

THE UNIVERSITY OF BRITISH COLUMBIA

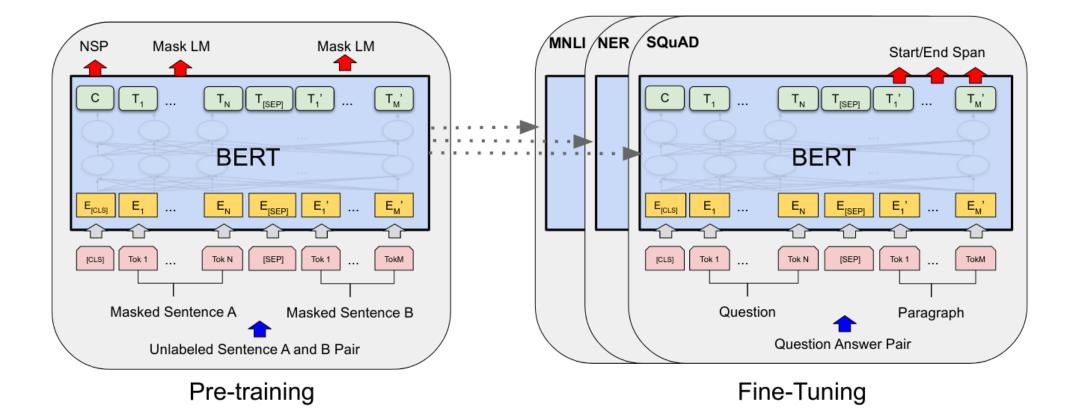
Topics in AI (CPSC 532S): **Multimodal Learning with Vision, Language and Sound**

Lecture 13: RNN Applications (Part 3)

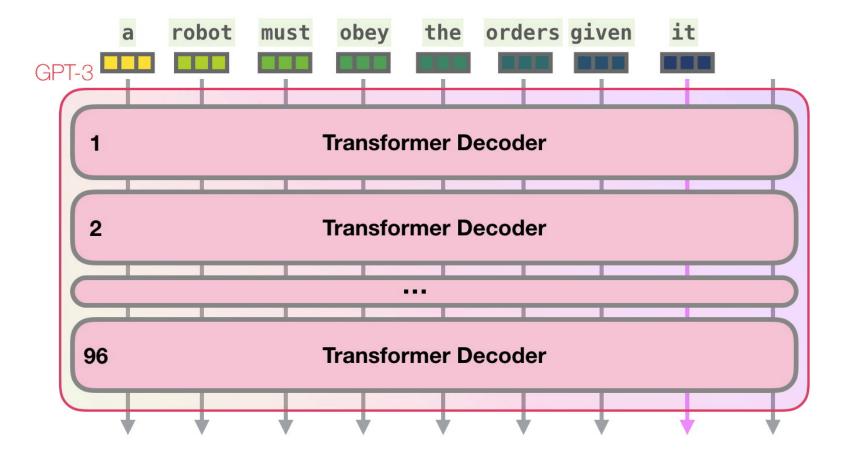
Assignment 1 & 2 will be posted by Monday

Group formation – due today

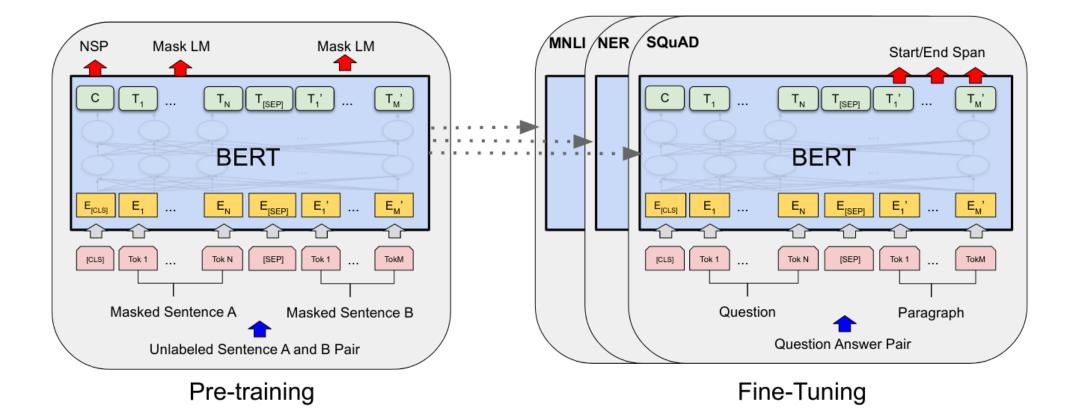
BERT



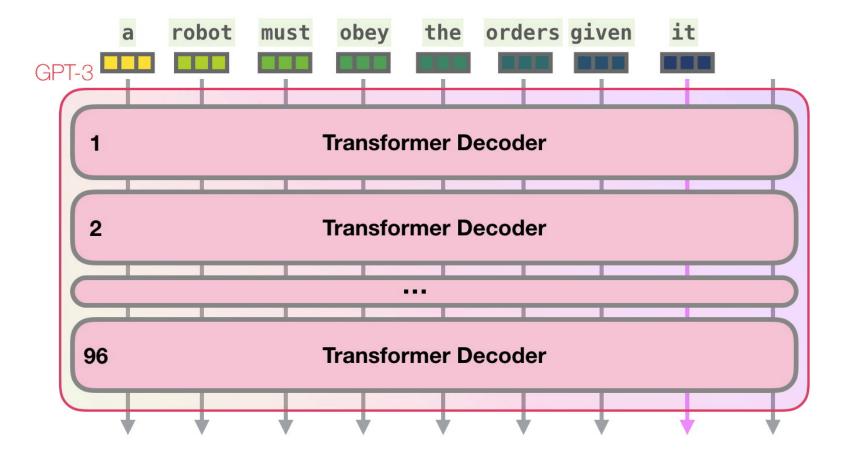
GPT3



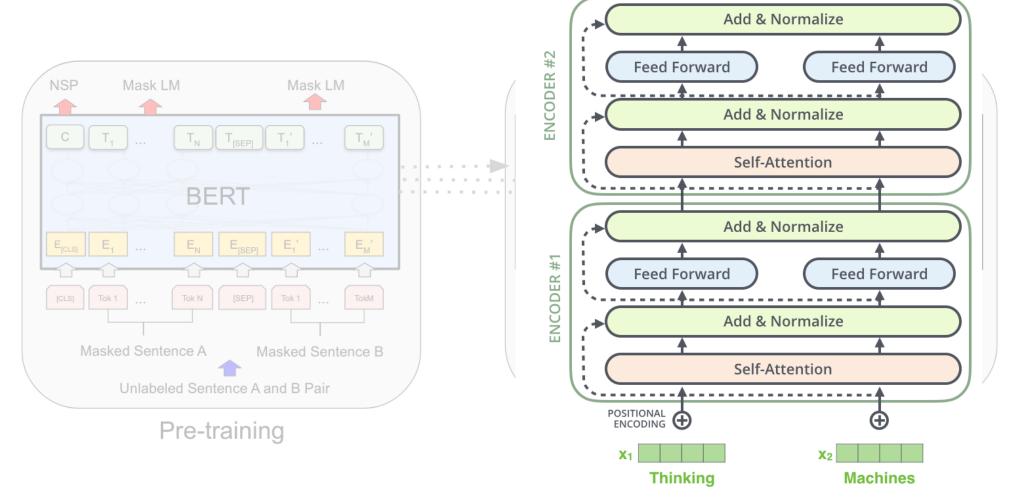
BERT



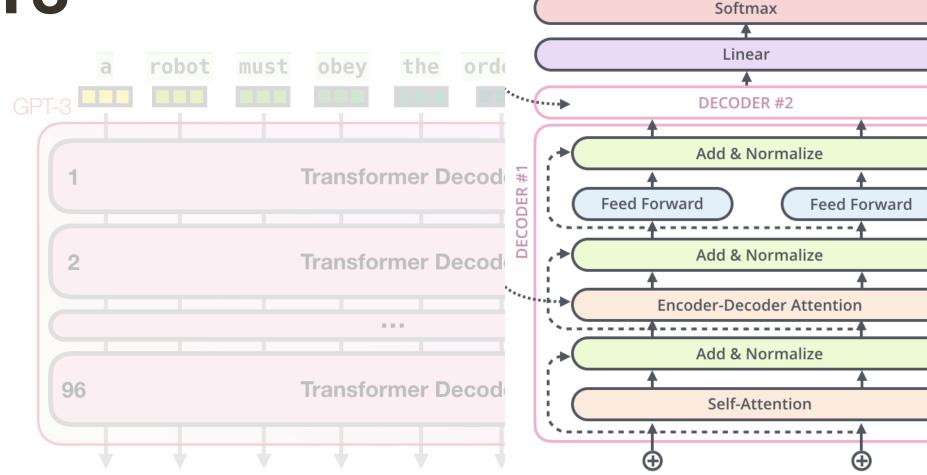
GPT3



BERT

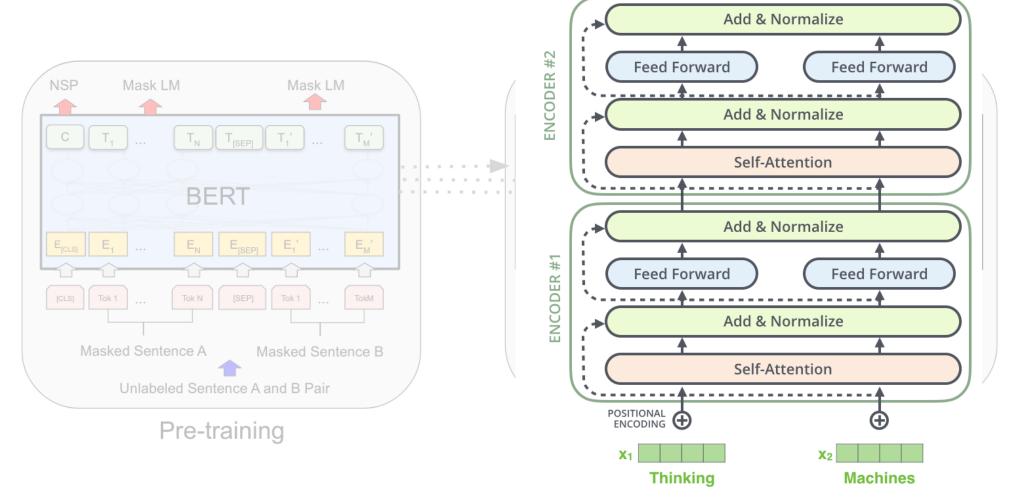


Encoder part of the Transformer

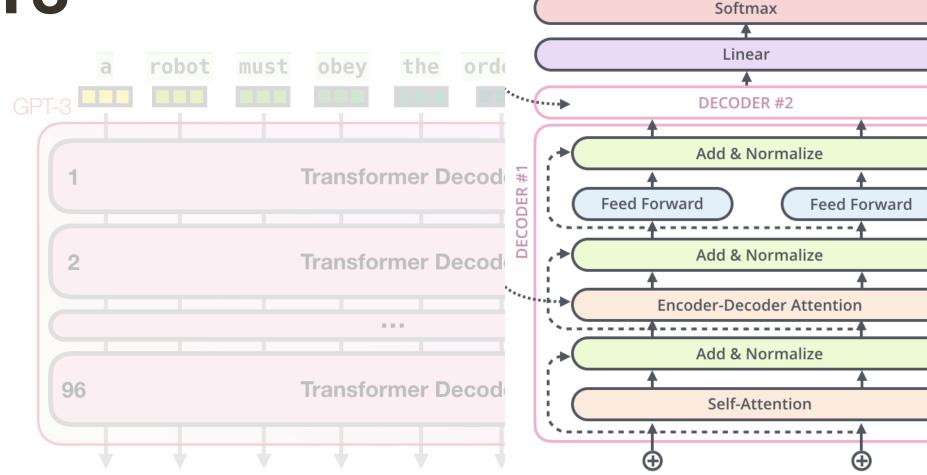


Decoder part of the Transformer

BERT

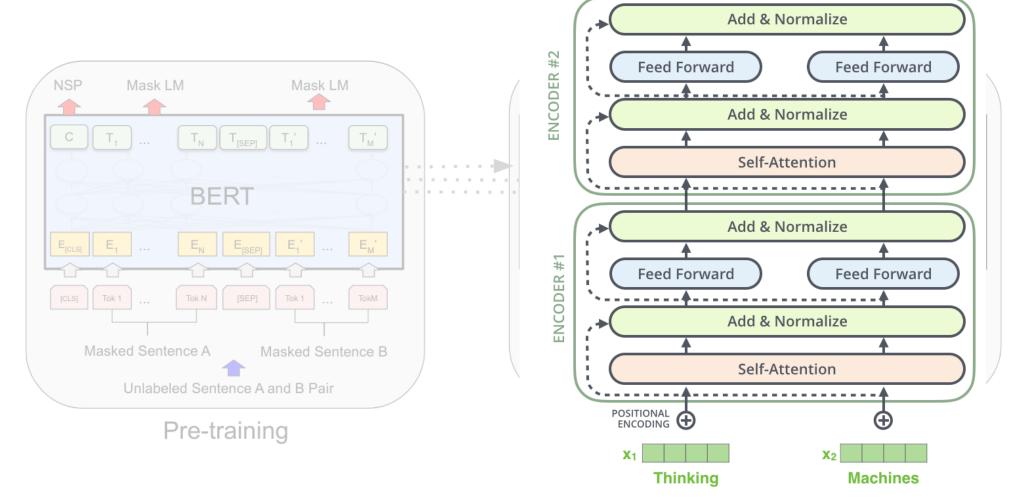


Encoder part of the Transformer



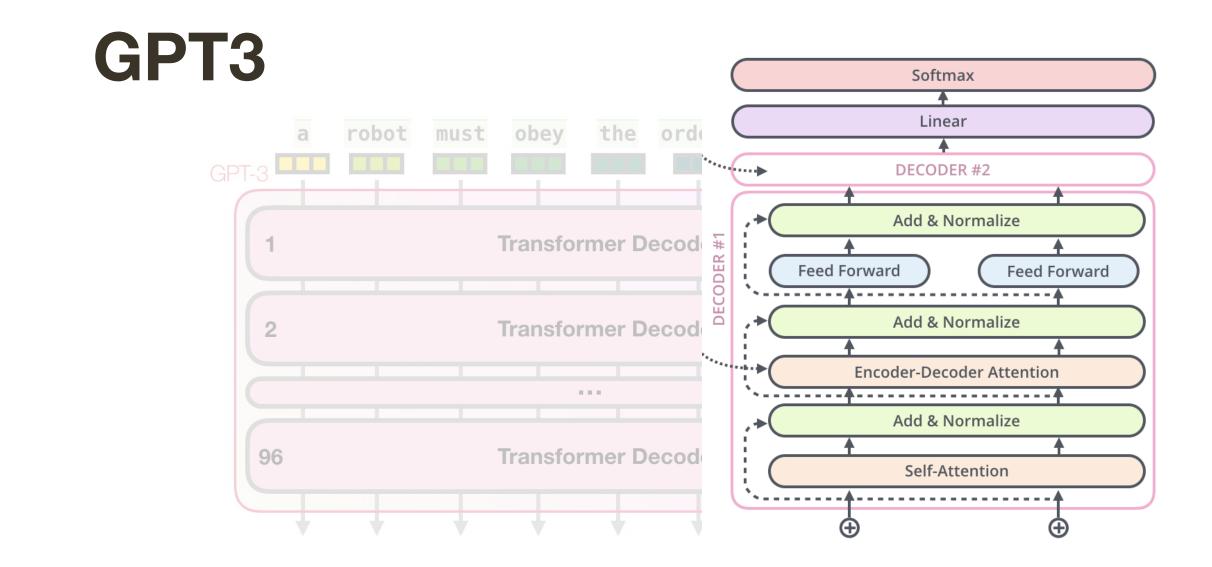
Decoder part of the Transformer

BERT

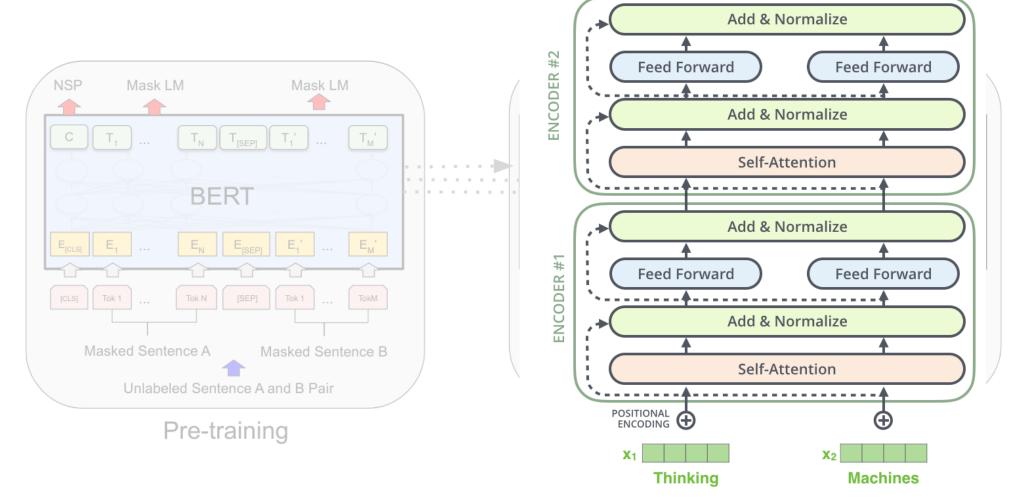


Neither BERT nor GPT3 is really a "model" on its own, more like a training strategy

 Success of both stems from large capacity of this models and extensive amounts of training data (+ compute needed to train them)

