

THE UNIVERSITY OF BRITISH COLUMBIA

Topics in AI (CPSC 532S): **Multimodal Learning with Vision, Language and Sound**

Lecture 12: RNN Applications (Part 2)

Logistics

- Assignment 1 & 2 grading is ongoing (a bit slow)
- Assignment 3 is now due end-of-day Sunday
- Assignment 4 will be available tonight

- Quiz for final project groups is on Canvas (due Thursday)

Review: Generalized Soft Attention

$$\beta_{i,t} = score(\mathbf{h}_i^{(enc)}, \mathbf{h}_t^{(dec)})$$

Relevance of encoding at token i for decoding token t

$$\beta_{i,t} = score(\mathbf{W}_k \mathbf{h}_i^{(enc)}, \mathbf{W}_q \mathbf{x}_t^{(de)}, \beta_{i,t} = score(\mathbf{W}_k \mathbf{h}_i^{(enc)}, \mathbf{W}_q \mathbf{h}_{t-}^{(de)}, \beta_{i,t} = score(\mathbf{W}_k \mathbf{h}_i^{(enc)}, \mathbf{W}_q [\mathbf{x}_t^{(de)}, \mathbf{W}_q [\mathbf{x}_t^{($$

$$\alpha_{i,t} = \operatorname{Softmax}(\beta_{i,t})$$

Normalize the weights to sum to 1

$$\mathbf{c}_{t} = \sum_{i} \alpha_{i,t} \mathbf{W}_{v} \mathbf{h}_{i}^{(enc)}$$

$$\mathbf{Value: V_{i}}$$

Form a context vector that would simply be added to the standard decoder input

 y_t

Review: Transformers

Applications: Google Language Translation

One model to translate from any language to any other language

[Johnson et al., 2017]

To learn relationships between sentences, predict whether Sentence B is actual sentence that **proceeds** Sentence A, or a random sentence

Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk.
Label = IsNextSentence

Sentence A = The man went to the store.
Sentence B = Penguins are flightless
Label = NotNextSentence

Use 30,000 WordPiece **vocabulary** Each token is a **sum of three** embeddings

Use 30,000 WordPiece **vocabulary** Each token is a **sum of three** embeddings

- Multi-headed self attention
- Models context
- Feed-forward layers
- Computes non-linear hierarchical features
- Layer norm and **residuals**
- Makes training deep neural network (e.g., 12 layers possible)
- **Positional Embeddings**
- Allows model to learn relative positioning

Fine-Tuning

Single Sentence

Transfer: ASNQ Dataset

Adapt: Target Dataset

Applications: Language Modeling (GPT3)

Task: Sentence completion (basically next token prediction)

Video source: https://jalammar.github.io/how-gpt3-works-visualizations-animations/

Applications: Language Modeling (GPT3)

Task: Sentence completion (basically next token prediction)

Video source: https://jalammar.github.io/how-gpt3-works-visualizations-animations/

Applications: Language Modeling (GPT3)

ELMo: 93M params, 2-layer biLSTM BERT-base: 110M params, 12-layer Transformer BERT-large: 340M params, 24-layer Transformer

Model Name	$n_{ m params}$	$n_{ m layers}$	$d_{ m model}$	$n_{ m heads}$	$d_{ m head}$	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	$6.0 imes10^{-4}$
GPT-3 Medium	350M	24	1024	16	64	0.5M	$3.0 imes10^{-4}$
GPT-3 Large	760M	24	1536	16	96	0.5M	$2.5 imes10^{-4}$
GPT-3 XL	1.3B	24	2048	24	128	1 M	$2.0 imes10^{-4}$
GPT-3 2.7B	2.7B	32	2560	32	80	1 M	$1.6 imes10^{-4}$
GPT-3 6.7B	6.7B	32	4096	32	128	2M	$1.2 imes 10^{-4}$
GPT-3 13B	13.0B	40	5140	40	128	2M	$1.0 imes10^{-4}$
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	$0.6 imes10^{-4}$

BERT-like Fine-tuning (not used in GPT3)

Downstream data fine-tuning

BERT-like Fine-tuning (not used in GPT3)

Downstream data fine-tuning

Downstream data testing

GPT-3 Zero-shot inference

The model predicts the answer given only a natural language description of the task. **No gradient updates are performed.**

No fine-tuning! Literally just take a rpretrained GPT3 and give it prefix above

Slide source: https://people.cs.umass.edu/~miyyer/cs685_f20/slides/11-gpt3.pdf

R ndf

GPT-3 One-shot inference

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

Slide source: <u>https://people.cs.umass.edu/~miyyer/cs685_f20/slides/11-gpt3.pdf</u>

No fine-tuning! Literally just take a rpretrained GPT3 and give it prefix above

GPT-3 Few-shot inference

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

Slide source: <u>https://people.cs.umass.edu/~miyyer/cs685_f20/slides/11-gpt3.pdf</u>

No fine-tuning! Literally just take a rpretrained GPT3 and give it prefix above

How does Pre-training + Fine tuning Compare to GPT3

Task: Trivia QA

Question

Miami Beach in Florida borders which ocean?

