(\mathbf{W} \cdot [\mathbf{h}_x, \mathbf{h}_y, \mathbf{h}_z]^T)$$

Bilinear Pooling

For supervised leaning tasks, we need to join unimodal representations

- Simple concatenation
- Element-wise multiplicative interactions

$$\mathbf{h}_m = \mathbf{h}_x \otimes \mathbf{h}_y$$

[Tenenbaum and Freeman, 2000]

Multimodal Tensor Fusion Network (TFN)

For supervised leaning tasks, we need to join unimodal representations

- Simple concatenation
- Element-wise multiplicative interactions

$$\mathbf{h}_m = \left[egin{array}{c} \mathbf{h}_x \\ 1 \end{array}
ight] \otimes \left[egin{array}{c} \mathbf{h}_y \\ 1 \end{array}
ight] = \left[egin{array}{c} \mathbf{h}_x & \mathbf{h}_x \otimes \mathbf{h}_y \\ 1 & \mathbf{h}_y \end{array}
ight]$$

[Zadeh, Jones and Morency, EMNLP 2017]

Multimodal Tensor Fusion Network (TFN)

For supervised leaning tasks, we need to join unimodal representations

- Simple concatenation
- Element-wise multiplicative interactions

$$\mathbf{h}_m = \begin{bmatrix} \mathbf{h}_x \\ 1 \end{bmatrix} \otimes \begin{bmatrix} \mathbf{h}_y \\ 1 \end{bmatrix} \otimes \begin{bmatrix} \mathbf{h}_z \\ 1 \end{bmatrix}$$

[Zadeh, Jones and Morency, EMNLP 2017]

Low-rank Tensor Fusion

Tucker tensor decomposition leads to MUTAN fusion

[Ben-younes et al., ICCV 2017]

Supervised Joint Representation

For supervised leaning tasks, we need to join unimodal representations

- Simple concatenation
- Element-wise multiplicative interactions

Encoder-decoder Architectures

Coordinated representations:

- Similarity-based methods (e.g., cosine distance)
- Structure constraints (e.g., orthogonality, sparseness)
- Examples: CCA, joint embeddings

Data with Multiple Views

 $x_1^{(i)}$

 $x_{2}^{(i)}$

demographic properties

responses to survey

audio features at time i

video features at time i

Correlated Representations

Goal: Find representations $f_1(\mathbf{x}_1), f_2(\mathbf{x}_2)$ for each view that maximize correlation:

$$\mathbf{corr}(f_1(\mathbf{x}_1), f_2(\mathbf{x}_2)) = \frac{\mathbf{cov}(f_1(\mathbf{x}_1), f_2(\mathbf{x}_2))}{\sqrt{\mathbf{var}(f_1(\mathbf{x}_1)) \cdot \mathbf{var}(f_2(\mathbf{x}_2))}}$$

Correlated Representations

Goal: Find representations $f_1(\mathbf{x}_1), f_2(\mathbf{x}_2)$ for each view that maximize correlation:

$$\mathbf{corr}(f_1(\mathbf{x}_1), f_2(\mathbf{x}_2)) = \frac{\mathbf{cov}(f_1(\mathbf{x}_1), f_2(\mathbf{x}_2))}{\sqrt{\mathbf{var}(f_1(\mathbf{x}_1)) \cdot \mathbf{var}(f_2(\mathbf{x}_2))}}$$

Finding correlated representations can be useful for

- Gaining insights into the data
- Detecting of asynchrony in test data
- Removing noise uncorrelated across views
- Translation or retrieval across views

Correlated Representations

Goal: Find representations $f_1(\mathbf{x}_1), f_2(\mathbf{x}_2)$ for each view that maximize correlation:

$$\mathbf{corr}(f_1(\mathbf{x}_1), f_2(\mathbf{x}_2)) = \frac{\mathbf{cov}(f_1(\mathbf{x}_1), f_2(\mathbf{x}_2))}{\sqrt{\mathbf{var}(f_1(\mathbf{x}_1)) \cdot \mathbf{var}(f_2(\mathbf{x}_2))}}$$

Finding correlated representations can be useful for

- Gaining insights into the data
- Detecting of asynchrony in test data
- Removing noise uncorrelated across views
- Translation or retrieval across views

Has been **applied widely** to problems in computer vision, speech, NLP, medicine, chemometrics, metrology, neurology, etc.