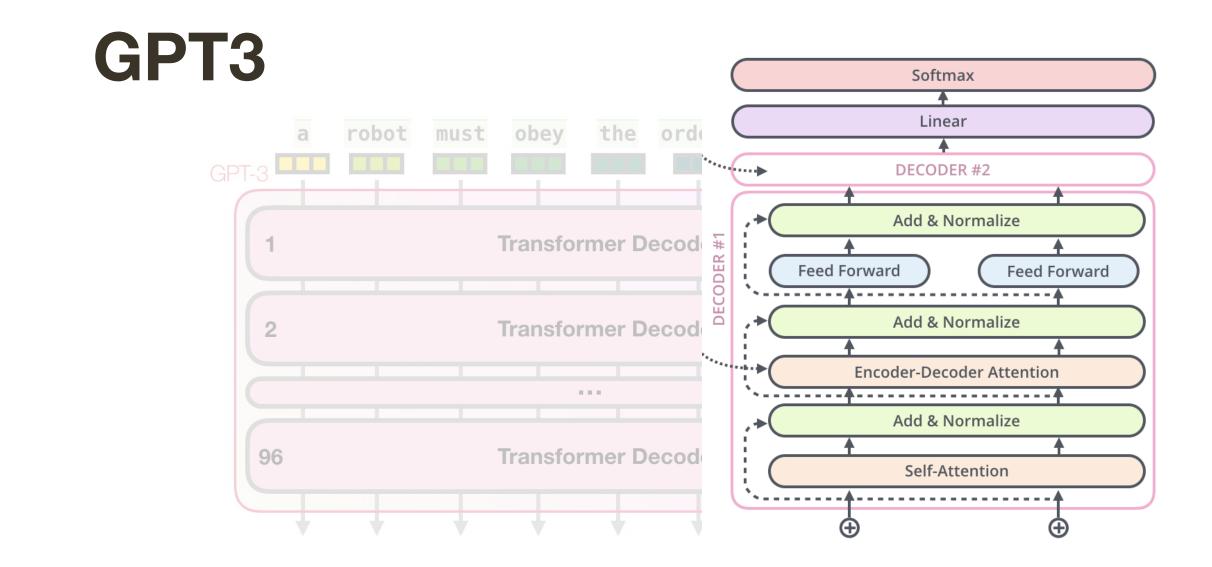


BERT

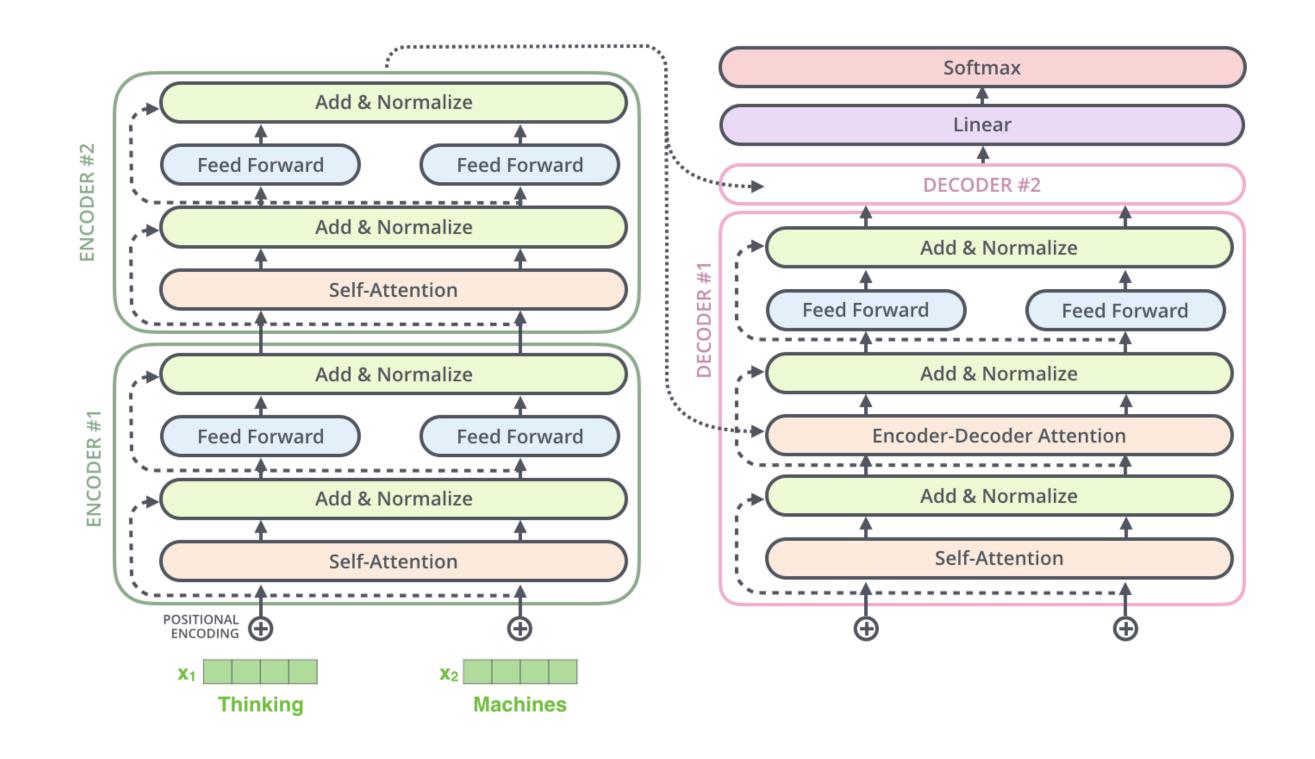


Neither BERT nor GPT3 is really a "model" on its own, more like a training strategy

 Success of both stems from large capacity of this models and extensive amounts of training data (+ compute needed to train them)



Why Transformers are so Effective?



- (Globally) contextualized representations -> better capable of capture meaning
- Allow parallelized training -> enables training with large amounts of data
- Residual layer structure -> good gradient flow for optimization

- **Captioning,** Visual Question Answering (VQA):
- Encoders for images (e.g., CNNs) produce a vector-based representations Encoder for language (e.g., RNNs) also produces vector-based representation
- This makes it very easy to combine encoders/decoders cross-modally to solve variety of visio-lingual tasks

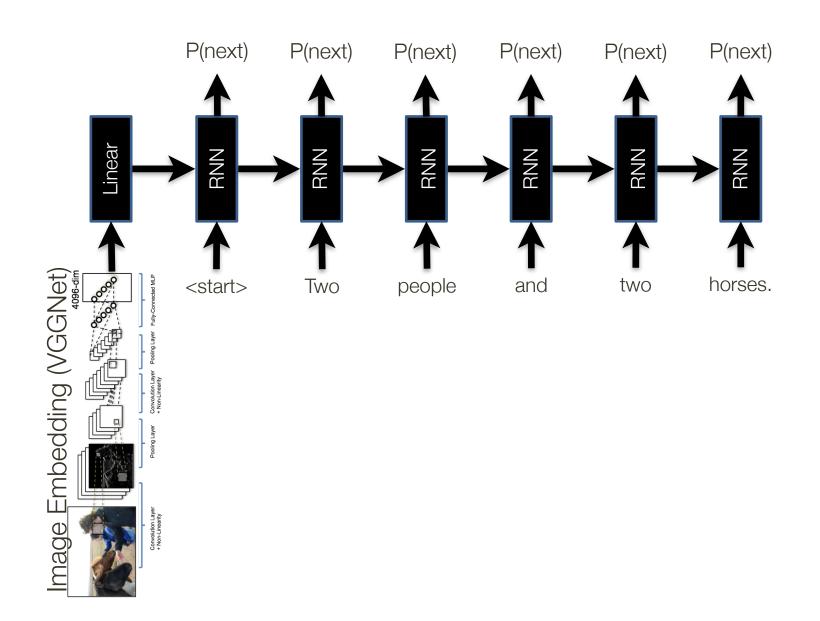
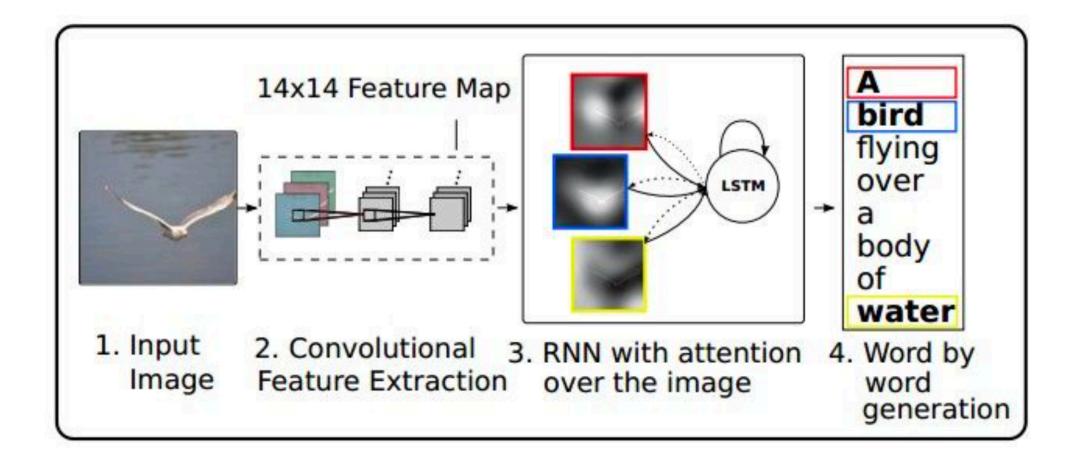


Image Embedding (VGGNet) Neural Network Softmax 4096-dim over top K answers Convolution Lave Pooling Laver Fully-Connected MLF Pooling Laver Convolution Laver - Non-Linearity + Non-Linearity **Question** Embedding (LSTM) (Features II) classifier "How many horses are in this image? $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$

Captioning, Visual Question Answering **(VQA)**:

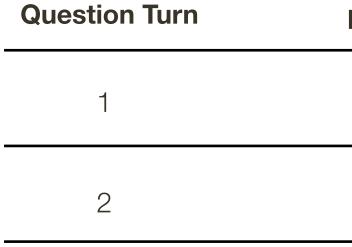
- Encoders for images (e.g., CNNs) produce a vector-based representations
- Encoder for language (e.g., RNNs) also produces vector-based representation This makes it very easy to combine encoders/decoders cross-modally to solve
- variety of visio-lingual tasks

Note: Attention can be applied to images by treating each (x,y) feature column as effectively an encoder "token"



Brief Review + Lessons — Visual Dialogs

You can use soft attention mechanisms as "memory" modules by simply modulating what is used for Keys and Values.



You can (easily) modify attention mechanisms to encode priors that the problem may have, such as recency.

 $m_{t,\tau} = ($

 $\boldsymbol{\beta}_t = \operatorname{softmax}\left(\{m_{t,\tau}, 0 < \tau < t - 1\}\right)$

Key (hash)	Memory
f (H: Empty; Q: What color is a hydrant? A: It is red)	
f (H: ; Q: Is there a tree? A: Yes)	

$$^{\mathrm{m}}m{c}_{t})^{ op}m{k}_{ au}+ heta\left(t- au
ight)$$

... and treating images as sequences

Activity: A collection of human/object movements with a particular semantic meaning

Activity: A collection of human/object movements with a particular semantic meaning

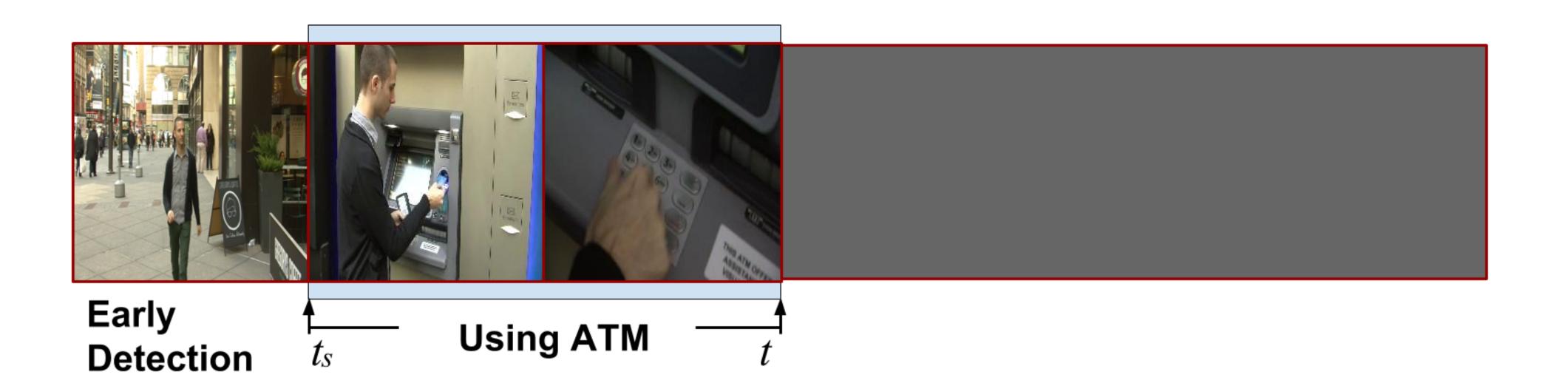


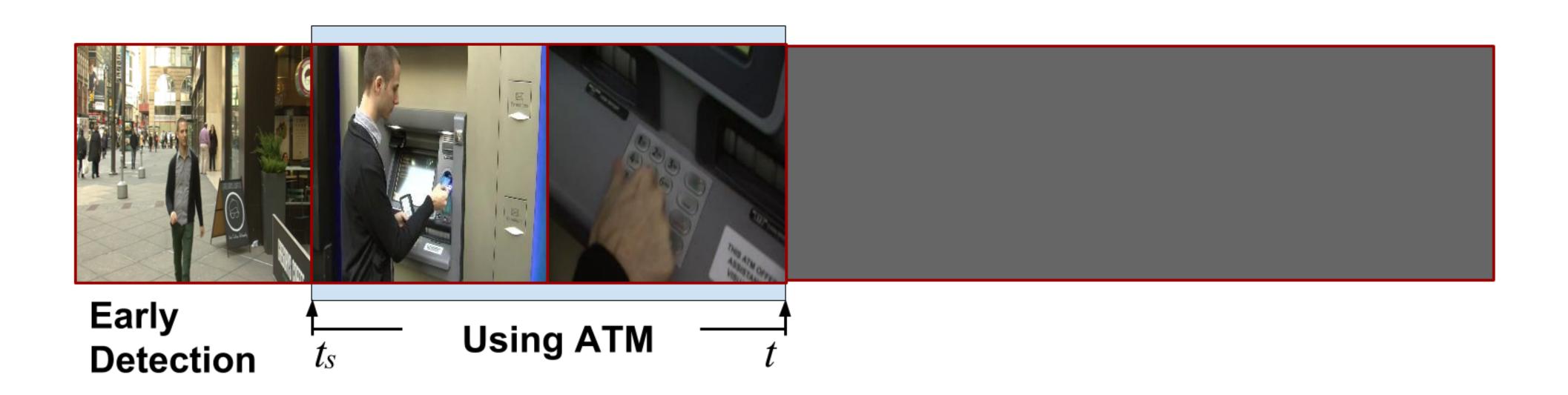
Action Recognition: Finding if a video segment contains such a movement

Action Recognition: Finding if a video segment contains such a movement

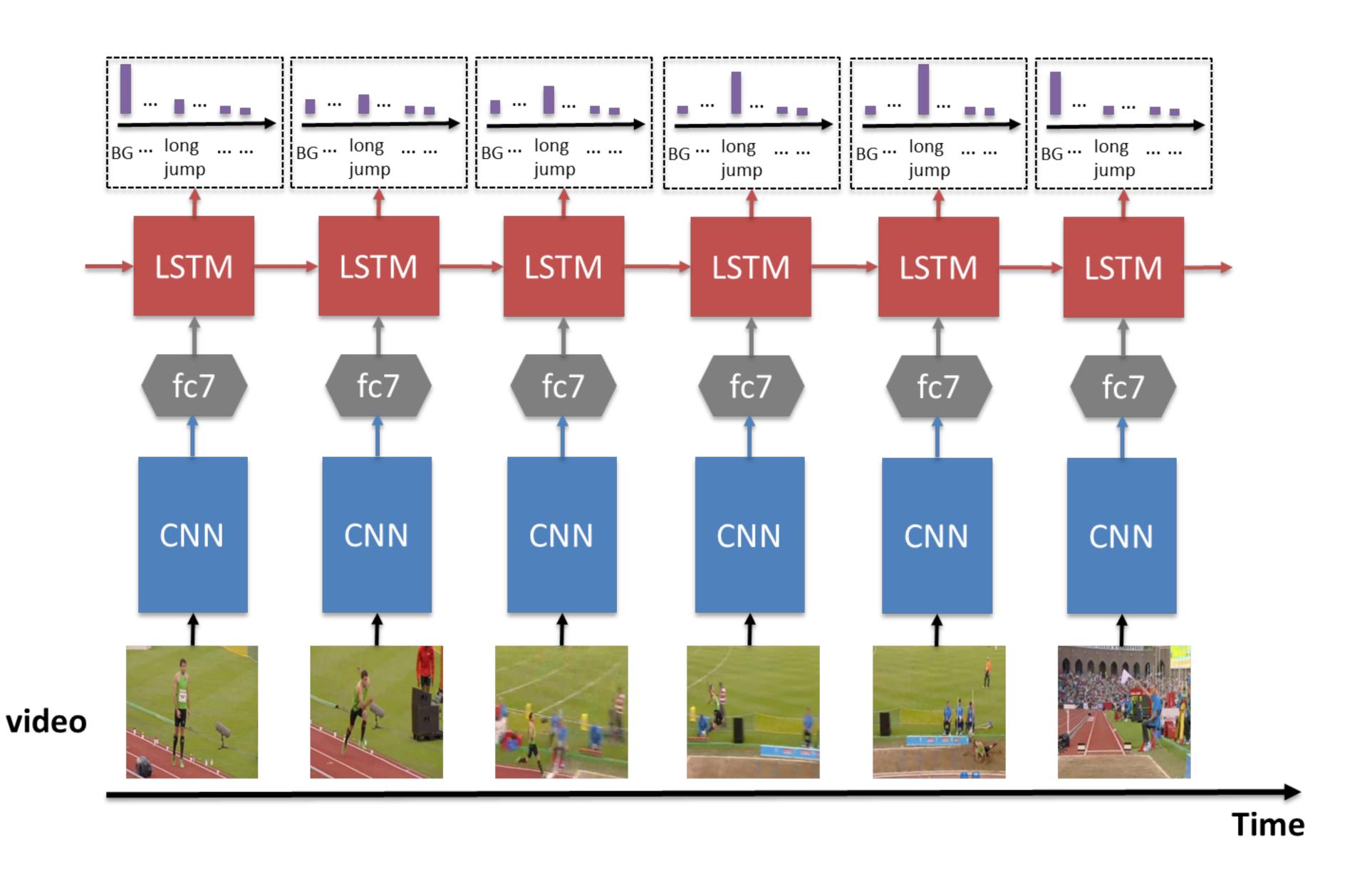
Activity: A collection of human/object movements with a particular semantic meaning

Action Detection: Finding a segment (beginning and start) and recognize the action in it