What was the occupation of Lovely Rita according to the song by the Beatles

Who was Poopdeck Pappys most famous son?

The Nazi regime was Germany's Third Reich; which was the first Reich?

At which English racecourse did two horses collapse and die in the parade ring due to electrocution, in February 2011?

Which type of hat takes its name from an 1894 novel by George Du Maurier where the title character has the surname O'Ferrall ?

What was the Elephant Man's real name?

How does Pre-training + Fine tuning Compare to GPT3

Task: Trivia QA

How does Pre-training + Fine tuning Compare to GPT3

Task: Comprehension QA

Setting	CoQA	DROP	QuAC	SQuADv2	RACE-h	RACE-m
Fine-tuned SOTA	90.7 ^a	89.1 ^b	74.4 ^c	93.0 ^d	90.0 ^e	93.1 ^e
GPT-3 Zero-Shot	81.5	23.6	41.5	59.5	45.5	58.4
GPT-3 One-Shot	84.0	34.3	43.3	65.4	45.9	57.4
GPT-3 Few-Shot	85.0	36.5	44.3	69.8	46.8	58.1

Slide source: <u>https://people.cs.umass.edu/~miyyer/cs685_f20/slides/11-gpt3.pdf</u>

Performance is generally worse on "harder" datasets

GPT3 for language translation

Task: Language translation (about 7% of training data is from languages other than English

Setting	$En \rightarrow Fr$	Fr→En	En→De	De→En	En→Ro	Ro→En
SOTA (Supervised)	45.6 ^{<i>a</i>}	35.0 ^b	41.2 ^c	40.2^{d}	38.5 ^e	39.9 ^e
XLM [LC19]	33.4	33.3	26.4	34.3	33.3	31.8
MASS [STQ ⁺ 19]	<u>37.5</u>	34.9	28.3	35.2	<u>35.2</u>	33.1
mBART [LGG ⁺ 20]	-	-	<u>29.8</u>	34.0	35.0	30.5
GPT-3 Zero-Shot	25.2	21.2	24.6	27.2	14.1	19.9
GPT-3 One-Shot	28.3	33.7	26.2	30.4	20.6	38.6
GPT-3 Few-Shot	32.6	<u>39.2</u>	29.7	<u>40.6</u>	21.0	<u>39.5</u>

GPT3 for language translation

Task: Language translation (about 7% of training data is from languages other than English

Setting	$En \rightarrow Fr$	$Fr \rightarrow En$	En→De	De→En	En→F
SOTA (Supervised)	45.6 ^{<i>a</i>}	35.0 ^b	41.2 ^c	40.2^{d}	38.5
XLM [LC19] MASS [STQ ⁺ 19] mBART [LGG ⁺ 20]	33.4 <u>37.5</u> -	33.3 34.9 -	26.4 28.3 <u>29.8</u>	34.3 35.2 34.0	33.3 <u>35.2</u> 35.0
GPT-3 Zero-Shot GPT-3 One-Shot GPT-3 Few-Shot	25.2 28.3 32.6	21.2 33.7 <u>39.2</u>	24.6 26.2 29.7	27.2 30.4 <u>40.6</u>	14.1 20.6 21.0

GPT3 doing mathematics

- 2 digit addition (2D+) The model is asked to add two integers sampled uniformly from [0, 100), phrased in the form of a question, e.g. "Q: What is 48 plus 76? A: 124."
- 2 digit subtraction (2D-) The model is asked to subtract two integers sampled uniformly from [0, 100); the answer may be negative. Example: "Q: What is 34 minus 53? A: -19".
- 3 digit addition (3D+) Same as 2 digit addition, except numbers are uniformly sampled from [0, 1000].
- 3 digit subtraction (3D-) Same as 2 digit subtraction, except numbers are uniformly sampled from [0, 1000).
- 4 digit addition (4D+) Same as 3 digit addition, except uniformly sampled from [0, 10000).
- 4 digit subtraction (4D-) Same as 3 digit subtraction, except uniformly sampled from [0, 10000).
- 5 digit addition (5D+) Same as 3 digit addition, except uniformly sampled from [0, 100000).
- 5 digit subtraction (5D-) Same as 3 digit subtraction, except uniformly sampled from [0, 100000).
- 2 digit multiplication (2Dx) The model is asked to multiply two integers sampled uniformly from [0, 100), e.g. "Q: What is 24 times 42? A: 1008".
- are selected uniformly on [0, 10) and the operations are selected uniformly from $\{+, -, *\}$.

