
Lecture 13: Unsupervised Learning, Autoencoders

Topics in AI (CPSC 532S):
Multimodal Learning with Vision, Language and Sound

Unsupervised Learning

We have access to but not {x1,x2,x3, · · ·,xN} {y1,y2,y3, · · ·,yN}

*slide from Louis-Philippe Morency

Unsupervised Learning

We have access to but not

Why would we want to tackle such a task:
1. Extracting interesting information from data

— Clustering
— Discovering interesting trend
— Data compression

2. Learn better representations

{x1,x2,x3, · · ·,xN} {y1,y2,y3, · · ·,yN}

*slide from Louis-Philippe Morency

Unsupervised Representation Learning

Force our representations to better model input distribution

— Not just extracting features for classification
— Asking the model to be good at representing the data and not overfitting to a
particular task (we get this with ImageNet, but maybe we can do better)
— Potentially allowing for better generalization

Use for initialization of supervised task, especially when we have a lot of
unlabeled data and much less labeled examples

*slide from Louis-Philippe Morency

Restricted Boltzmann Machines (in one slide)

Model the joint probability of hidden state and observation

Objective, maximize likelihood of the data

*slide from Louis-Philippe Morency

Autoencoders

*slide from Louis-Philippe Morency

Autoencoders
Self (i.e. self-encoding)

*slide from Louis-Philippe Morency

Autoencoders

x5

x4

x3

x2

x1

Hidden Layer

Input Layer Output Layer

g = �(W
0
h)f = �(Wx)

x0
1

x0
2

x0
3

x0
4

x0
5

h1

h2

Self (i.e. self-encoding)

— Feed forward network intended to
reproduce the input
— Encoder/Decoder architecture

Encoder:
Decoder:

f = �(Wx)

g = �(W
0
h)

*slide from Louis-Philippe Morency

Autoencoders

x5

x4

x3

x2

x1

Hidden Layer

Input Layer Output Layer

g = �(W
0
h)f = �(Wx)

x0
1

x0
2

x0
3

x0
4

x0
5

h1

h2

Self (i.e. self-encoding)

— Feed forward network intended to
reproduce the input
— Encoder/Decoder architecture

Encoder:
Decoder:

— Score function

f = �(Wx)

g = �(W
0
h)

x0 = f(g(x)),L(x0,x)

x0 = f(g(x)),L(x0,x)

*slide from Louis-Philippe Morency

Autoencoders
A standard neural network architecture (linear layer followed by non-linearity)
— Activation depends on type of data

(e.g., sigmoid for binary; linear for real valued)

— Often use tied weights

x5

x4

x3

x2

x1

Hidden Layer

Input Layer Output Layer

g = �(W
0
h)f = �(Wx)

x0
1

x0
2

x0
3

x0
4

x0
5

h1

h2

W0 = W

*slide from Louis-Philippe Morency

<SOS>

Autoencoders
Assignment 3 can be interpreted as a language autoencoder

Autoencoders: Hidden Layer Dimensionality

*slide from Louis-Philippe Morency

Smaller than the input

— Will compress the data, reconstruction of the data far from the training
distribution will be difficult
— Linear-linear encoder-decoder with Euclidian loss is actually equivalent to
PCA (under certain data normalization)

Autoencoders: Hidden Layer Dimensionality

*slide from Louis-Philippe Morency

Smaller than the input

— Will compress the data, reconstruction of the data far from the training
distribution will be difficult
— Linear-linear encoder-decoder with Euclidian loss is actually equivalent to
PCA (under certain data normalization)

Autoencoders: Hidden Layer Dimensionality

Side note, this is useful for anomaly detection

*slide from Louis-Philippe Morency

Smaller than the input

— Will compress the data, reconstruction of the data far from the training
distribution will be difficult
— Linear-linear encoder-decoder with Euclidian loss is actually equivalent to
PCA (under certain data normalization)

Smaller than the input

— Will compress the data, reconstruction of the data far from the training
distribution will be difficult
— Linear-linear encoder-decoder with Euclidian loss is actually equivalent to
PCA (under certain data normalization)

Larger than the input

— No compression needed
— Can trivially learn to just copy, no structure is learned (unless you regularize)
— Does not encourage learning of meaningful features (unless you regularize)

Autoencoders: Hidden Layer Dimensionality

*slide from Louis-Philippe Morency

Smaller than the input

— Will compress the data, reconstruction of the data far from the training
distribution will be difficult
— Linear-linear encoder-decoder with Euclidian loss is actually equivalent to
PCA (under certain data normalization)

Larger than the input

— No compression needed
— Can trivially learn to just copy, no structure is learned (unless you regularize)
— Does not encourage learning of meaningful features (unless you regularize)

Autoencoders: Hidden Layer Dimensionality

*slide from Louis-Philippe Morency

Autoencoders
A standard neural network architecture (linear layer followed by non-linearity)
— Activation depends on type of data

(e.g., sigmoid for binary; linear for real valued)

— Often use tied weights

x5

x4

x3

x2

x1

Hidden Layer

Input Layer Output Layer

g = �(W
0
h)f = �(Wx)

x0
1

x0
2

x0
3

x0
4

x0
5

h1

h2

W0 = W

*slide from Louis-Philippe Morency

Idea: add noise to input but learn
to reconstruct the original

— Leads to better representations
— Prevents copying

Note: different noise is added
during each epoch

De-noising Autoencoder

x5

x4

x3

x2

x1

Hidden Layer

Input Layer Output Layer

g = �(W
0
h)f = �(Wx)

x0
1

x0
2

x0
3

x0
4

x0
5

h1

h2

*slide from Louis-Philippe Morency

Stacked (deep) Autoencoders and Denoising Autoencoders

What can we do with them?

— Good for compression (better than PCA)

— Disregard the decoder and use the
middle layer as a representation
— Fine-tune the autoencoder for a task

*slide from Louis-Philippe Morency

Stacked (deep) Autoencoders and Denoising Autoencoders

What can we do with them?

— Good for compression (better than PCA)

— Disregard the decoder and use the
middle layer as a representation

— Fine-tune the autoencoder for a
task

*slide from Louis-Philippe Morency

Context Encoders [Pathak et al., 2016]

Context Encoders [Pathak et al., 2016]

Context Encoders [Pathak et al., 2016]

Context Encoders [Pathak et al., 2016]

Context Encoders [Pathak et al., 2016]

Context Encoders [Pathak et al., 2016]

Spatial Context Networks
[Wu, Sigal, Davis, 2017]

Spatial Context Networks
[Wu, Sigal, Davis, 2017]

A Little Theory: Information Bottleneck [Tishbi et al., 1999]

Every layer could be treated as a random variable, then entire network is a
Markov Chain
Data processing theorem: if the only connection between X and Y is through T,
the information that Y gives about X cannot be bigger than the information that T
gives about X.

A Little Theory: Information Bottleneck [Tishbi et al., 1999]

Observation: In the information plane layers first increase the mutual
information between themselves and the output and then reduce information
between themselves and the input (which leads to “forgetting” of irrelevant
inputs and ultimately generalization)

50 networks of same topology being optimized

A Little Theory: Information Bottleneck [Tishbi et al., 1999]

50 networks of same topology being optimized

A Little Theory: Information Bottleneck [Tishbi et al., 1999]

A Little Theory: Information Bottleneck [Tishbi et al., 1999]

Limitation: Does not seem to work for non-Tanh activations (e.g., ReLU)