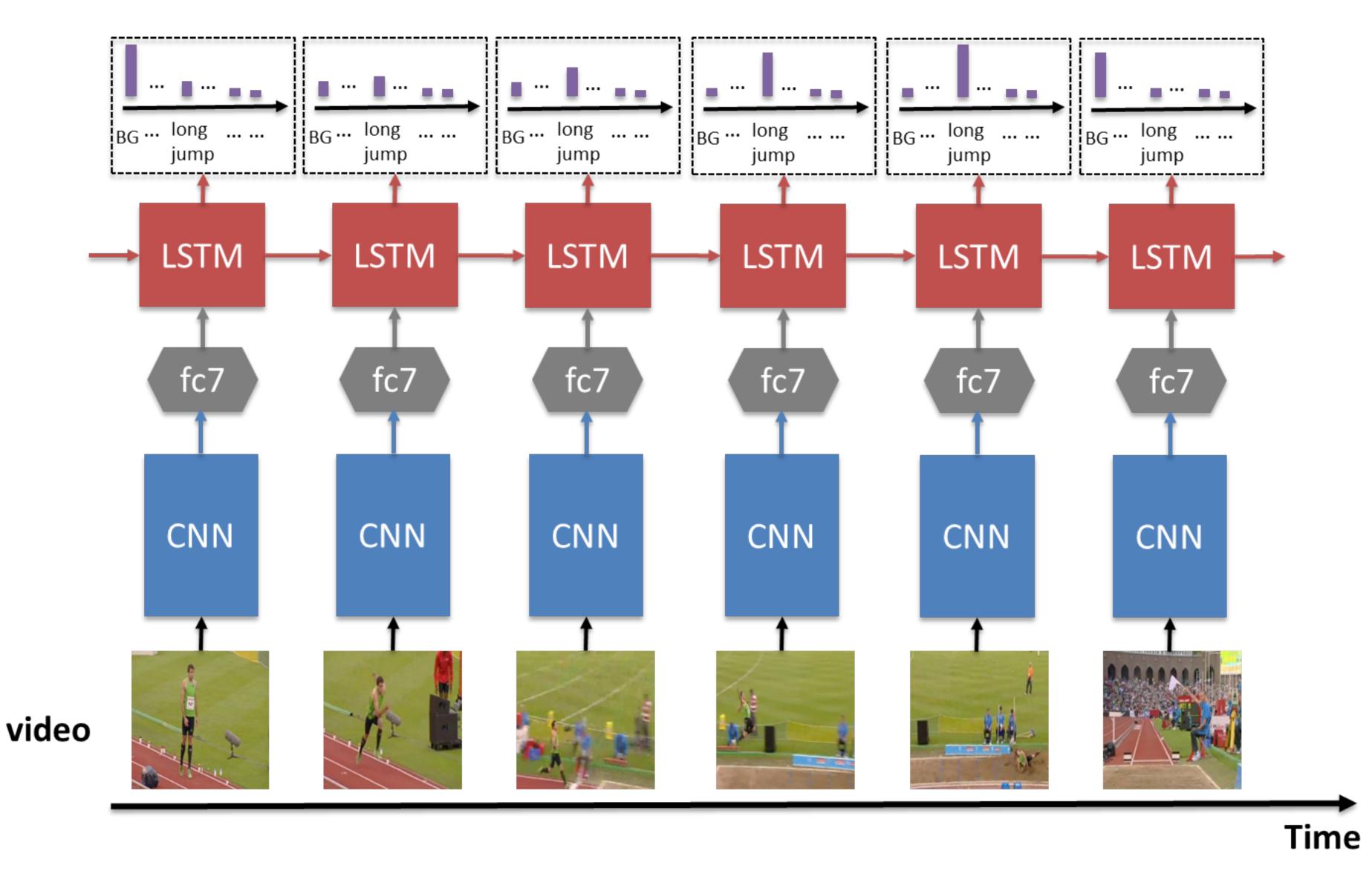




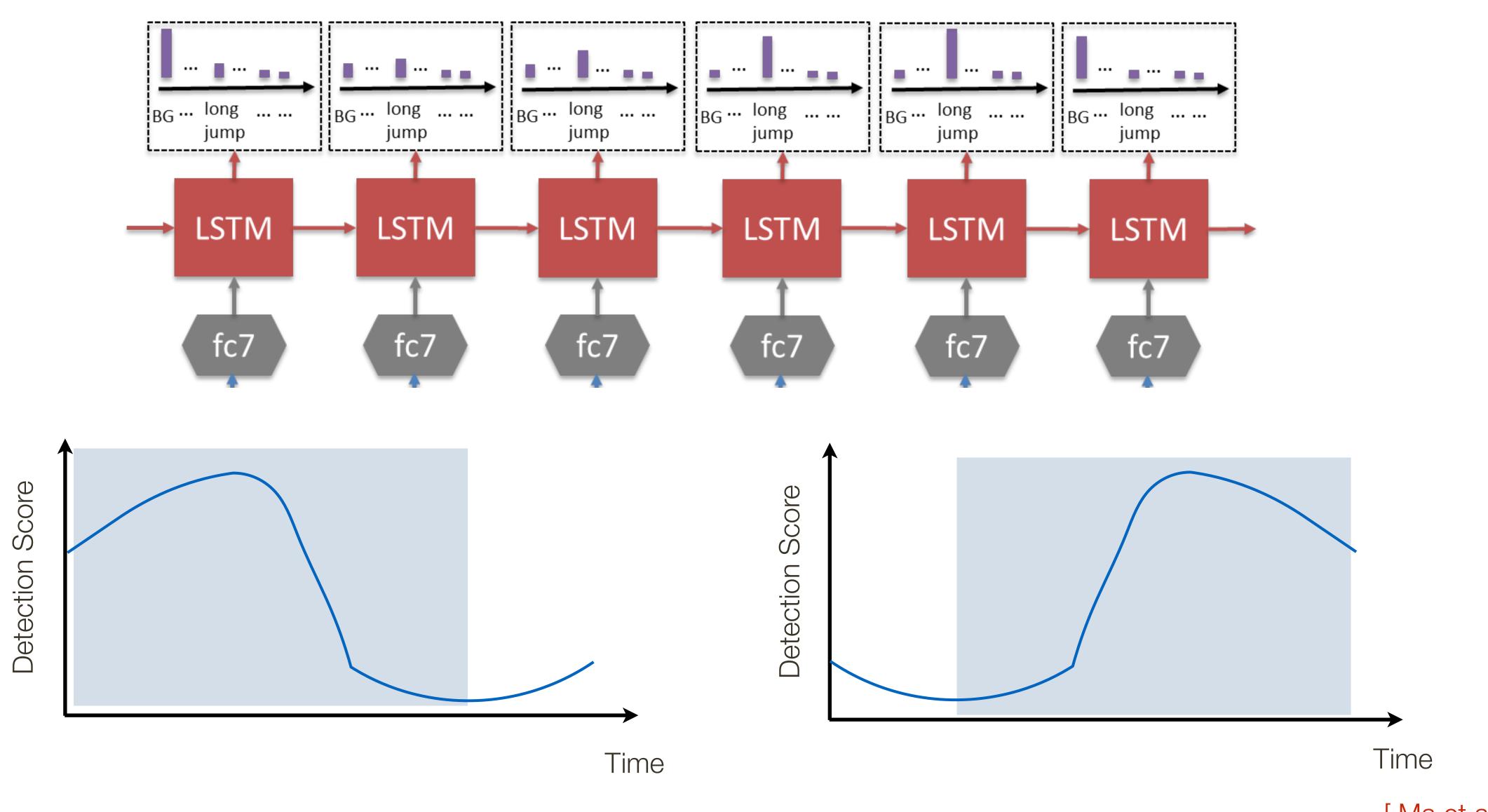
Early Detection: Recognize when an action starts and try to predict which action is performed as quickly as possible.



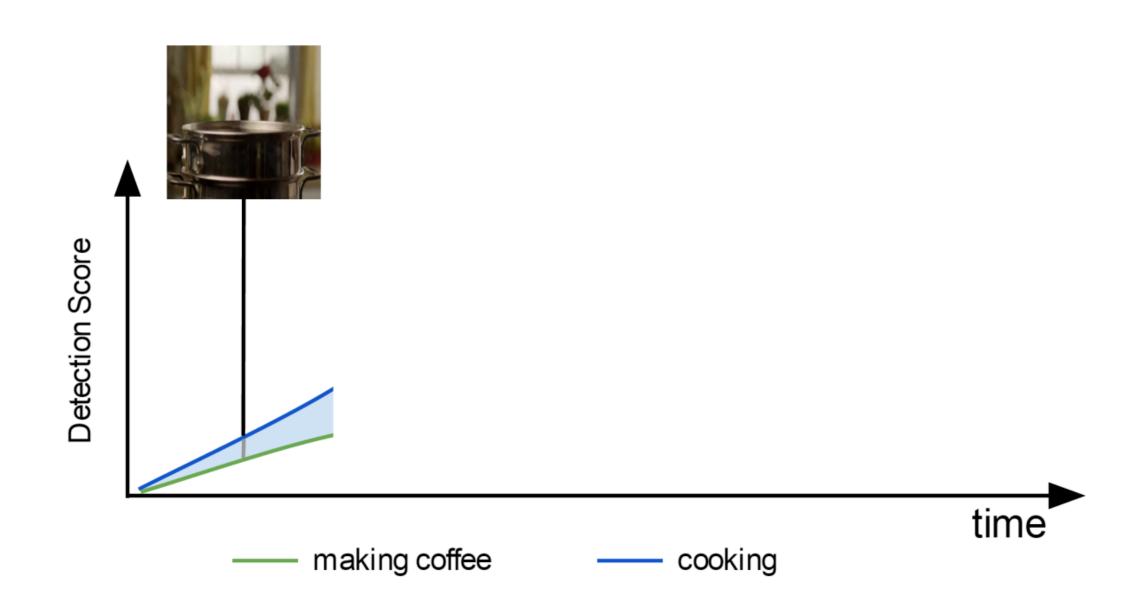
Applications: Activity Detection Penalty at every time step is the same



Applications: Activity Detection Penalty at every time step is the same

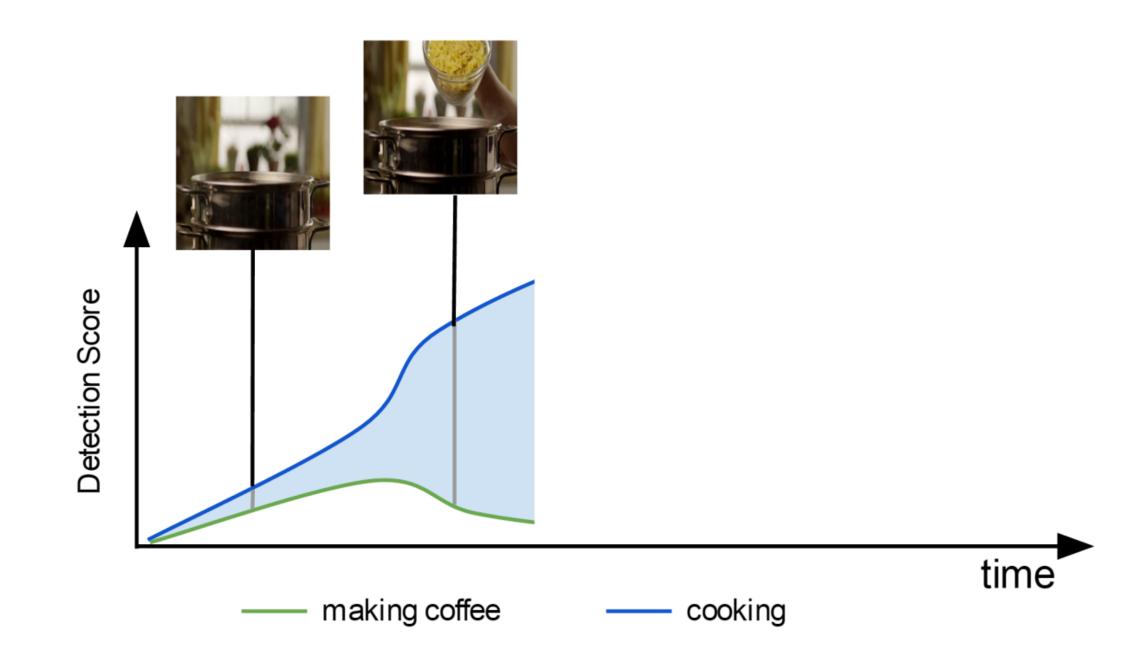


- Detecting the correct action class
- More confident that it is not the incorrect action class



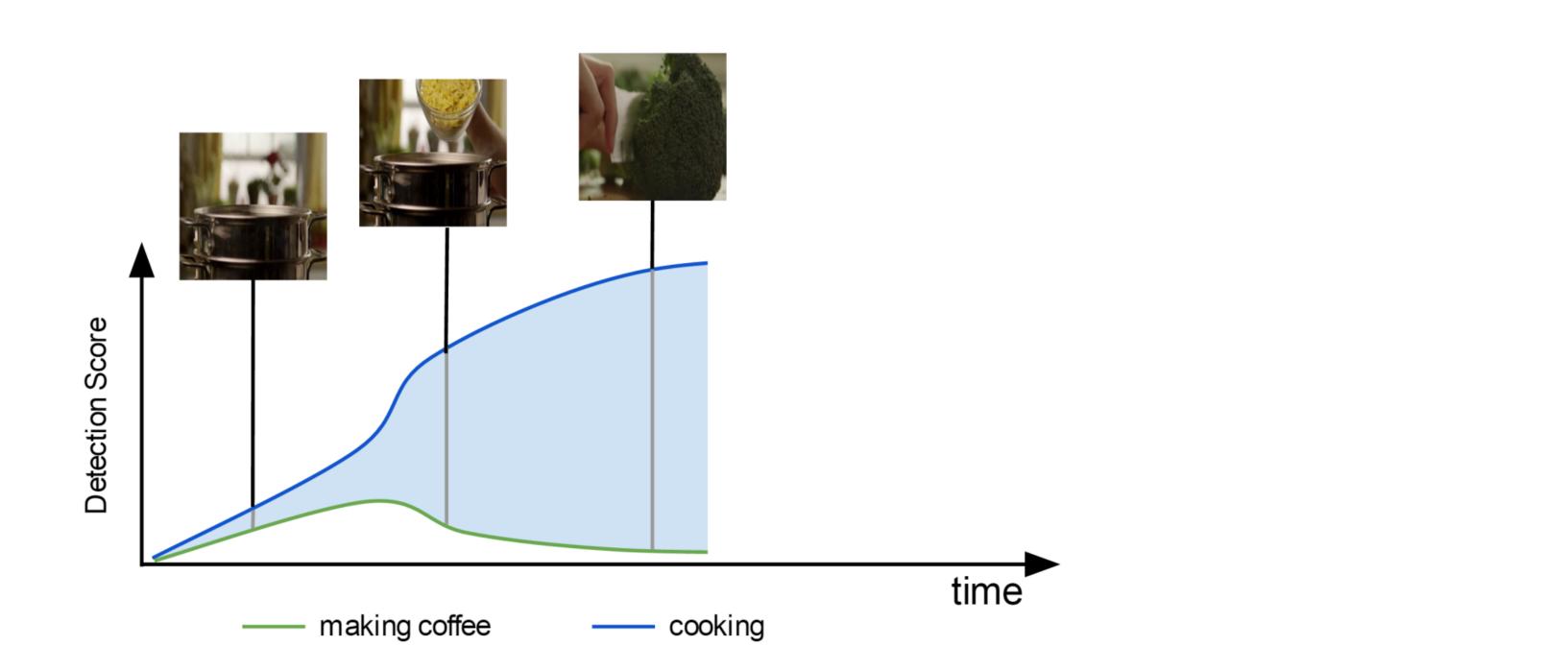
As the detector sees more of an action, it should become more confident of

- Detecting the correct action class
- More confident that it is not the incorrect action class



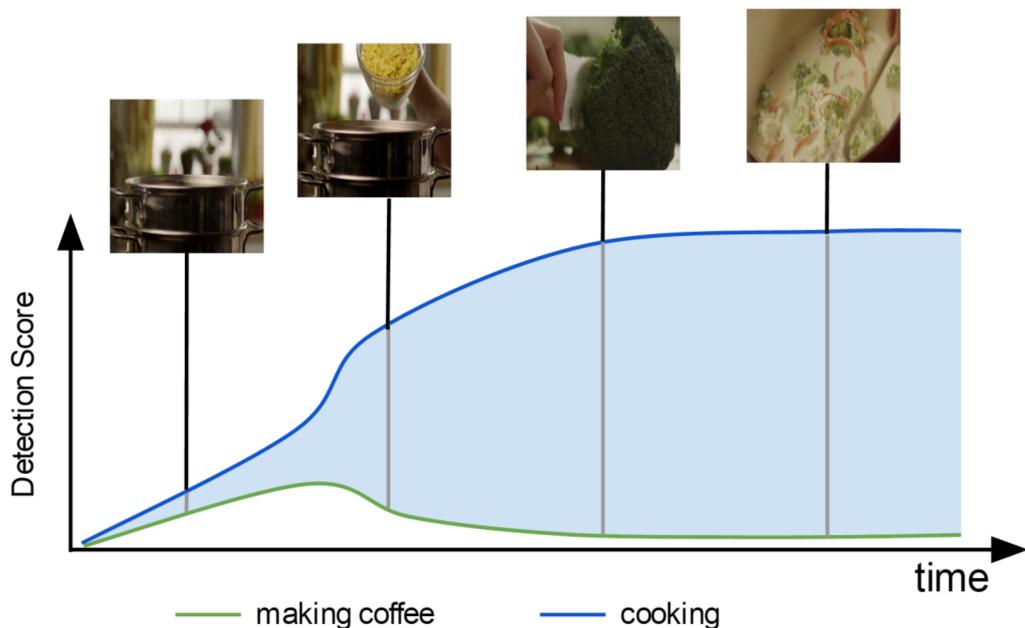
As the detector sees more of an action, it should become more confident of

- Detecting the correct action class
- More confident that it is not the incorrect action class



As the detector sees more of an action, it should become more confident of

- Detecting the correct action class
- More confident that it is not the incorrect action class



As the detector sees more of an action, it should become more confident of

cooking

New Class of Loss Functions

Classification loss at time t

Training loss at time t: $\mathcal{L}^t =$

- \mathcal{L}_r^t is one of the following:

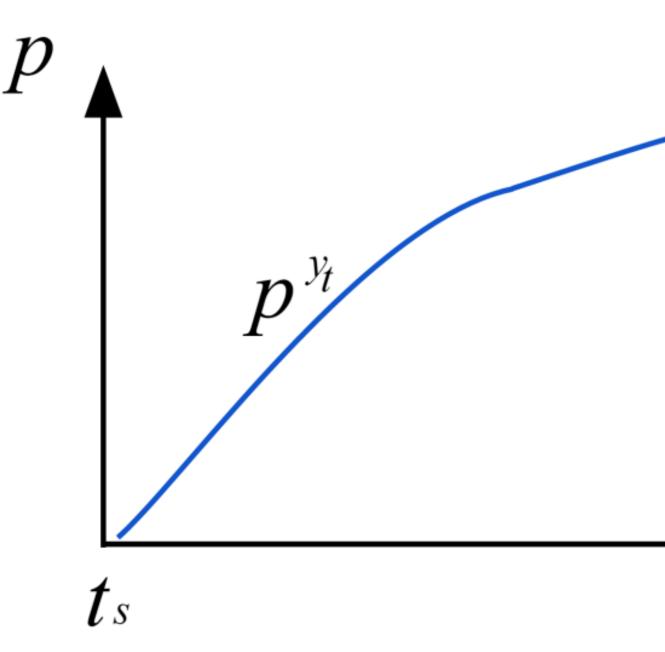
$$\mathcal{L}_c^t + \lambda_r \mathcal{L}_r^t$$