Classical technique to find linear correlated representations, i.e.,

$$f_1(\mathbf{x}_1) = \mathbf{W}_1^T \mathbf{x}_1$$
 $\mathbf{W}_1 \in \mathbb{R}^{d_1 imes k}$ where $f_2(\mathbf{x}_2) = \mathbf{W}_2^T \mathbf{x}_2$ $\mathbf{W}_2 \in \mathbb{R}^{d_2 imes k}$

Classical technique to find linear correlated representations, i.e.,

$$f_1(\mathbf{x}_1) = \mathbf{W}_1^T \mathbf{x}_1$$
 $\mathbf{W}_1 \in \mathbb{R}^{d_1 imes k}$ where $f_2(\mathbf{x}_2) = \mathbf{W}_2^T \mathbf{x}_2$ $\mathbf{W}_2 \in \mathbb{R}^{d_2 imes k}$

The first columns $(\mathbf{w}_{1,:1}, \mathbf{w}_{2,:1})$ of the matrices \mathbf{W}_1 and \mathbf{W}_2 are found to maximize the **correlation of the projections**:

$$(\mathbf{w}_{1,:1}, \mathbf{w}_{2,:1}) = \arg\max\mathbf{corr}(\mathbf{w}_{1,:1}^T \mathbf{X}_1, \mathbf{w}_{2,:1}^T \mathbf{X}_2)$$

Classical technique to find linear correlated representations, i.e.,

$$f_1(\mathbf{x}_1) = \mathbf{W}_1^T \mathbf{x}_1$$
 $\mathbf{W}_1 \in \mathbb{R}^{d_1 imes k}$ where $f_2(\mathbf{x}_2) = \mathbf{W}_2^T \mathbf{x}_2$ $\mathbf{W}_2 \in \mathbb{R}^{d_2 imes k}$

The first columns $(\mathbf{w}_{1,:1}, \mathbf{w}_{2,:1})$ of the matrices \mathbf{W}_1 and \mathbf{W}_2 are found to maximize the **correlation of the projections**:

$$(\mathbf{w}_{1,:1}, \mathbf{w}_{2,:1}) = \arg\max\mathbf{corr}(\mathbf{w}_{1,:1}^T \mathbf{X}_1, \mathbf{w}_{2,:1}^T \mathbf{X}_2)$$

Subsequent pairs are constrained to be uncorrelated with previous components (i.e., for j < i)

$$\mathbf{corr}(\mathbf{w}_{1,:i}^T \mathbf{X}_1, \mathbf{w}_{1,:j}^T \mathbf{X}_1) = \mathbf{corr}(\mathbf{w}_{2,:i}^T \mathbf{X}_2, \mathbf{w}_{2,:j}^T \mathbf{X}_2) = 0$$

CCA Illustration

Two views of each instance have the same color

1. Estimate covariance matrix with regularization:

$$\Sigma_{11} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1}) (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1})^{T} + r_{1} \mathbf{I}$$

$$\Sigma_{12} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1}) (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2})^{T}$$

$$\Sigma_{12} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1}) (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2})^{T}$$

$$\Sigma_{22} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2}) (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2})^{T} + r_{2} \mathbf{I}$$

1. Estimate covariance matrix with regularization:

$$\Sigma_{11} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1}) (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1})^{T} + r_{1} \mathbf{I}$$

$$\Sigma_{12} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1}) (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2})^{T}$$

$$\Sigma_{12} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1}) (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2})^{T}$$

$$\Sigma_{22} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2}) (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2})^{T} + r_{2} \mathbf{I}$$

$$\Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{12} & \Sigma_{22} \end{bmatrix} \qquad \Longrightarrow \qquad \begin{bmatrix} 1 & 0 & 0 & \lambda_1 & 0 & 0 \\ 0 & 1 & 0 & 0 & \lambda_2 & 0 \\ 0 & 0 & 1 & 0 & 0 & \lambda_3 \\ \lambda_1 & 0 & 0 & 1 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 & 1 & 0 \\ 0 & 0 & \lambda_3 & 0 & 0 & 1 \end{bmatrix}$$

1. Estimate covariance matrix with regularization:

$$\Sigma_{11} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1}) (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1})^{T} + r_{1} \mathbf{I}$$

$$\Sigma_{12} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1}) (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2})^{T}$$

$$\Sigma_{12} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1}) (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2})^{T}$$

$$\Sigma_{22} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2}) (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2})^{T} + r_{2} \mathbf{I}$$

2. Form **normalized covariance** matrix: $\mathbf{T}=\Sigma_{11}^{-1/2}\Sigma_{12}\Sigma_{22}^{-1/2}$ and its singular value decomposition $\mathbf{T}=\mathbf{U}\mathbf{D}\mathbf{V}^T$

1. Estimate covariance matrix with regularization:

$$\Sigma_{11} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1}) (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1})^{T} + r_{1} \mathbf{I}$$

$$\Sigma_{12} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1}) (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2})^{T}$$

$$\Sigma_{12} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1}) (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2})^{T}$$

$$\Sigma_{22} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2}) (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2})^{T} + r_{2} \mathbf{I}$$

