Topics in AI (CPSC 532S): Multimodal Learning with Vision, Language and Sound

Lecture 13: Unsupervised Learning, Autoencoders
Unsupervised Learning

We have access to \(\{x_1, x_2, x_3, \ldots, x_N\} \) but not \(\{y_1, y_2, y_3, \ldots, y_N\} \)

slide from Louis-Philippe Morency
Unsupervised Learning

We have access to \(\{x_1, x_2, x_3, \cdots, x_N\} \) but not \(\{y_1, y_2, y_3, \cdots, y_N\} \)

Why would we want to tackle such a task:

1. Extracting interesting information from data
 - Clustering
 - Discovering interesting trend
 - Data compression

2. Learn better representations

slide from Louis-Philippe Morency
Unsupervised Representation Learning

Force our **representations** to better model input distribution

– Not just extracting features for classification

– Asking the model to be good at representing the data and not overfitting to a particular task (we get this with ImageNet, but maybe we can do better)

– Potentially allowing for better generalization

Use for **initialization of supervised task**, especially when we have a lot of unlabeled data and much less labeled examples

slide from Louis-Philippe Morency
Restricted Boltzmann Machines (in one slide)

Model the joint probability of hidden state and observation

\[p(x, h; \theta) = \frac{\exp(-E(x, h; \theta))}{Z} \]

\[Z = \sum_x \sum_h \exp(-E(x, h; \theta)) \]

\[E = -xW h - b^T x - a^T h \]

\[E = -\sum_i \sum_j w_{i,j} x_i h_j - \sum_i b_i x_i - \sum_j a_j h_j \]

Objective, maximize likelihood of the data

slide from Louis-Philippe Morency
Autoencoders

slide from Louis-Philippe Morency
Autoencoders

Self (i.e. self-encoding)

*slide from Louis-Philippe Morency
Autoencoders

Self (i.e. self-encoding)

— Feed forward network intended to reproduce the input
— Encoder/Decoder architecture
 Encoder: $f = \sigma(Wx)$
 Decoder: $g = \sigma(W' h)$
Autoencoders

Self (i.e. self-encoding)

— Feed forward network intended to reproduce the input
— Encoder/Decoder architecture
 Encoder: \(f = \sigma(Wx) \)
 Decoder: \(g = \sigma(W'h) \)
— Score function

\[
x' = f(g(x)) \quad \mathcal{L}(x', x)
\]
Autoencoders

A standard neural network architecture (linear layer followed by non-linearity)

— Activation depends on type of data
 (e.g., sigmoid for binary; linear for real valued)

— Often use tied weights

\[W' = W \]
Autoencoders

Assignment 3 can be interpreted as a language autoencoder
Autoencoders: Hidden Layer Dimensionality

Smaller than the input

- Will compress the data, reconstruction of the data far from the training distribution will be difficult
- Linear-linear encoder-decoder with Euclidian loss is actually equivalent to PCA (under certain data normalization)

slide from Louis-Philippe Morency
Autoencoders: Hidden Layer Dimensionality

Smaller than the input

— Will compress the data, reconstruction of the data far from the training distribution will be difficult

— Linear-linear encoder-decoder with Euclidian loss is actually equivalent to PCA (under certain data normalization)

slide from Louis-Philippe Morency
Autoencoders: Hidden Layer Dimensionality

Smaller than the input

— Will compress the data, reconstruction of the data far from the training distribution will be difficult

— Linear-linear encoder-decoder with Euclidian loss is actually equivalent to PCA (under certain data normalization)

Side note, this is useful for anomaly detection
Autoencoders: Hidden Layer Dimensionality

Smaller than the input

- Will compress the data, reconstruction of the data far from the training distribution will be difficult
- Linear-linear encoder-decoder with Euclidian loss is actually equivalent to PCA (under certain data normalization)

Larger than the input

- No compression needed
- Can trivially learn to just copy, no structure is learned (unless you regularize)
- Does not encourage learning of meaningful features (unless you regularize)

slide from Louis-Philippe Morency
Autoencoders: Hidden Layer Dimensionality

Larger than the input

- No compression needed
- Can trivially learn to just copy, no structure is learned (unless you regularize)
- Does not encourage learning of meaningful features (unless you regularize)

slide from Louis-Philippe Morency
Autoencoders

A standard neural network architecture (linear layer followed by non-linearity)

— Activation depends on type of data
 (e.g., sigmoid for binary; linear for real valued)

— Often use tied weights

\[W' = W \]
De-noising Autoencoder

Idea: add noise to input but learn to reconstruct the original

- Leads to better representations
- Prevents copying

Note: different noise is added during each epoch

slide from Louis-Philippe Morency
Stacked (deep) Autoencoders and Denoising Autoencoders

What can we do with them?

— Good for compression (better than PCA)
— Disregard the decoder and use the middle layer as a representation
— Fine-tune the autoencoder for a task

*slide from Louis-Philippe Morency
Stacked (deep) Autoencoders and Denoising Autoencoders

What can we do with them?