Ranking loss at time t

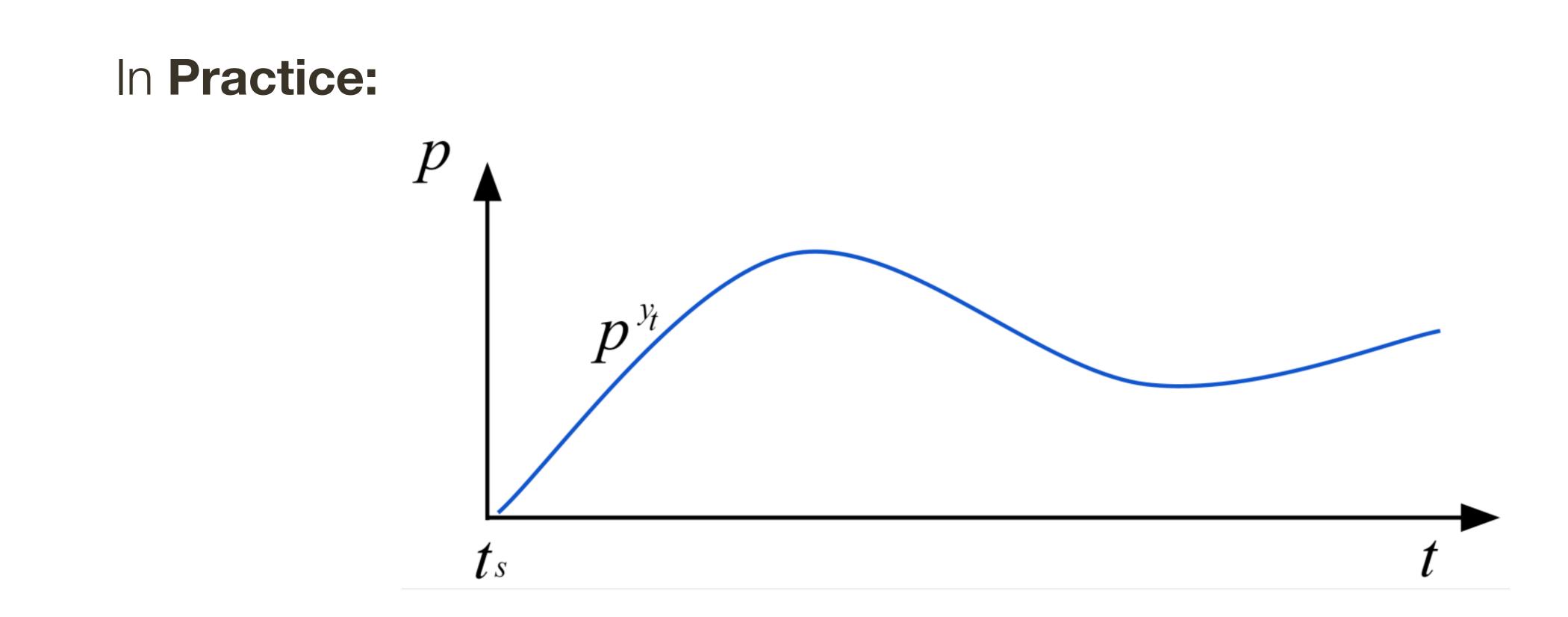
• \mathcal{L}_s^t ranking loss on detection score

• \mathcal{L}_m^t ranking loss on discriminative margin

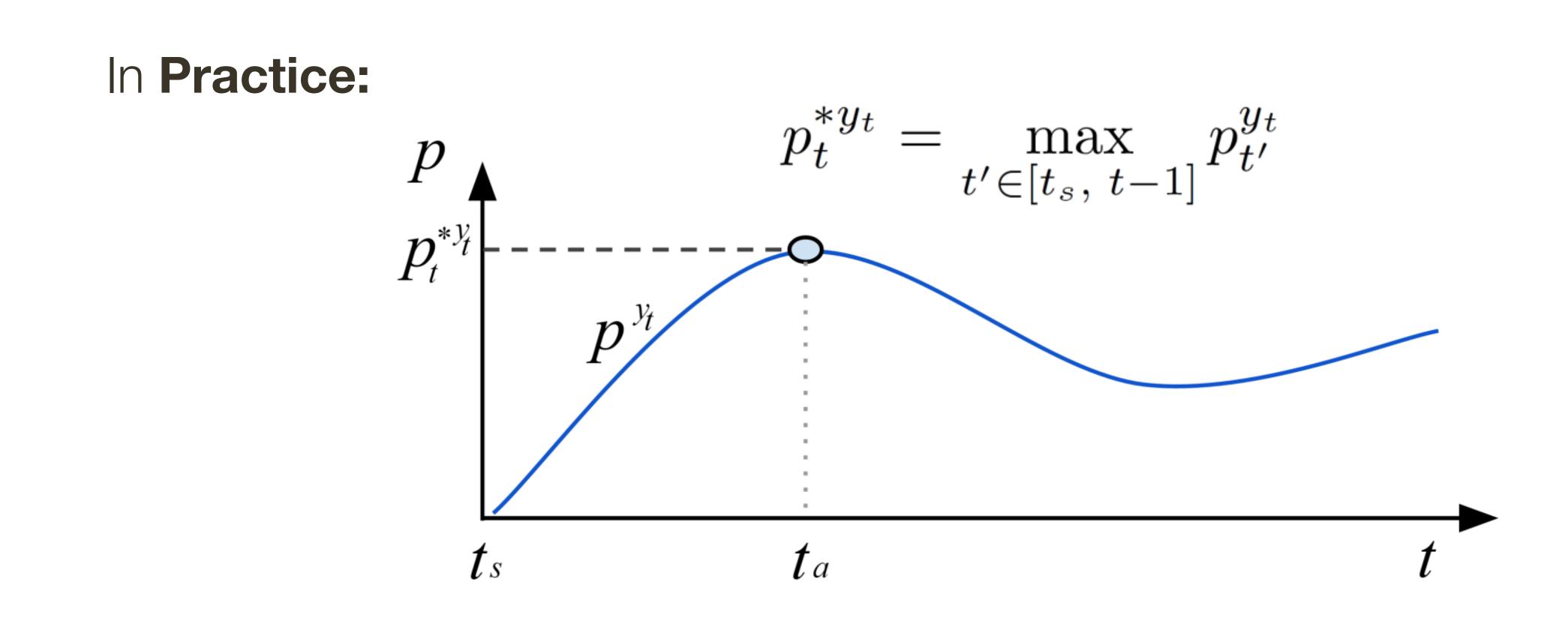
Ideally what we want:



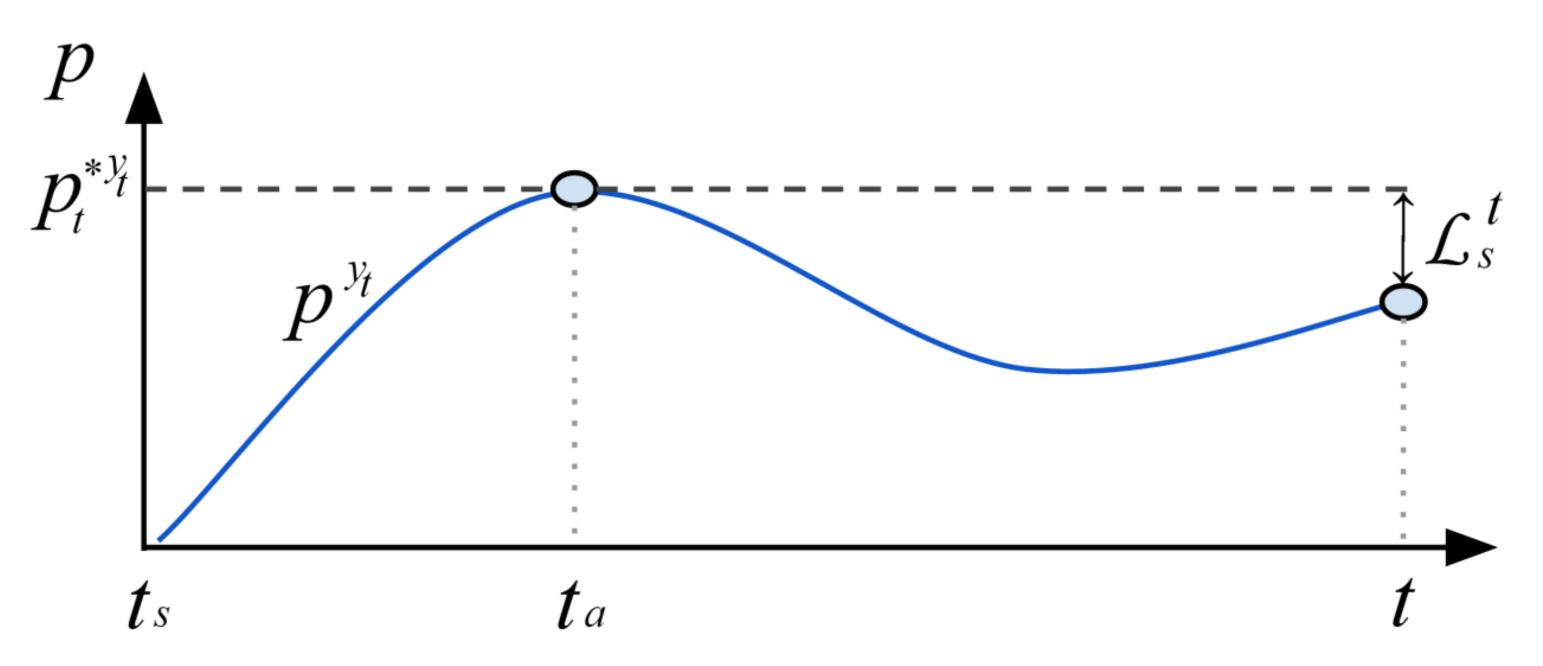
Prediction score of the ground truth action label



Prediction score of the ground truth action label



Prediction score of the ground truth action label



Prediction score of the ground truth action label

Activity detection performance measured in mAP at different IOU thresholds

Model	$\alpha = 0.1$	$\alpha = 0.2$	$\alpha = 0.3$	$\alpha = 0.4$	$\alpha = 0.5$	$\alpha = 0.6$	$\alpha = 0.7$	$\alpha = 0.8$
Heilbron et al.	12.5%	11.9%	11.1%	10.4%	9.7%	-	-	-
CNN	30.1%	26.9%	23.4%	21.2%	18.9%	17.5%	16.5%	15.8%
LSTM	48.1%	44.3%	40.6%	35.6%	31.3%	28.3%	26.0%	24.6%
LSTM-m	52.6%	48.9%	45.1%	40.1%	35.1%	31.8%	29.1%	27.2%
LSTM-s	54.0%	50.1%	46.3%	41.2%	36.4%	33.0%	30.4%	28.7%

LSTM-m LSTM trained using both classification loss and rank loss on *discriminative margin*. LSTM trained using both classification loss and rank loss on *detection score*. LSTM-s

Activity early detection performance measured in mAP at different IOU thresholds

Model	$\alpha = 0.1$	$\alpha = 0.2$	$\alpha = 0.3$	$\alpha = 0.4$	$\alpha = 0.5$	$\alpha = 0.6$	$\alpha = 0.7$	$\alpha = 0.8$
CNN	27.0%	23.4%	20.4%	17.2%	14.6%	12.3%	11.0%	10.3%
LSTM	49.5%	44.7%	38.8%	33.9%	29.6%	25.6%	23.5%	22.4%
LSTM-m	52.6%	47.9%	41.5%	36.2%	31.4%	27.1%	24.8%	23.5%
LSTM-s	55.1%	50.3%	44.0%	38.9%	34.1%	29.8%	27.4%	26.1%

LSTM-m LSTM trained using both classification loss and rank loss on *discriminative margin*. LSTM trained using both classification loss and rank loss on *detection score*. LSTM-s

Note: first 3/10 of activity is seen by a detector

Activity early detection performance measured in mAP at different IOU thresholds

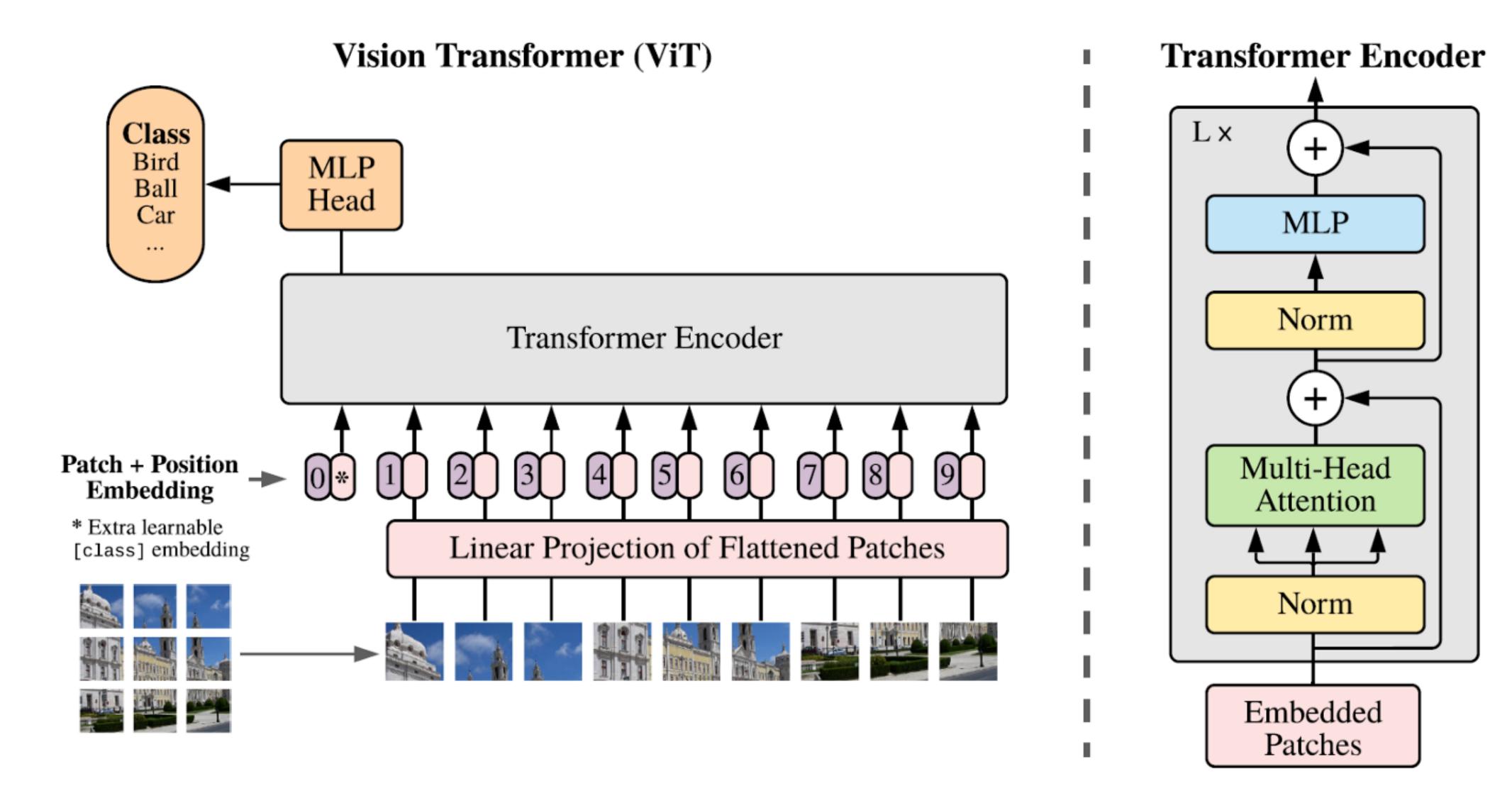
Model	$\alpha = 0.1$	$\alpha = 0.2$	$\alpha = 0.3$	$\alpha = 0.4$	$\alpha = 0.5$	$\alpha = 0.6$	$\alpha = 0.7$	$\alpha = 0.8$
CNN	27.0%	23.4%	20.4%	17.2%	14.6%	12.3%	11.0%	10.3%
LSTM	49.5%	44.7%	38.8%	33.9%	29.6%	25.6%	23.5%	22.4%
LSTM-m	52.6%	47.9%	41.5%	36.2%	31.4%	27.1%	24.8%	23.5%
LSTM-s	55.1%	50.3%	44.0%	38.9%	34.1%	29.8%	27.4%	26.1%

LSTM-m LSTM trained using both classification loss and rank loss on *discriminative margin*. LSTM trained using both classification loss and rank loss on *detection score*. LSTM-s

Take home: Early detection is only 1-3% worse than sewing the whole sequence

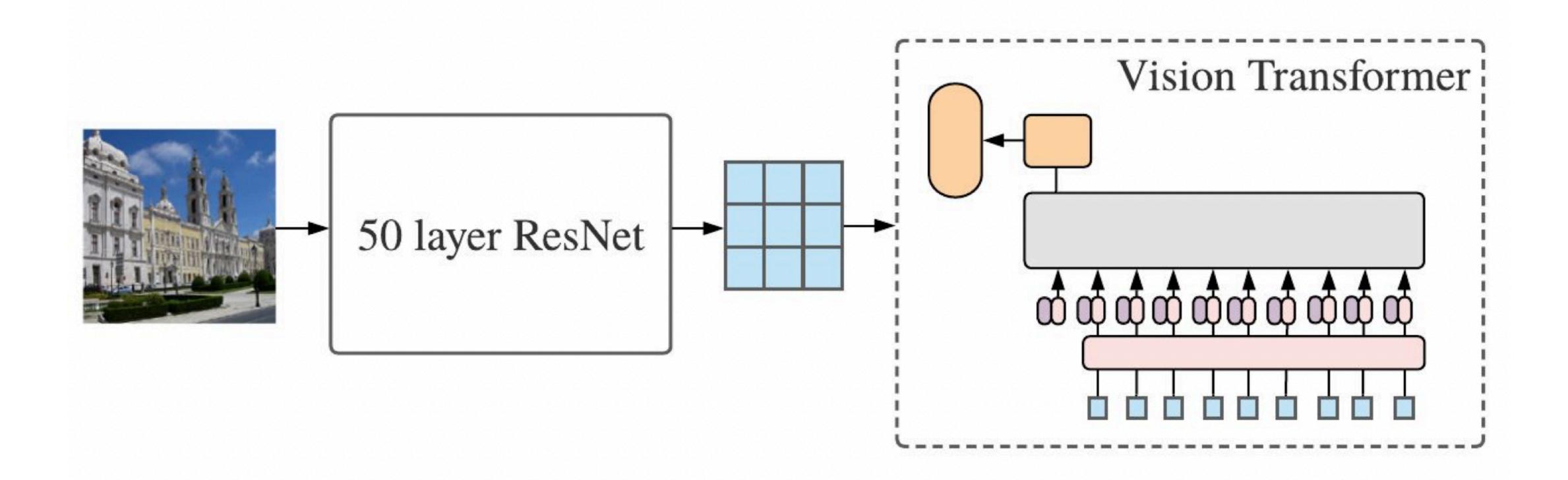
Note: first 3/10 of activity is seen by a detector