- 2. Form **normalized covariance** matrix: $\mathbf{T}=\Sigma_{11}^{-1/2}\Sigma_{12}\Sigma_{22}^{-1/2}$ and its singular value decomposition $\mathbf{T}=\mathbf{U}\mathbf{D}\mathbf{V}^T$
- 3. Total correlation at k is $\sum_{i=1}^{k} D_{ii}$

1. Estimate covariance matrix with regularization:

$$\Sigma_{11} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1}) (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1})^{T} + r_{1} \mathbf{I}$$

$$\Sigma_{12} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1}) (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2})^{T}$$

$$\Sigma_{12} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1}) (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2})^{T}$$

$$\Sigma_{22} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2}) (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2})^{T} + r_{2} \mathbf{I}$$

- 2. Form **normalized covariance** matrix: $\mathbf{T}=\Sigma_{11}^{-1/2}\Sigma_{12}\Sigma_{22}^{-1/2}$ and its singular value decomposition $\mathbf{T}=\mathbf{U}\mathbf{D}\mathbf{V}^T$
- 3. Total correlation at k is $\sum_{i=1}^{n} D_{ii}$
- 4. The optimal projection matrices are: $\mathbf{W}_1^* = \Sigma_{11}^{-1/2} \mathbf{U}_k$ $\mathbf{W}_2^* = \Sigma_{22}^{-1/2} \mathbf{V}_k$

where \mathbf{U}_k is the first k columns of \mathbf{U} .

KCCA: Kernel CCA

There maybe **non-linear** functions $f_1(\mathbf{x}_1), f_2(\mathbf{x}_2)$ that produce more highly correlated (better) representations than linear projections

Kernel CCA is a principal method for finding such function

- Learns functions from any reproducing kernel Hilbert space
- May use different kernels for each view

Using **RBF** (Gaussian) kernel in KCCA is akin to finding sets of instances that form clusters in both views

KCCA vs. CCA

Pros:

 More complex function space of KCCA can yield dramatically higher correlations

Cons:

- KCCA is slower to train
- For KCCA training set must be stored and referenced at test time
- KCCA model is more difficult to interpret

Deep CCA

Benefits of Deep CCA

Pros:

- Better suited for natural, real-world data
- Parametric model
 - The training set can be disregarded once the model is learned
 - Computational speed at test time is fast

Deep CCA: Training

Training a Deep CCA model:

- 1. Pretrain the layers of each side individually
- 2. **Jointly fine-tune** all parameters to maximize the total correlation of the output layers. Requires computing correlation gradient:
 - Forward propagate activations on both sides.
 - Compute correlation and its gradient w.r.t. output layers.
 - Backpropagate gradient on both sides.

Deep CCA: Training

Training a Deep CCA model:

- 1. Pretrain the layers of each side individually
- 2. **Jointly fine-tune** all parameters to maximize the total correlation of the output layers. Requires computing correlation gradient:
 - Forward propagate activations on both sides.
 - Compute correlation and its gradient w.r.t. output layers.
 - Backpropagate gradient on both sides.

Correlation is a population objective, so instead of one instance (or minibatch) training, requires L-BFGS second-order method (with full-batch)

Deep Canonically Correlated Autoencoders (DCCAE)

Jointly optimize for DCCA and auto encoders loss functions

 A trade-off between multi-view correlation and reconstruction error from individual views

Coordinated representations:

- Similarity-based methods (e.g., cosine distance)
- Structure constraints (e.g., orthogonality, sparseness)
- Examples: CCA, joint embeddings

Correlated Representations vs. Joint Embeddings

Correlated Representations: Find representations $f_1(\mathbf{x}_1), f_2(\mathbf{x}_2)$ for each view that maximize correlation:

$$\mathbf{corr}(f_1(\mathbf{x}_1), f_2(\mathbf{x}_2)) = \frac{\mathbf{cov}(f_1(\mathbf{x}_1), f_2(\mathbf{x}_2))}{\sqrt{\mathbf{var}(f_1(\mathbf{x}_1)) \cdot \mathbf{var}(f_2(\mathbf{x}_2))}}$$

Joint Embeddings: Models that minimize distance between ground truth pairs of samples:

$$min_{f_1,f_2}D\left(f_1(\mathbf{x}_1^{(i)}),f_2(\mathbf{x}_2^{(i)})\right)$$

Fixed

Image features s

Text: a parrot rides a tricycle

Fixed

[Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, 2014]

Nearest images

$$-bowl + box =$$

$$-box + bowl =$$