— Good for compression (better than PCA)

— Disregard the decoder and use the middle layer as a representation

— **Fine-tune** the autoencoder for a task
Context Encoders

[Pathak et al., 2016]
Context Encoders

[Pathak et al., 2016]
Context Encoders

[Pathak et al., 2016]
Context Encoders

Encoder

Decoder

Reconstruction Loss (L2)

Adversarial Discriminator

[Pathak et al., 2016]
Context Encoders

[Pathak et al., 2016]
Context Encoders

[Pathak et al., 2016]

<table>
<thead>
<tr>
<th>Pretraining Method</th>
<th>Supervision</th>
<th>Pretraining time</th>
<th>Classification</th>
<th>Detection</th>
<th>Segmentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ImageNet [26]</td>
<td>1000 class labels</td>
<td>3 days</td>
<td>78.2%</td>
<td>56.8%</td>
<td>48.0%</td>
</tr>
<tr>
<td>Random Gaussian</td>
<td>initialization</td>
<td>< 1 minute</td>
<td>53.3%</td>
<td>43.4%</td>
<td>19.8%</td>
</tr>
<tr>
<td>Autoencoder</td>
<td>-</td>
<td>14 hours</td>
<td>53.8%</td>
<td>41.9%</td>
<td>25.2%</td>
</tr>
<tr>
<td>Agrawal et al. [1]</td>
<td>egomotion</td>
<td>10 hours</td>
<td>52.9%</td>
<td>41.8%</td>
<td>-</td>
</tr>
<tr>
<td>Doersch et al. [7]</td>
<td>context</td>
<td>4 weeks</td>
<td>55.3%</td>
<td>46.6%</td>
<td>-</td>
</tr>
<tr>
<td>Wang et al. [39]</td>
<td>motion</td>
<td>1 week</td>
<td>58.4%</td>
<td>44.0%</td>
<td>-</td>
</tr>
<tr>
<td>Ours</td>
<td>context</td>
<td>14 hours</td>
<td>56.5%</td>
<td>44.5%</td>
<td>29.7%</td>
</tr>
</tbody>
</table>
Spatial Context Networks

[Wu, Sigal, Davis, 2017]
Spatial Context Networks

[Wu, Sigal, Davis, 2017]

<table>
<thead>
<tr>
<th>Method</th>
<th>Initialization</th>
<th>Supervision</th>
<th>Pretraining time</th>
<th>Classification</th>
<th>Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Gaussian</td>
<td>random</td>
<td>N/A</td>
<td>< 1 minute</td>
<td>53.3</td>
<td>43.4</td>
</tr>
<tr>
<td>Wang et al. [32]</td>
<td>random</td>
<td>motion</td>
<td>1 week</td>
<td>58.4</td>
<td>44.0</td>
</tr>
<tr>
<td>Doersch et al. [3]</td>
<td>random</td>
<td>context</td>
<td>4 weeks</td>
<td>55.3</td>
<td>46.6</td>
</tr>
<tr>
<td>*Doersch et al. [3]</td>
<td>1000 class labels</td>
<td>context</td>
<td>–</td>
<td>65.4</td>
<td>50.4</td>
</tr>
<tr>
<td>Pathak et al. [21]</td>
<td>random</td>
<td>context inpainting</td>
<td>14 hours</td>
<td>56.5</td>
<td>44.5</td>
</tr>
<tr>
<td>Zhang et al. [36]</td>
<td>random</td>
<td>color</td>
<td>–</td>
<td>65.6</td>
<td>46.9</td>
</tr>
<tr>
<td>ImageNet [21]</td>
<td>random</td>
<td>1000 class labels</td>
<td>3 days</td>
<td>78.2</td>
<td>56.8</td>
</tr>
<tr>
<td>*ImageNet</td>
<td>random</td>
<td>1000 class labels</td>
<td>3 days</td>
<td>76.9</td>
<td>58.7</td>
</tr>
<tr>
<td>SCN-EdgeBox</td>
<td>1000 class labels</td>
<td>context</td>
<td>10 hours</td>
<td>79.0</td>
<td>59.4</td>
</tr>
</tbody>
</table>
A Little Theory: Information Bottleneck [Tishbi et al., 1999]

Every layer could be treated as a random variable, then entire network is a Markov Chain

Data processing theorem: if the only connection between X and Y is through T, the information that Y gives about X cannot be bigger than the information that T gives about X.

\[I(X;Y) \leq I(T_1;Y) \leq I(T_2;Y) \leq \cdots \leq I(\hat{Y};Y) \]
A Little Theory: **Information Bottleneck** [Tishbi et al., 1999]

Observation: In the information plane layers first increase the mutual information between themselves and the output and then reduce information between themselves and the input (which leads to “forgetting” of irrelevant inputs and ultimately generalization).
A Little Theory: Information Bottleneck [Tishbi et al., 1999]

50 networks of same topology being optimized
A Little Theory: Information Bottleneck [Tishbi et al., 1999]

50 networks of same topology being optimized
A Little Theory: **Information Bottleneck** [Tishbi et al., 1999]

Limitation: Does not seem to work for non-Tanh activations (e.g., ReLU)