Vision Transformer



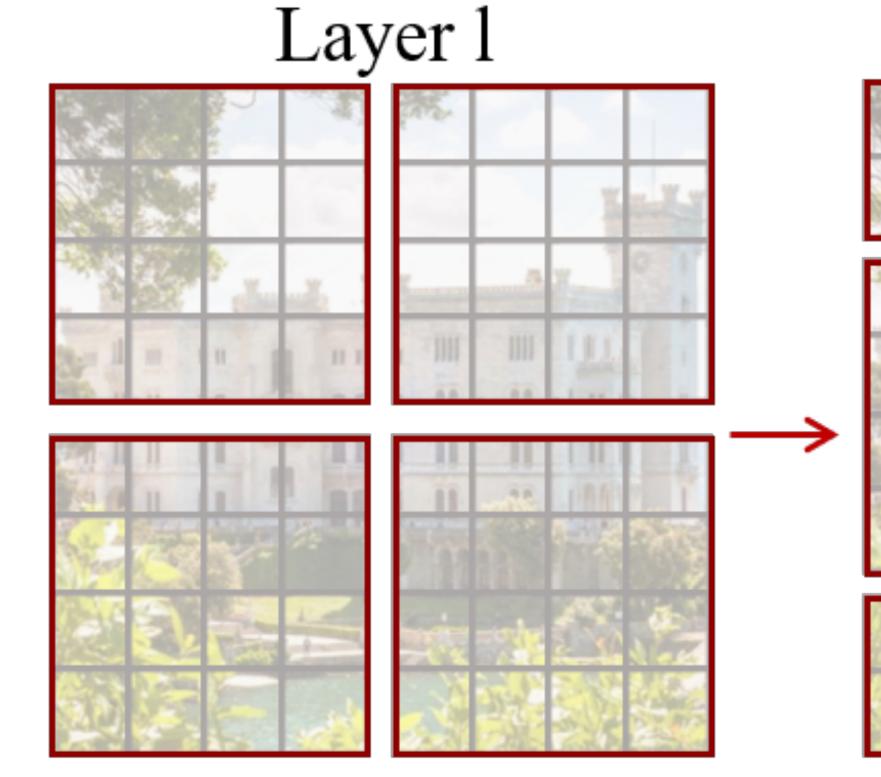
[Dosovitskiy et al., 2020]

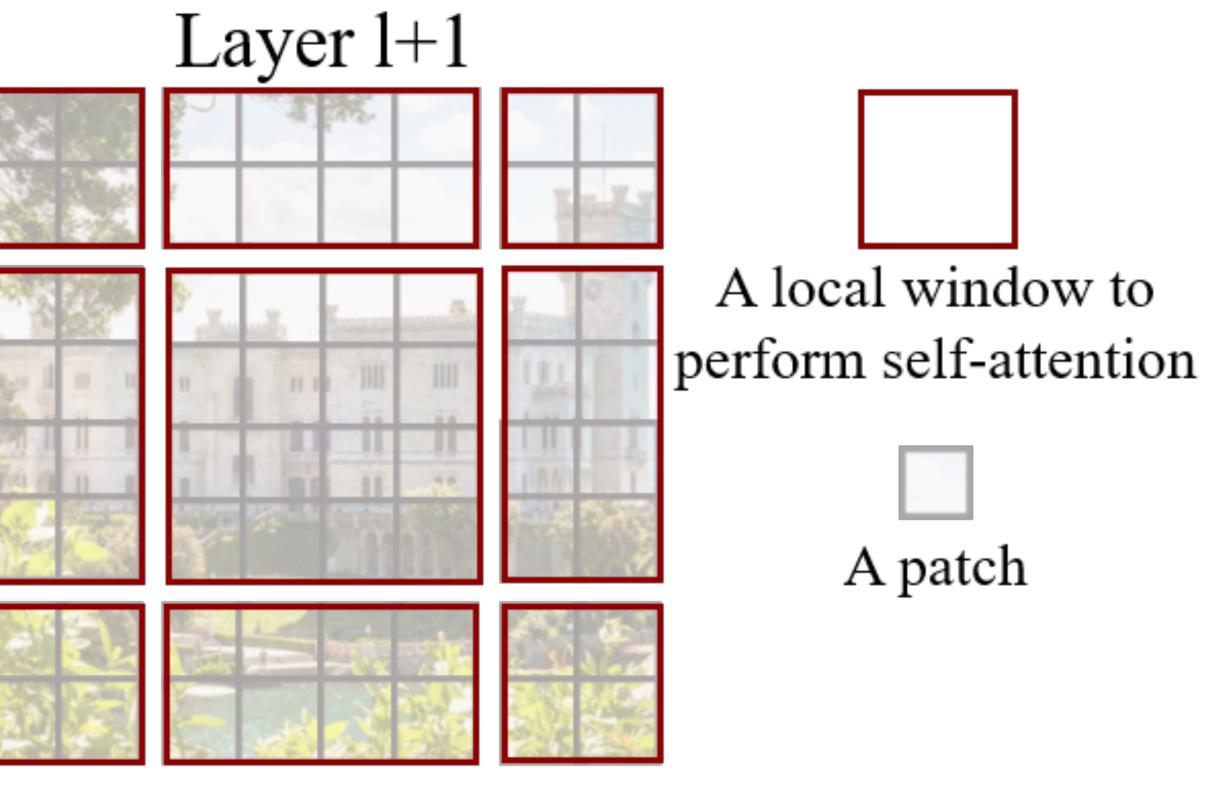
Vision Transformer



[Dosovitskiy et al., 2020]

Swin Transformers



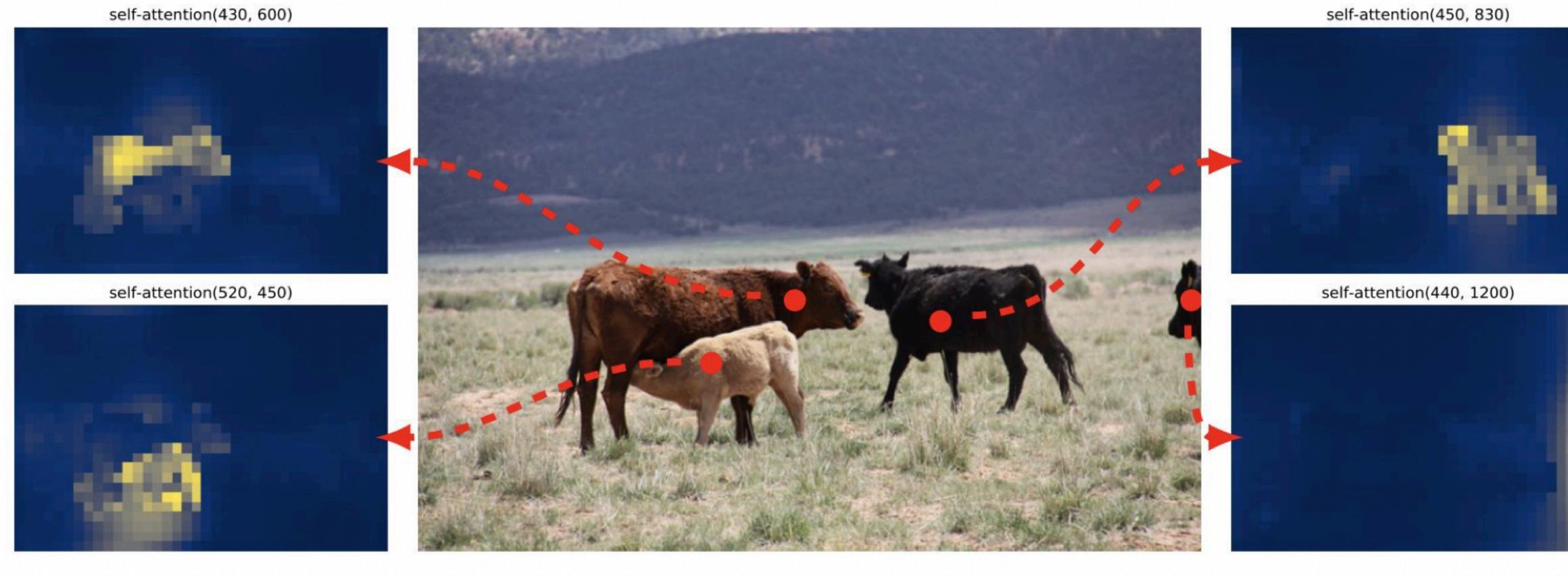




[Carion et al., 2020]

Model	GFLOPS/FPS	#params	AP	AP_{50}	AP ₇₅	AP_S	APM	AP_{L}
Faster RCNN-DC5	320/16	166M	39.0	60.5	42.3	21.4	43.5	52.5
Faster RCNN-FPN	180/26	42M	40.2	61.0	43.8	24.2	43.5	52.0
Faster RCNN-R101-FPN	246/20	60M	42.0	62.5	45.9	25.2	45.6	54.6
Faster RCNN-DC5+	320/16	166M	41.1	61.4	44.3	22.9	45.9	55.0
Faster RCNN-FPN+	180/26	42M	42.0	62.1	45.5	26.6	45.4	53.4
Faster RCNN-R101-FPN+	246/20	60M	44.0	63.9	47.8	27.2	48.1	56.0
DETR	86/28	41M	42.0	62.4	44.2	20.5	45.8	61.1
DETR-DC5	187/12	41M	43.3	63.1	45.9	22.5	47.3	61.1
DETR-R101	152/20	60M	43.5	63.8	46.4	21.9	48.0	61.8
DETR-DC5-R101	253/10	60M	44.9	64.7	47.7	23.7	49.5	62.3

[Carion et al., 2020]

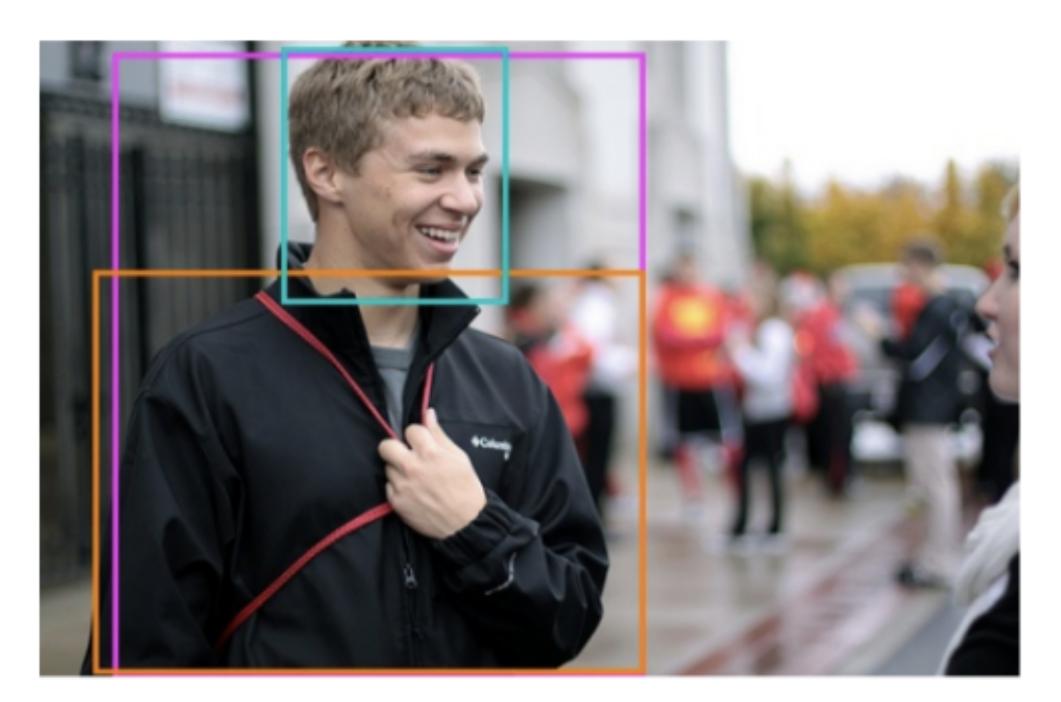


[Carion et al., 2020]

[Carion et al., 2020]

Image Grounding: Beyond Object Detection

that correspond to those phrases.



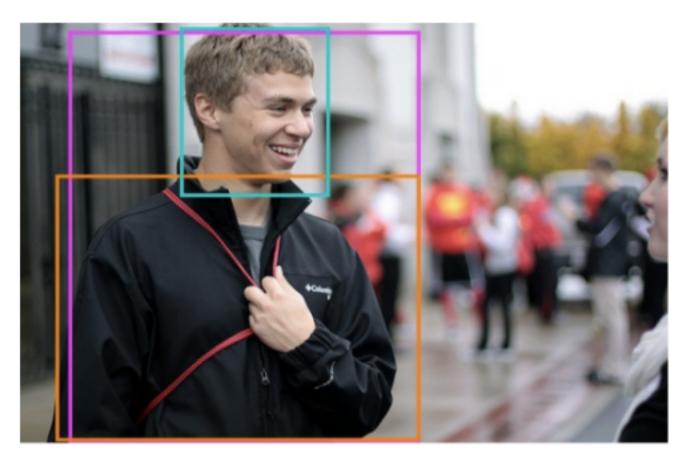
A man wearing a black-jacket has a smile on his face.

[Li et al., 2021]

Given the image and one or more natural language phrases, locate regions

Image Grounding: Beyond Object Detection

that correspond to those phrases.



Fundamental task for image / video understanding - Helps improve performance on other tasks (e.g., image captioning, VQA)

[Li et al., 2021]

Given the image and one or more natural language phrases, locate regions

A man wearing a black-jacket has a smile on his face.

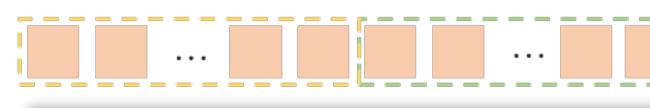
Input:

A small boy playing in the grass with a blue bat and a ball

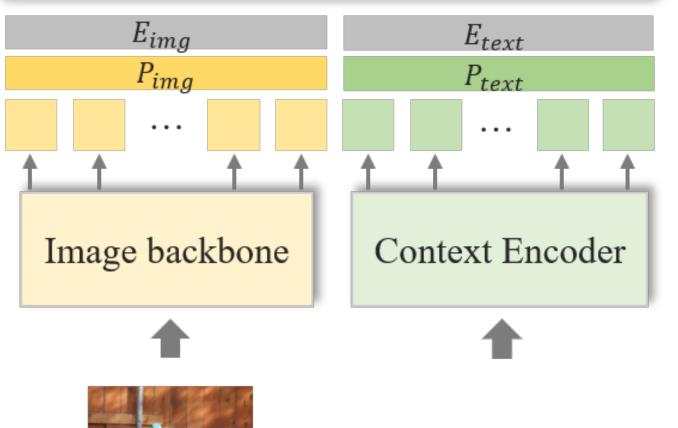
[Li et al., 2021]

Output:

•



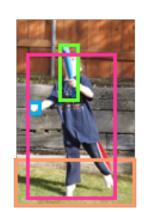
Visual-Lingual Encoder

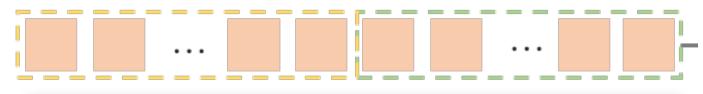


A small boy playing in the grass with a blue bat and a ball

Features from different modalities are first extracted by corresponding backbone and then fused in the Visual-Lingual Encoder

[Li et al., 2021]





