
Lecture 13: Unsupervised Learning, Autoencoders

Topics in AI (CPSC 532S): 
Multimodal Learning with Vision, Language and Sound



Unsupervised Learning

We have access to                                 but not {x1,x2,x3, · · ·,xN} {y1,y2,y3, · · ·,yN}
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Unsupervised Learning

We have access to                                 but not 

Why would we want to tackle such a task: 
1. Extracting interesting information from data 

— Clustering 
— Discovering interesting trend 
— Data compression 

2. Learn better representations

{x1,x2,x3, · · ·,xN} {y1,y2,y3, · · ·,yN}
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Unsupervised Representation Learning

Force our representations to better model input distribution 

— Not just extracting features for classification 
— Asking the model to be good at representing the data and not overfitting to a 
particular task (we get this with ImageNet, but maybe we can do better) 
— Potentially allowing for better generalization 

Use for initialization of supervised task, especially when we have a lot of 
unlabeled data and much less labeled examples 
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Restricted Boltzmann Machines (in one slide)

Model the joint probability of hidden state and observation

Objective, maximize likelihood of the data
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Autoencoders
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Autoencoders
Self (i.e. self-encoding)
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Autoencoders
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Self (i.e. self-encoding)

— Feed forward network intended to 
reproduce the input 
— Encoder/Decoder architecture 

Encoder: 
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Autoencoders
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Self (i.e. self-encoding)

— Feed forward network intended to 
reproduce the input 
— Encoder/Decoder architecture 

Encoder: 
Decoder: 

— Score function 

f = �(Wx)

g = �(W
0
h)

x0 = f(g(x)),L(x0,x)

x0 = f(g(x)),L(x0,x)
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Autoencoders
A standard neural network architecture (linear layer followed by non-linearity) 
— Activation depends on type of data 

(e.g., sigmoid for binary; linear for real valued) 

— Often use tied weights 
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W0 = W
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<SOS>

Autoencoders
Assignment 3 can be interpreted as a language autoencoder



Autoencoders: Hidden Layer Dimensionality
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Smaller than the input 

— Will compress the data, reconstruction of the data far from the training 
distribution will be difficult 
— Linear-linear encoder-decoder with Euclidian loss is actually equivalent to 
PCA (under certain data normalization) 
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Autoencoders: Hidden Layer Dimensionality

Side note, this is useful for anomaly detection
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Smaller than the input 

— Will compress the data, reconstruction of the data far from the training 
distribution will be difficult 
— Linear-linear encoder-decoder with Euclidian loss is actually equivalent to 
PCA (under certain data normalization)  

Larger than the input 

— No compression needed 
— Can trivially learn to just copy, no structure is learned (unless you regularize) 
— Does not encourage learning of meaningful features (unless you regularize)

Autoencoders: Hidden Layer Dimensionality
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Autoencoders
A standard neural network architecture (linear layer followed by non-linearity) 
— Activation depends on type of data 

(e.g., sigmoid for binary; linear for real valued) 

— Often use tied weights 
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Idea: add noise to input but learn 
to reconstruct the original 

— Leads to better representations 
— Prevents copying  

Note: different noise is added 
during each epoch 

De-noising Autoencoder
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Stacked (deep) Autoencoders and Denoising Autoencoders

What can we do with them? 

— Good for compression (better than PCA) 

— Disregard the decoder and use the 
middle layer as a representation 
— Fine-tune the autoencoder for a task
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Context Encoders [ Pathak et al., 2016 ]
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Context Encoders [ Pathak et al., 2016 ]



Spatial Context Networks
[ Wu, Sigal, Davis, 2017 ]



Spatial Context Networks
[ Wu, Sigal, Davis, 2017 ]



A Little Theory: Information Bottleneck [ Tishbi et al., 1999 ]

Every layer could be treated as a random variable, then entire network is a 
Markov Chain
Data processing theorem: if the only connection between X and Y is through T, 
the information that Y gives about X cannot be bigger than the information that T 
gives about X.



A Little Theory: Information Bottleneck [ Tishbi et al., 1999 ]

Observation: In the information plane layers first increase the mutual 
information between themselves and the output and then reduce information 
between themselves and the input (which leads to “forgetting” of irrelevant 
inputs and ultimately generalization)  



50 networks of same topology being optimized 

A Little Theory: Information Bottleneck [ Tishbi et al., 1999 ]



50 networks of same topology being optimized 
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A Little Theory: Information Bottleneck [ Tishbi et al., 1999 ]

Limitation: Does not seem to work for non-Tanh activations (e.g., ReLU)   