Visual-Lingual Encoder

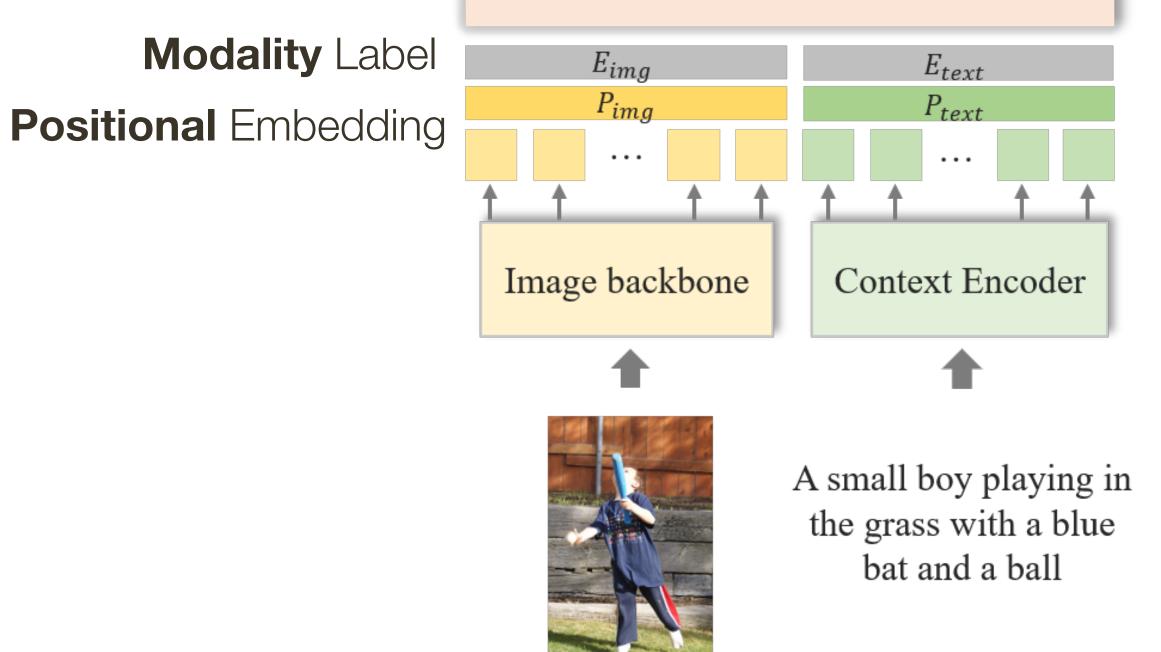
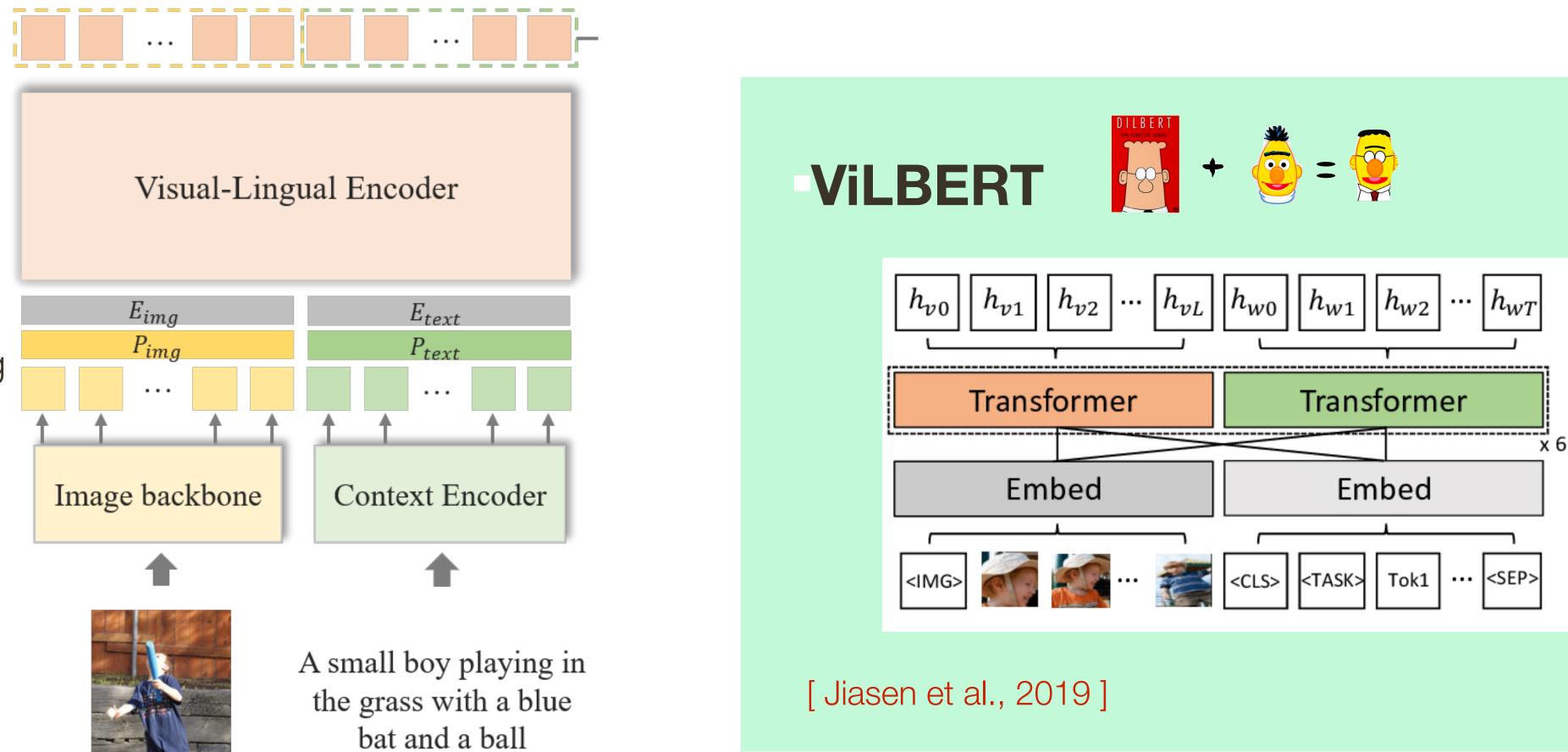


Image Backbone: ResNet (e.g., 16x16 -> 256 visual tokens)

Context Encoder: Pretrained Bert

[Li et al., 2021]



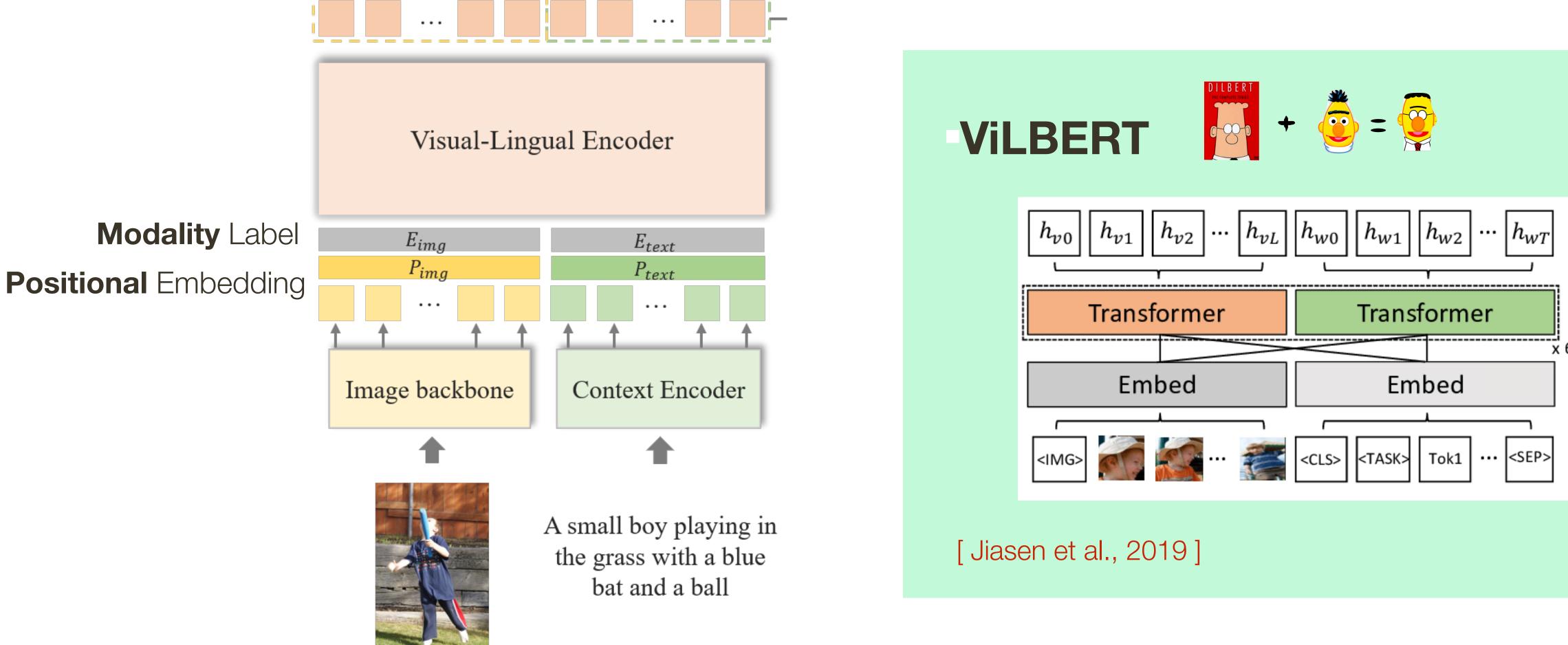
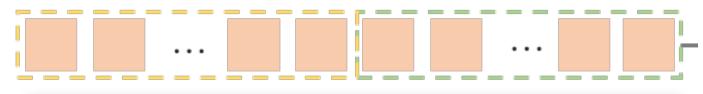


Image Backbone: ResNet (e.g., 16x16 -> 256 visual tokens)

Context Encoder: Pretrained Bert



Visual-Lingual Encoder

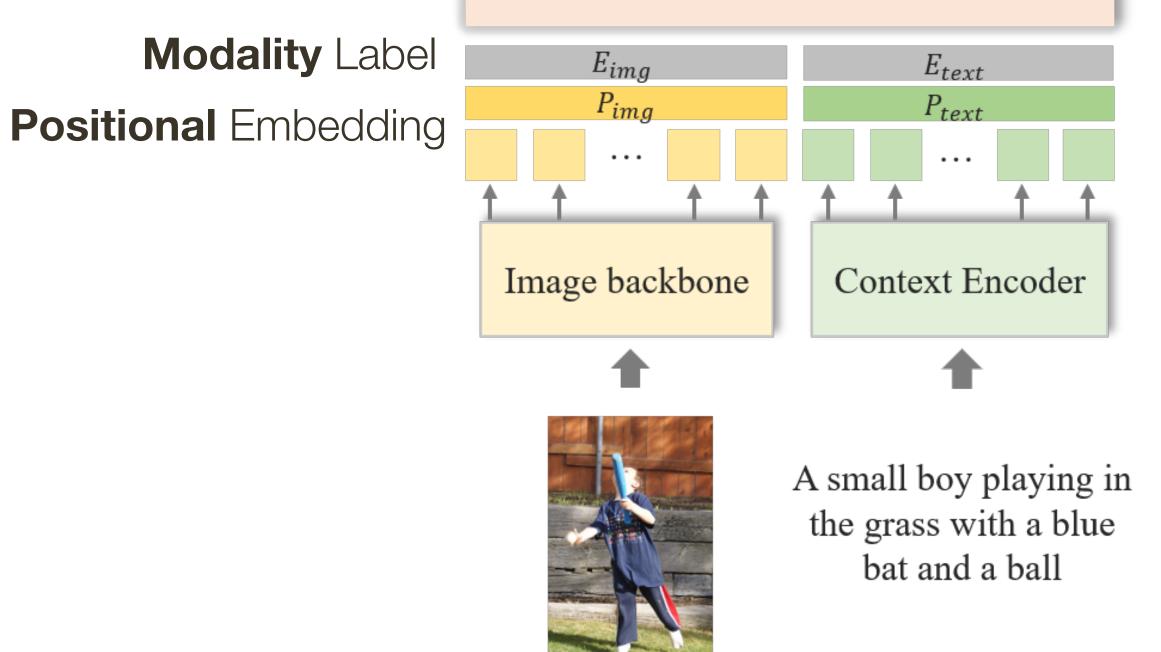
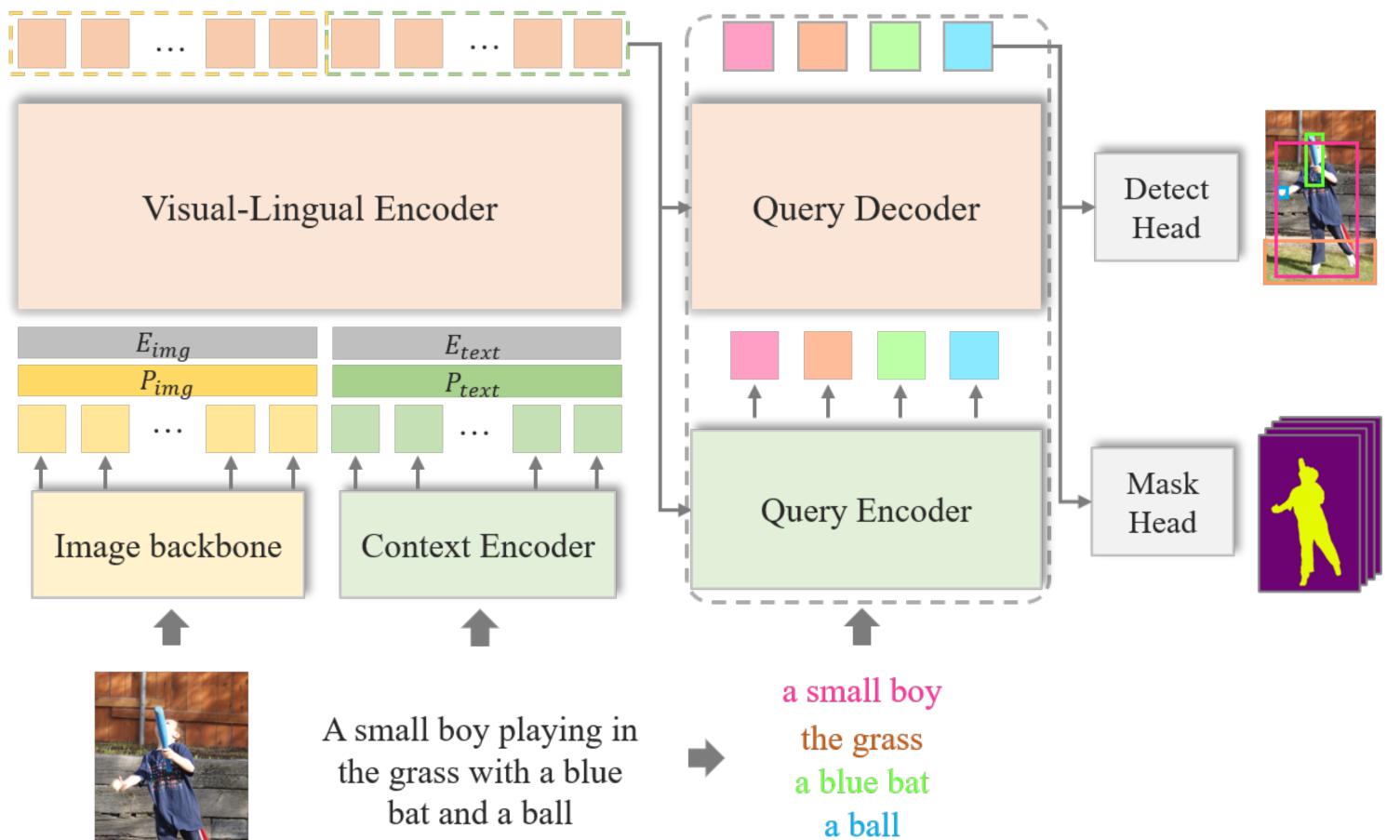
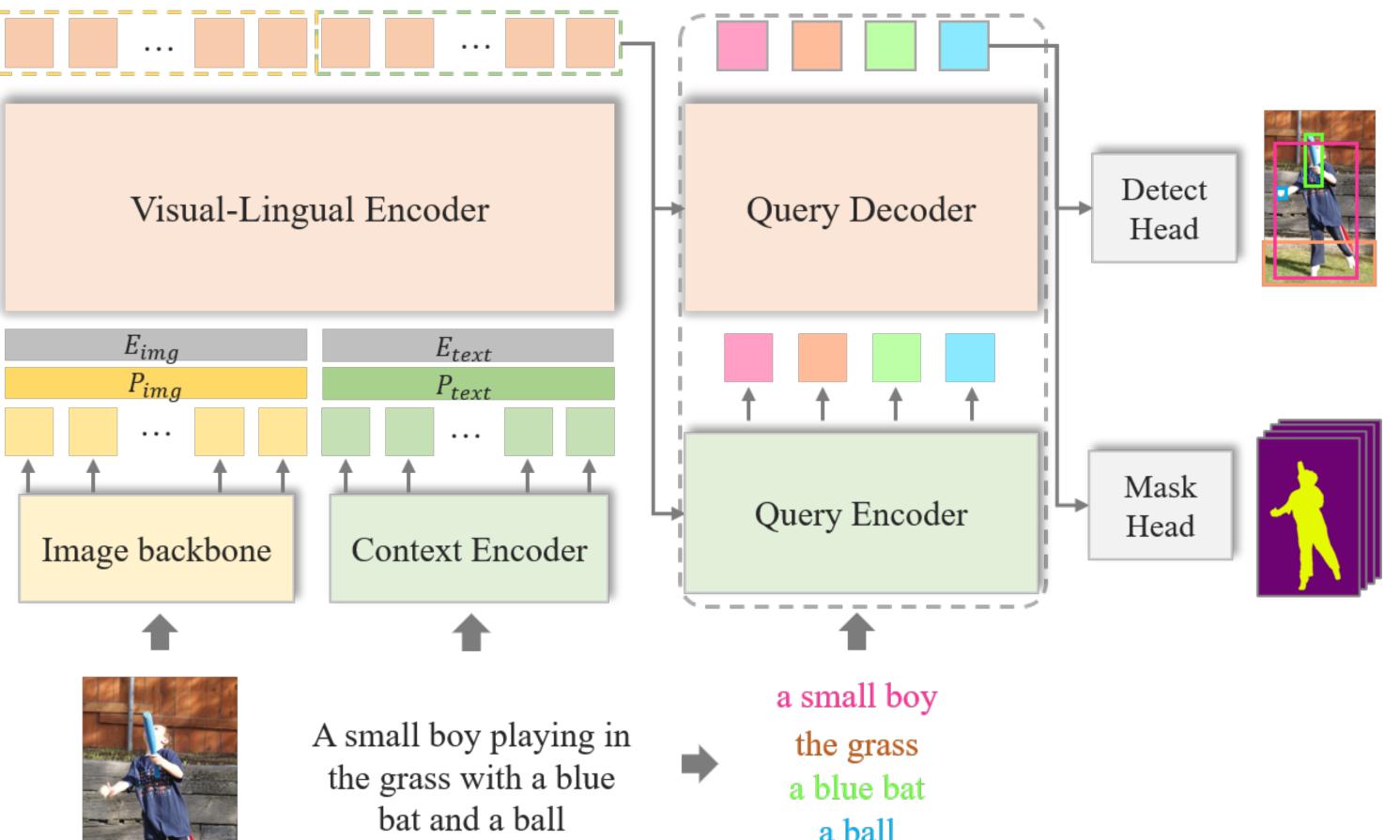


Image Backbone: ResNet (e.g., 16x16 -> 256 visual tokens)

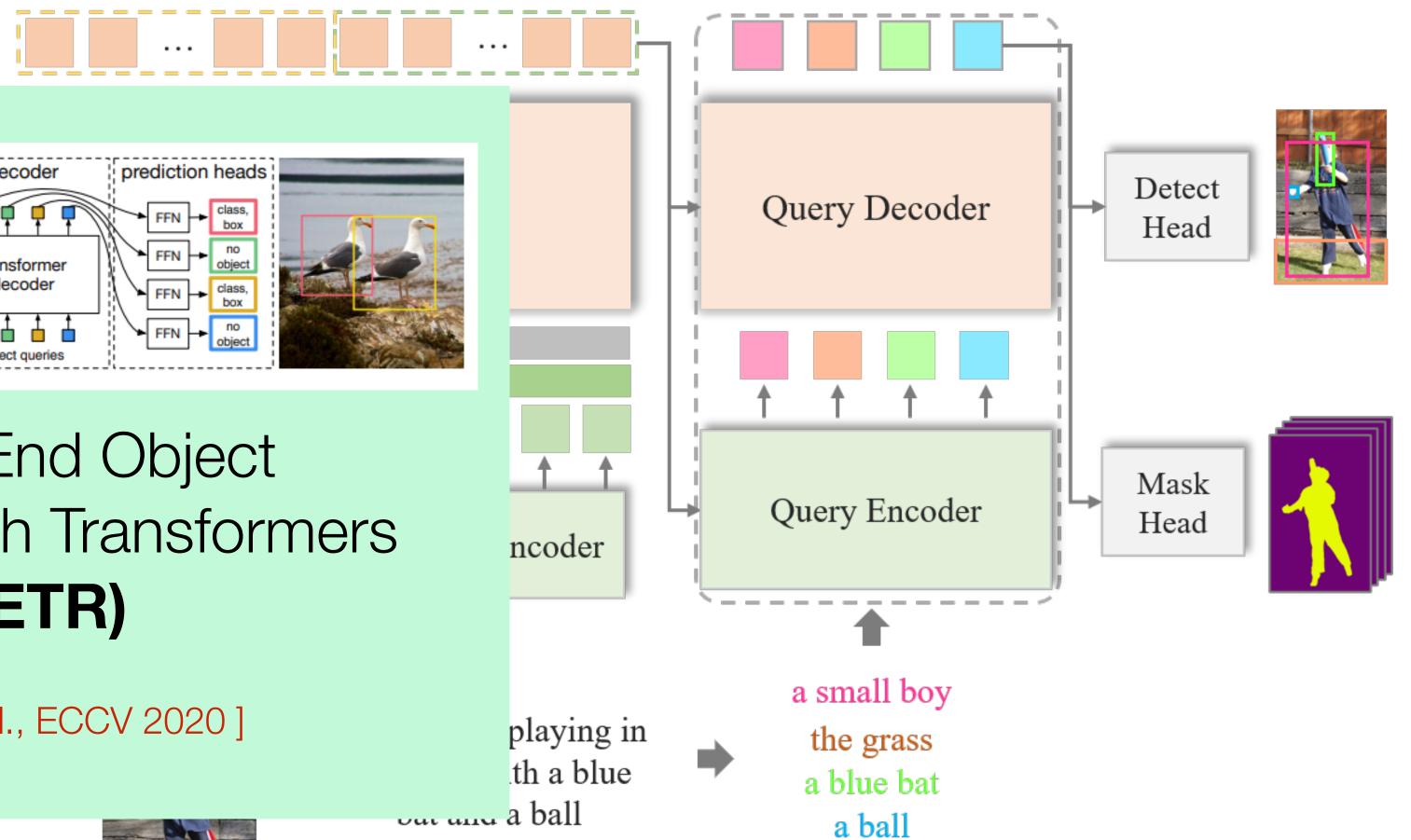
Context Encoder: Pretrained Bert

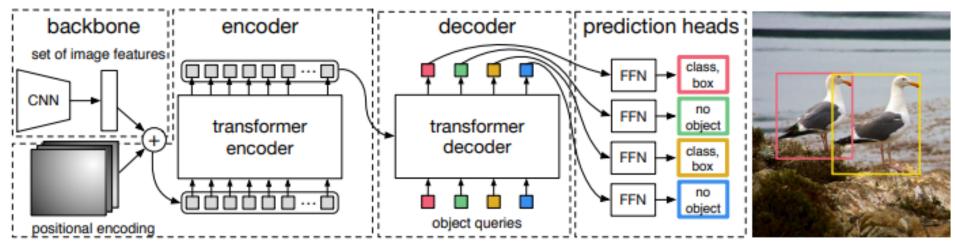
[Li et al., 2021]





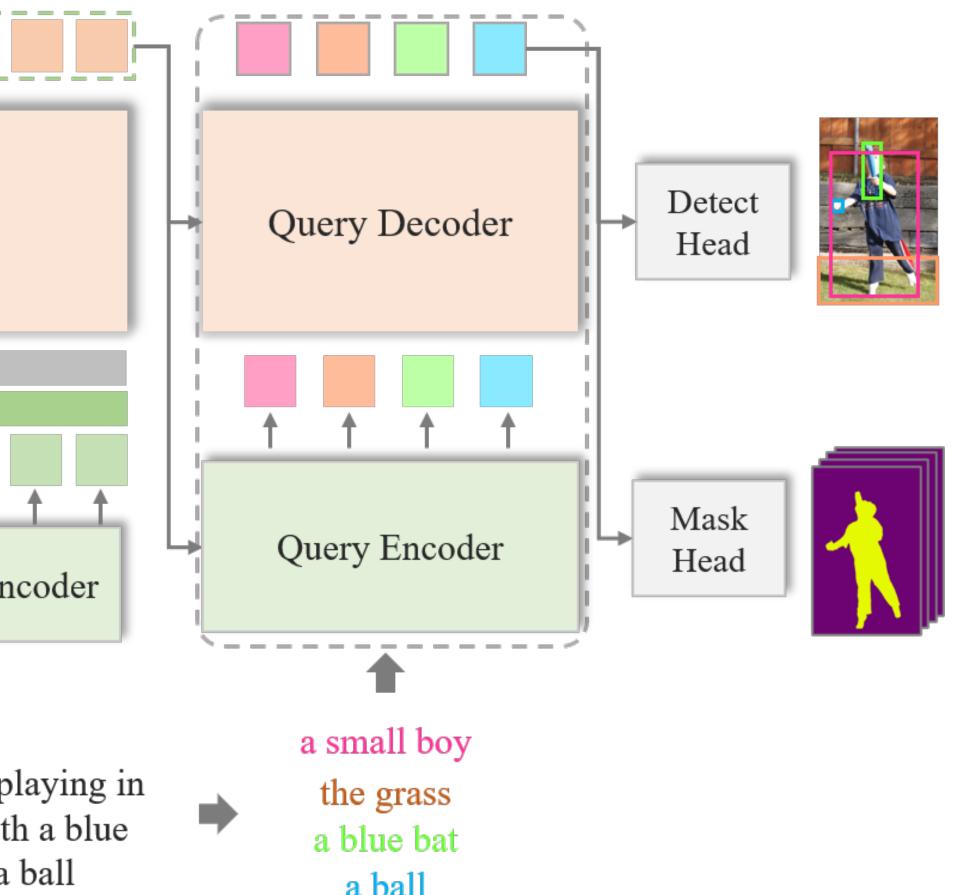
Query Encoder & **Decoder** are designed to encode phrase expression queries and decode them given corresponding multi-modal feature





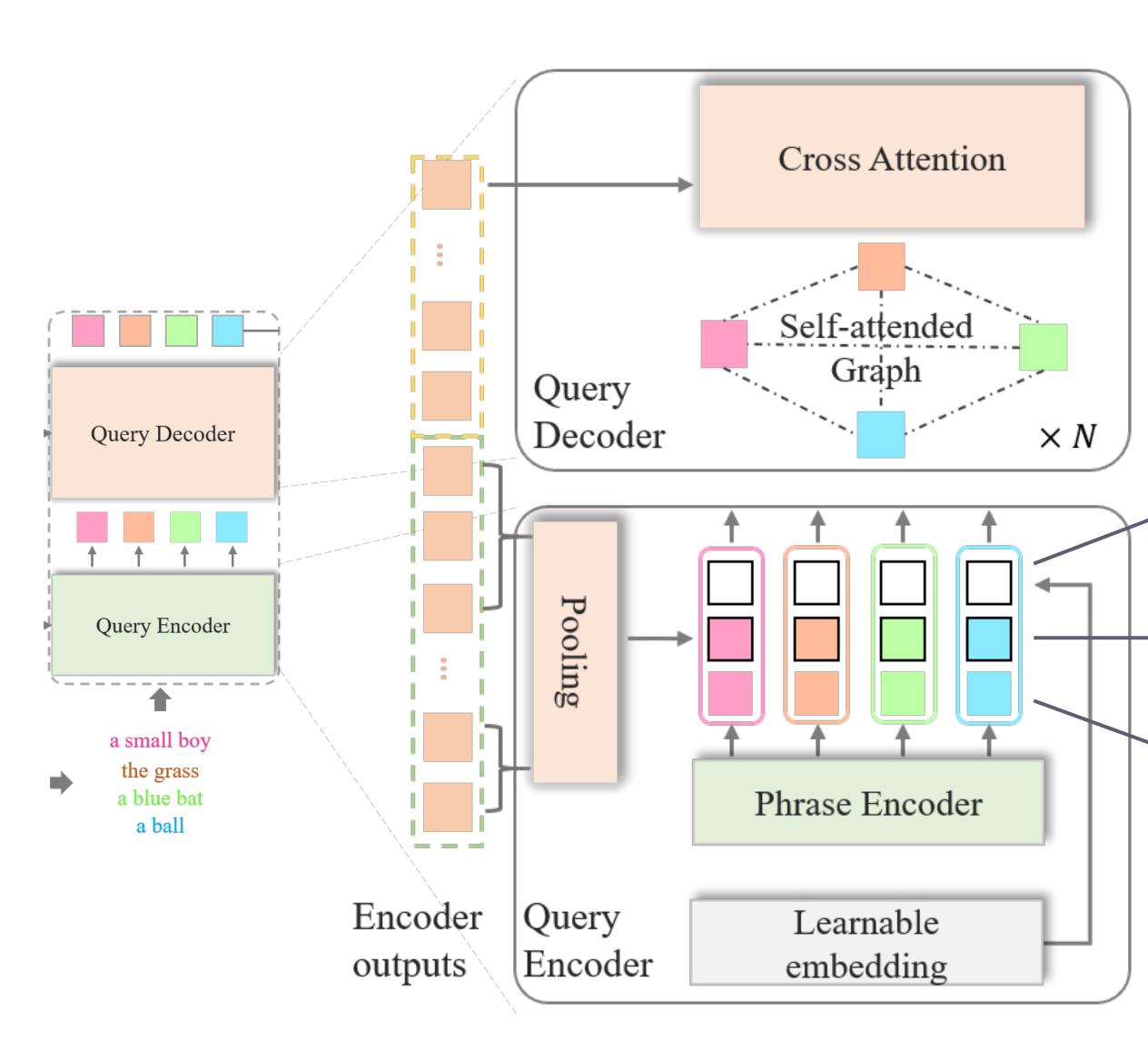
End-to-End Object **Detection with Transformers** (DETR)

[Carion et al., ECCV 2020]



Query Encoder & **Decoder** are designed to encode phrase expression queries and decode them given corresponding multi-modal feature

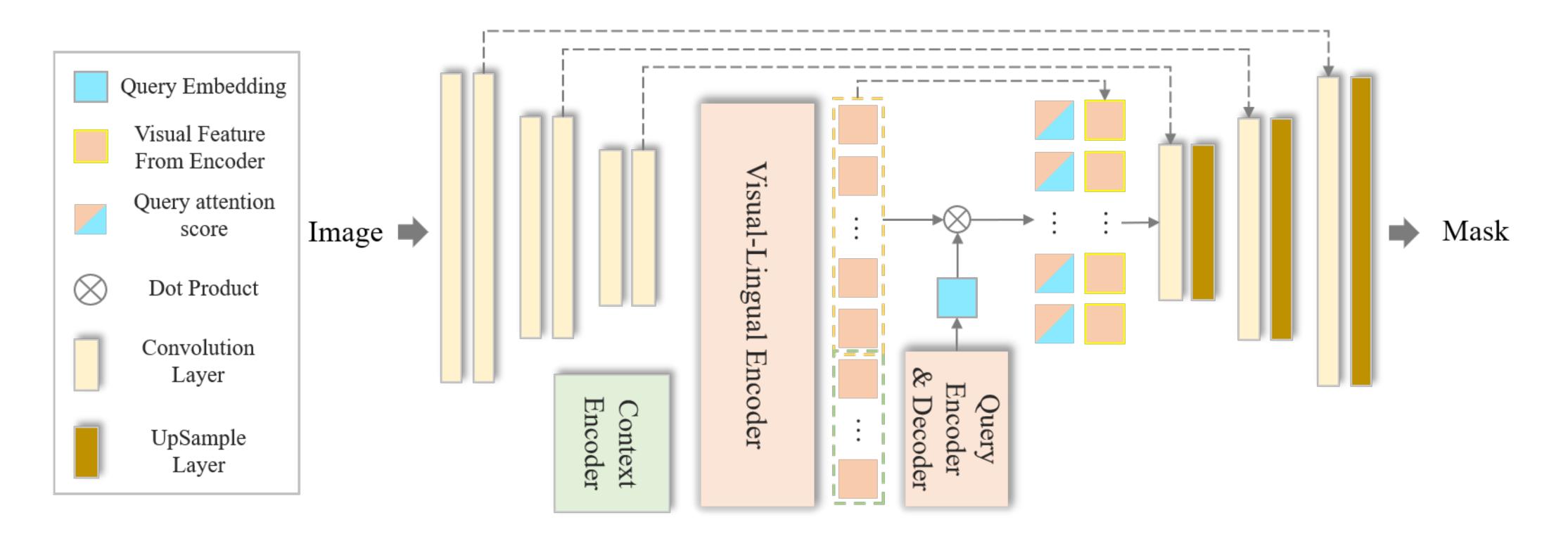
Query Encoder & Decoder



$$\widehat{Q_{\mathbf{p}_i}} = \mathsf{MLP}\left(\left[\mathbf{f}_c(\mathbf{p}_i); \mathbf{f}_{\mathbf{p}_i}\right]\right) + E_p$$
$$\mathbf{f}_c(\mathbf{p}_i) = \frac{\sum \mathbf{f}_{vl}[l_{\mathbf{p}_i} : r_{\mathbf{p}_i}]}{r_{\mathbf{p}_i} - l_{\mathbf{p}_i}}$$

- Learnable bias •
- Multi-modal context information
 - : Encoding of referred phrase

Task Heads



REC Head: A linear layer that predicts a bounding box **RES Head**: A FPN (U-Net type) structure with residual connections

Multi-task Supervision

REC: Given predicted bounding box and ground truth bounding box

 $\mathcal{L}_{det} = \lambda_{iou} \frac{\mathcal{L}_{iou}(\mathbf{b}, \tilde{\mathbf{b}})}{\mathcal{L}_{11} ||\mathbf{b} - \tilde{\mathbf{b}}||_1}$

Generalized IOU loss

[Li et al., 2021]

Standard L1 loss

Multi-task Supervision

REC: Given predicted bounding box and ground truth bounding box $\mathcal{L}_{det} = \lambda_{iou} \frac{\mathcal{L}_{iou}(\mathbf{b}, \tilde{\mathbf{b}})}{\mathcal{L}_{iou}(\mathbf{b}, \tilde{\mathbf{b}})} + \lambda_{L1} ||\mathbf{b} - \tilde{\mathbf{b}}||_1$ Generalized IOU loss Standard L1 loss

RES: Given predicted segmentation and ground truth segmentation mask

$$\mathcal{L}_{seg} = \lambda_{focal} \mathcal{L}_{focal}(\mathbf{s}, \tilde{\mathbf{s}}) + \lambda_{dice} \frac{\mathcal{L}_{dice}(\mathbf{s}, \tilde{\mathbf{s}})}{\mathcal{L}_{dice}(\mathbf{s}, \tilde{\mathbf{s}})}$$

Focal loss

[Li et al., 2021]

Dice loss: Generalized IOU loss for segmentation

Multi-task Supervision

REC: Given predicted bounding box and ground truth bounding box $\mathcal{L}_{det} = \lambda_{iou} \frac{\mathcal{L}_{iou}(\mathbf{b}, \tilde{\mathbf{b}})}{\mathcal{L}_{iou}(\mathbf{b}, \tilde{\mathbf{b}})} + \lambda_{L1} ||\mathbf{b} - \tilde{\mathbf{b}}||_1$ Generalized IOU loss Standard L1 loss

RES: Given predicted segmentation and ground truth segmentation mask

$$\mathcal{L}_{seg} = \lambda_{focal} \mathcal{L}_{focal}(\mathbf{s}, \tilde{\mathbf{s}}) + \lambda_{dice} \mathcal{L}_{dice}(\mathbf{s}, \tilde{\mathbf{s}})$$

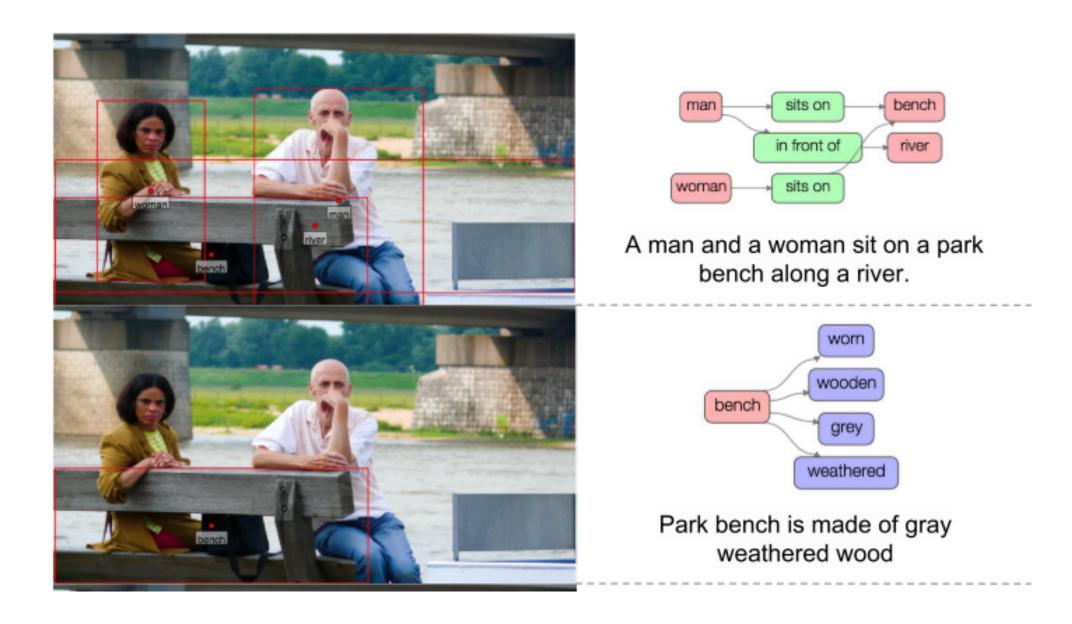
Focal loss

$$\mathcal{L} = \mathcal{L}_{seg} + \mathcal{L}_{det}$$

[Li et al., 2021]

Dice loss: Generalized IOU loss for segmentation

Pre-training



- Transformers can easily overfit
- Visual Genome (VG) contains description for each region

- We use the annotation from VG to pretrain our transformer by letting the network predict region bounding boxes given region description

Models	Visual	Pretrain	Multi-	H	RefCOCO)	R	efCOCO)+	RefCO	OCOg
WIGUEIS	Features	Images	task	val	testA	testB	val	testA	testB	val-u	test-u
Two-stage:											
CMN [19]	VGG16	None	×	-	71.03	65.77	-	54.32	47.76	-	-
MAttNet [56]	RN101	None	×	76.65	81.14	69.99	65.33	71.62	56.02	66.58	67.27
RvG-Tree [17]	RN101	None	×	75.06	78.61	69.85	63.51	67.45	56.66	66.95	66.51
NMTree [29]	RN101	None	×	76.41	81.21	70.09	66.46	72.02	57.52	65.87	66.44
CM-Att-Erase [30]	RN101	None	×	78.35	83.14	71.32	68.09	73.65	58.03	67.99	68.67
One-stage:											
RCCF [26]	DLA34	None	×	-	81.06	71.85	-	70.35	56.32	-	65.73
SSG [4]	DN53	None	×	-	76.51	67.50	-	62.14	49.27	58.80	-
FAOA [51]	DN53	None	×	72.54	74.35	68.50	56.81	60.23	49.60	61.33	60.36
ReSC-Large [52]	DN53	None	×	77.63	80.45	72.30	63.59	68.36	56.81	67.30	67.20
MCN [36]	DN53	None	\checkmark	80.08	82.29	74.98	67.16	72.86	57.31	66.46	66.01
Ours	RN50	None	\checkmark	81.82	85.33	76.31	71.13	75.58	61.91	69.32	69.10
Ours	RN101	None	\checkmark	82.23	85.59	76.57	71.58	75.96	62.16	69.41	69.40
Pretrained:											
VilBERT[33]	RN101	3.3M	×	-	-	-	72.34	78.52	62.61	-	-
ERNIE-ViL_L[54]	RN101	4.3M	×	-	-	-	75.89	82.37	66.91	-	-
UNTIER_L[5]	RN101	4.6M	×	81.41	87.04	74.17	75.90	81.45	66.70	74.86	75.77
VILLA_L[12]	RN101	4.6M	×	82.39	<u>87.48</u>	74.84	76.17	<u>81.54</u>	66.84	76.18	76.71
Ours*	RN50	100k	\checkmark	85.43	87.48	79.86	76.40	81.35	66.59	78.43	77.86
Ours*	RN101	100k	\checkmark	85.65	88.73	81.16	77.55	82.26	68.99	79.25	80.01

Evaluation Metric: Prec@0.5 (mark a detection as correct if its bounding box has a IOU>0.5 with the ground truth)

		Visual	Pretrain	Multi-	I	RefCOCO)	R	efCOCO	+	RefCOCOg	
	Models	Features	Images	task	val	testA	testB	val	testA	testB	val-u	test-u
	Two-stage:											
	CMN [19]	VGG16	None	×	-	71.03	65.77	-	54.32	47.76	-	-
	MAttNet [56]	RN101	None	×	76.65	81.14	69.99	65.33	71.62	56.02	66.58	67.27
Two-staged	RvG-Tree [17]	RN101	None	×	75.06	78.61	69.85	63.51	67.45	56.66	66.95	66.51
	NMTree [29]	RN101	None	×	76.41	81.21	70.09	66.46	72.02	57.52	65.87	66.44
	CM-Att-Erase [30]	RN101	None	×	78.35	83.14	71.32	68.09	73.65	58.03	67.99	68.67
	One-stage:											
	RCCF [26]	DLA34	None	×	-	81.06	71.85	-	70.35	56.32	-	65.73
	SSG [4]	DN53	None	×	-	76.51	67.50	-	62.14	49.27	58.80	-
One stand	FAOA [51]	DN53	None	×	72.54	74.35	68.50	56.81	60.23	49.60	61.33	60.36
One-staged	ReSC-Large [52]	DN53	None	×	77.63	80.45	72.30	63.59	68.36	56.81	67.30	67.20
	MCN [36]	DN53	None	\checkmark	80.08	82.29	74.98	67.16	72.86	57.31	66.46	66.01
	Ours	RN50	None	\checkmark	<u>81.82</u>	<u>85.33</u>	76.31	<u>71.13</u>	75.58	<u>61.91</u>	<u>69.32</u>	<u>69.10</u>
	Ours	RN101	None	\checkmark	82.23	85.59	76.57	71.58	75.96	62.16	69.41	69.40
	Pretrained:											
	VilBERT[33]	RN101	3.3M	×	-	-	-	72.34	78.52	62.61	-	-
With Dretrein	ERNIE-ViL_L[54]	RN101	4.3M	×	-	-	-	75.89	82.37	66.91	-	-
With Pretrain	UNTIER_L[5]	RN101	4.6M	×	81.41	87.04	74.17	75.90	81.45	66.70	74.86	75.77
	VILLA_L[12]	RN101	4.6M	×	82.39	<u>87.48</u>	74.84	76.17	<u>81.54</u>	66.84	76.18	76.71
	Ours*	RN5 0	100k	\checkmark	85.43	87.48	79.86	76.40	81.35	66.59	78.43	77.86
	Ours*	RN101	100k	\checkmark	85.65	88.73	81.16	77.55	82.26	68.99	79.25	80.01

Evaluation Metric: Prec@0.5 (mark a detection as correct if its bounding box has a IOU>0.5 with the ground truth)

Models	Visual	Pretrain	Multi-	I	RefCOCO)	R	efCOCO	+	RefC	OCOg
Widdels	Features	Images	task	val	testA	testB	val	testA	testB	val-u	test-u
Two-stage:											
CMN [19]	VGG16	None	×	-	71.03	65.77	-	54.32	47.76	-	-
MAttNet [56]	RN101	None	×	76.65	81.14	69.99	65.33	71.62	56.02	66.58	67.27
RvG-Tree [17]	RN101	None	×	75.06	78.61	69.85	63.51	67.45	56.66	66.95	66.51
NMTree [29]	RN101	None	×	76.41	81.21	70.09	66.46	72.02	57.52	65.87	66.44
CM-Att-Erase [30]	RN101	None	×	78.35	83.14	71.32	68.09	73.65	58.03	67.99	68.67
One-stage:											
RCCF [26]	DLA34	None	×	-	81.06	71.85	-	70.35	56.32	-	65.73
SSG [4]	DN53	None	×	-	76.51	67.50	-	62.14	49.27	58.80	-
FAOA [51]	DN53	None	×	72.54	74.35	68.50	56.81	60.23	49.60	61.33	60.36
ReSC-Large [52]	DN53	None	×	77.63	80.45	72.30	63.59	68.36	56.81	67.30	67.20
MCN [36]	DN53	None	\checkmark	80.08	82.29	74.98	67.16	72.86	57.31	66.46	66.01
Ours	RN50	None	\checkmark	81.82	85.33	76.31	71.13	75.58	61.91	69.32	69.10
Ours	RN101	None	\checkmark	82.23	85.59	76.57	71.58	75.96	62.16	69.41	69.40
Pretrained:											
VilBERT[33]	RN101	3.3M	×	-	-	-	72.34	78.52	62.61	-	-
ERNIE-ViL_L[54]	RN101	4.3M	×	-	-	-	75.89	82.37	66.91	-	-
UNTIER_L[5]	RN101	4.6M	×	81.41	87.04	74.17	75.90	81.45	66.70	74.86	75.77
VILLA_L[12]	RN101	4.6M	×	82.39	87.48	74.84	76.17	81.54	66.84	76.18	76.71
Ours*	RN50	100k	\checkmark	85.43	87.48	79.86	76.40	81.35	66.59	78.43	77.86
Ours*	RN101	100k	\checkmark	85.65	88.73	81.16	77.55	82.26	68.99	79.25	80.01

Our model and MCN are the only multi-task setting models

Models	Visual	Pretrain	Multi-	I	RefCOCO)	R	lefCOCO)+	RefCO	OCOg
Widdels	Features	Images	task	val	testA	testB	val	testA	testB	val-u	test-u
Two-stage:											
CMN [19]	VGG16	None	×	-	71.03	65.77	-	54.32	47.76	-	-
MAttNet [56]	RN101	None	×	76.65	81.14	69.99	65.33	71.62	56.02	66.58	67.27
RvG-Tree [17]	RN101	None	×	75.06	78.61	69.85	63.51	67.45	56.66	66.95	66.51
NMTree [29]	RN101	None	×	76.41	81.21	70.09	66.46	72.02	57.52	65.87	66.44
CM-Att-Erase [30]	RN101	None	×	78.35	83.14	71.32	68.09	73.65	58.03	67.99	68.67
One-stage:											
RCCF [26]	DLA34	None	×	-	81.06	71.85	-	70.35	56.32	-	65.73
SSG [4]	DN53	None	×	-	76.51	67.50	-	62.14	49.27	58.80	-
FAOA [51]	DN53	None	×	72.54	74.35	68.50	56.81	60.23	49.60	61.33	60.36
ReSC-Large [52]	DN53	None	×	77.63	80.45	72.30	63.59	68.36	56.81	67.30	67.20
MCN [36]	DN53	None	\checkmark	80.08	82.29	74.98	67.16	72.86	57.31	66.46	66.01
Ours	RN50	None	\checkmark	81.82	85.33	76.31	71.13	75.58	61.91	<u>69.32</u>	69.10
Ours	RN101	None	\checkmark	82.23	85.59	76.57	71.58	75.96	62.16	69.41	69.40
Pretrained:											
VilBERT[33]	RN101	3.3M	×	-	-	-	72.34	78.52	62.61	-	-
ERNIE-ViL_L[54]	RN101	4.3M	×	-	-	-	75.89	82.37	66.91	-	-
UNTIER_L[5]	RN101	4.6M	×	81.41	87.04	74.17	75.90	81.45	66.70	74.86	75.77
VILLA_L[12]	RN101	4.6M	×	82.39	<u>87.48</u>	74.84	76.17	81.54	66.84	76.18	76.71
Ours*	RN50	100k	\checkmark	85.43	87.48	79.86	76.40	81.35	66.59	78.43	77.86
Ours*	RN101	100k	\checkmark	85.65	88.73	81.16	77.55	82.26	68.99	79.25	80.01

Our model is state-of-the-art despite pre-training on less data

Methods	Backbone	I	RefCOCO)	R	efCOCO	+	RefC	OCOg	Inference
wiethous	Dackoone	val	testA	testB	val	testA	testB	val	test	time(ms)
DMN [38]	RN101	49.78	54.83	45.13	38.88	44.22	32.29	-	-	-
MAttNet [56]	RN101	56.51	62.37	51.70	46.67	52.39	40.08	47.64	48.61	378
NMTree [29]	RN101	56.59	63.02	52.06	47.40	53.01	41.56	46.59	47.88	-
Lang2seg [6]	RN101	58.90	61.77	53.81	-	-	-	46.37	46.95	-
BCAM [20]	RN101	61.35	63.37	59.57	48.57	52.87	42.13	-	-	-
CMPC [21]	RN101	61.36	64.53	59.64	49.56	53.44	43.23	-	-	-
CGAN [35]	DN53	64.86	68.04	62.07	51.03	55.51	44.06	51.01	51.69	-
LTS [22]	DN53	65.43	67.76	63.08	54.21	58.32	48.02	54.40	54.25	_
MCN+ASNLS [36]	DN53	62.44	64.20	59.71	50.62	54.99	44.69	49.22	49.40	56
Ours	RN50	69.94	72.80	66.13	60.9	65.20	53.45	57.69	58.37	38
Ours	RN101	70.56	73.49	66.57	61.08	64.69	52.73	58.73	58.51	41
Ours*	RN50	73.61	75.22	<u>69.80</u>	<u>65.30</u>	<u>69.69</u>	<u>56.98</u>	<u>65.70</u>	<u>65.41</u>	38
Ours*	RN101	74.34	76.77	70.87	66.75	70.58	59.40	66.63	67.39	<u>41</u>

Ours* denote the model is first pre-trained on Visual Genome. **Evaluation Metric:** Mean IOU

Methods	Backbone	I	RefCOCC)	R	efCOCO)+	RefC	OCOg	Inference
Methous	Dackoone	val	testA	testB	val	testA	testB	val	test	time(ms)
DMN [38]	RN101	49.78	54.83	45.13	38.88	44.22	32.29	-	-	-
MAttNet [56]	RN101	56.51	62.37	51.70	46.67	52.39	40.08	47.64	48.61	378
NMTree [29]	RN101	56.59	63.02	52.06	47.40	53.01	41.56	46.59	47.88	-
Lang2seg [6]	RN101	58.90	61.77	53.81	-	-	-	46.37	46.95	-
BCAM [20]	RN101	61.35	63.37	59.57	48.57	52.87	42.13	-	-	-
CMPC [21]	RN101	61.36	64.53	59.64	49.56	53.44	43.23	-	-	-
CGAN [35]	DN53	64.86	68.04	62.07	51.03	55.51	44.06	51.01	51.69	-
LTS [22]	DN53	65.43	67.76	63.08	54.21	58.32	48.02	54.40	54.25	-
MCN+ASNLS [36]	DN53	62.44	64.20	59.71	50.62	54.99	44.69	49.22	49.40	56
Ours	RN50	69.94	72.80	66.13	60.9	65.20	53.45	57.69	58.37	38
Ours	RN101	70.56	73.49	66.57	61.08	64.69	52.73	58.73	58.51	41
Ours*	RN50	73.61	75.22	<u>69.80</u>	<u>65.30</u>	69.69	<u>56.98</u>	<u>65.70</u>	<u>65.41</u>	38
Ours*	RN101	74.34	76.77	70.87	66.75	70.58	59.40	66.63	67.39	41

[Li et al., 2021]

Note that there is no segmentation annotation in the pre-training stage

More Result on REC tasks

Models	Backbone	ReferItGame	Flickr30K	Inference time	
Widdens	Dackoone	test	test	on Flickr30k(ms)	
		Two-stage			
MAttNet 56	RN101	29.04	-	320	
Similarity Net 49	RN101	34.54	60.89	184	
CITE 42	RN101	35.07	61.33	196	
DDPN 57	RN101	63.00	73.30	-	
		One-stage			One Expression Phras
SSG 4	DN53	54.24	-	25	per Inference
ZSGNet 46	RN50	58.63	58.63	-	
FAOA 51	DN53	60.67	68.71	23	
RCCF 26	DLA34	63.79	-	25	
ReSC-Large 52	DN53	64.60	69.28	36	
Ours	RN50	70.81	78.13	37(14)	
Ours	RN101	71.42	78.66	40(15)	
Ours*	RN50	<u>75.49</u>	<u>79.46</u>	37(14)	Hultiple Expression Ph
Ours*	RN101	76.18	81.18	40(15)	per Inference
					Inference Time/ per Expr
In Flickr?	Ok con	text sente	ence is	provided.	

[Li et al., 2021]

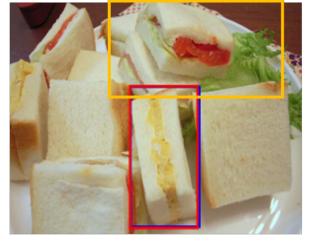
ase

hrase

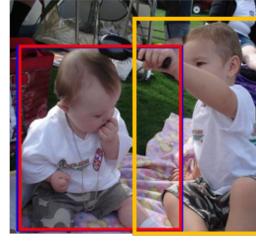
pression

Qualitative result on REC tasks

sandwich with yellow in it in front



boy with fingers in mouth



a white kitchen prep table with lime colored tape on it

back end of a van

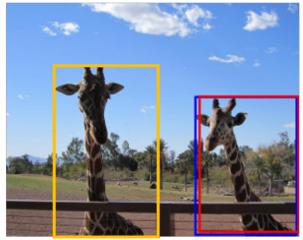
man reaching to woman

clear umbrella bent in the wind

meter covering truck

man in red brown shorts

this is the giraffe on the right who is looking towards the camera



Ground Truth

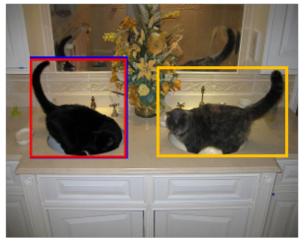
Our Model

MCN (basel

not blurry food on plate

black woman with watch

a fluffy black cat sniffing around a bathroom sink



reflection of big blue bottel

large black blob in snow

suv parked by side of field

plate with no food

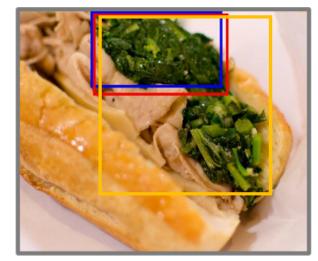
girl with hands raised and black sunglasses

a hotdog being held in front of a man in a black shirt

Qualitative result on REC tasks

zebra walking with its tail sticking out

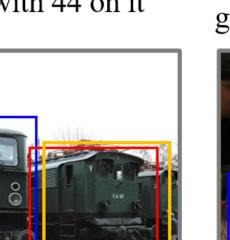
spinach where there are less stems



boy in the air

train with 44 on it

Failure cases:



Ground Truth MCN (baseli **Our Model**

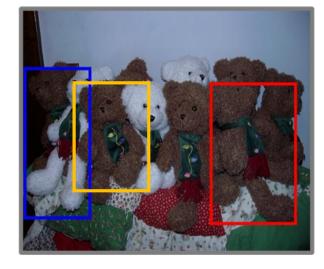
man in blue striped shirt

wine filled part of glass near bowl of chips

closest red between yellow and black bikes

glass with yellow drink in it

bear with long leg



Referring Expression Segmentation (RES)

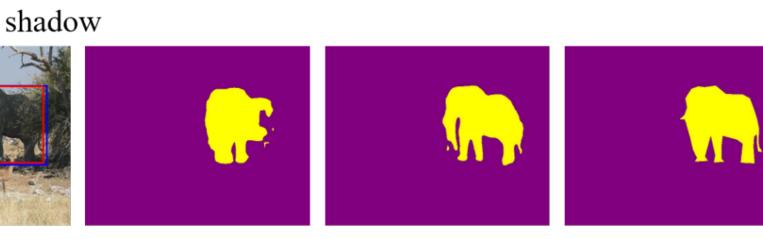
doggie with brown on mouth



bigger giraffe with outstretched neck

dark car

elephant in shadow



green toothbrush

Our REC Results

MCN

Ours

Ground Truth

boy in air

guy behind guy

woman with white pants

man in between



woman with arm in the air

Our REC Results

MCN

Ours

Ground Truth

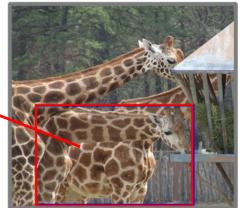
Referring Expression Segmentation (RES)

Zebra walking with its tail sticking out

Donut that's king of the hill

Man in the dark

Giraffe that is feeding



Detection

Attention Map

occlusion

challenging foreground / background