Setting	2D+	2D-	3D+	3D-	4D+	4D-	5D+	5D-	2Dx	1DC
GPT-3 Zero-shot	76.9	58.0	34.2	48.3	4.0	7.5	0.7	0.8	19.8	9.8
GPT-3 One-shot	99.6	86.4	65.5	78.7	14.0	14.0	3.5	3.8	27.4	14.3
GPT-3 Few-shot	100.0	98.9	80.4	94.2	25.5	26.8	9.3	9.9	29.2	21.3

Slide source: <u>https://people.cs.umass.edu/~miyyer/cs685_f20/slides/11-gpt3.pdf</u>

• One-digit composite (1DC) – The model is asked to perform a composite operation on three 1 digit numbers, with parentheses around the last two. For example, "Q: What is 6+(4*8)? A: 38". The three 1 digit numbers

Let us look at some multi-modal architectures now that use RNNs

Image Embedding (VGGNet)

Image Embedding (VGGNet)

Image Embedding (VGGNet)

Image Embedding (VGGNet)

Applications: Neural Image Captioning **Good** results

A cat sitting on a suitcase on the floor

Two people walking on the beach with surfboards

A cat is sitting on a tree branch

A tennis player in action on the court

A dog is running in the grass with a frisbee

Two giraffes standing in a grassy field

A white teddy bear sitting in the grass

A man riding a dirt bike on a dirt track

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Applications: Neural Image Captioning Failure cases

A woman is holding a cat in her hand

A person holding a computer mouse on a desk

A woman standing on a beach holding a surfboard

A bird is perched on a tree branch

A man in a baseball uniform throwing a ball

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Applications: Image Captioning with Attention

RNN focuses its attention at a different spatial location when generating each word

[Xu et al., ICML 2015]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[Xu et al., ICML 2015]

[Xu et al., ICML 2015]

[Xu et al., ICML 2015]

[Xu et al., ICML 2015]

[Xu et al., ICML 2015]

[Xu et al., ICML 2015]

[Xu et al., ICML 2015]

[Xu et al., ICML 2015]

Applications: Image Captioning with Attention **Good** results

A woman is throwing a frisbee in a park.

A little girl sitting on a bed with a teddy bear.

A group of people sitting on a boat in the water.

[Xu et al., ICML 2015]

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background.

A giraffe standing in a forest with trees in the background.

Applications: Image Captioning with Attention Failure results

A large white bird standing in a forest.

A woman holding a clock in her hand.

A person is standing on a beach with a surfboard.

A woman is sitting at a table with a large pizza.

[Xu et al., ICML 2015]

A man wearing a hat and a hat on a skateboard.

A man is talking on his cell phone while another man watches.

Image

Question

"How many horses are in this image?"

Image Embedding (VGGNet)

Question

"How many horses are in this

s image?"

Image Embedding (VGGNet)

Question Embedding (LSTM)

Image Embedding (VGGNet)

Applications: Visual Dialogs

Interconnected questions in sequence: Typically questions later in the dialog make references to the earlier questions in the dialog history

Question

[Seo et al., NIPS 2017]

Answer

How many 9's are there in the image?

Applications: Visual Dialogs

Interconnected questions in sequence: Typically questions later in the dialog make references to the earlier questions in the dialog history

[Seo et al., NIPS 2017]

Answer

How many 9's are there in the image?

Applications: Visual Dialogs

Interconnected questions in sequence: Typically questions later in the dialog make references to the earlier questions in the dialog history

[Seo et al., NIPS 2017]

Answer

four

How many 9's are there in the image?

Interconnected questions in sequence: Typically questions later in the dialog make references to the earlier questions in the dialog history

#	Question
1	How many 9
→2	How many b

Interconnected questions in sequence: Typically questions later in the dialog make references to the earlier questions in the dialog history

#	Question
1	How many 9
→2	How many b

Interconnected questions in sequence: Typically questions later in the dialog make references to the earlier questions in the dialog history

#	Question
1	How many 9
→2	How many b

Interconnected questions in sequence: Typically questions later in the dialog make references to the earlier questions in the dialog history

#	Question
1	How many 9
→2	How many b

Interconnected questions in sequence: Typically questions later in the dialog make references to the earlier questions in the dialog history

#	Question		Answer
1	How many 9's are there in the image?	~	four
→2	How many brown digits are there among them?		one

Interconnected questions in sequence: Typically questions later in the dialog make references to the earlier questions in the dialog history

8	9	9	(
7	3	3	4
7	0	9	8
q	(2	6

#	Question	Answer
1	How many 9's are there in the image?	four
2	How many brown digits are there among them?	one
→3	What is the background color of the digit at the left of it?	white

Interconnected questions in sequence: Typically questions later in the dialog make references to the earlier questions in the dialog history

9	9	9	
7	3	3	4
7	0	0	8
q	(2	6

#	Question	Answer
1	How many 9's are there in the image?	four
2	How many brown digits are there among them?	one
→3	What is the background color of the digit at the left of it?	white

Interconnected questions in sequence: Typically questions later in the dialog make references to the earlier questions in the dialog history

9	9	9	
7	3	3	4
7	0	9	8
q	(2	6

#	Question	Answer
1	How many 9's are there in the image?	four
2	How many brown digits are there among them?	one
3	What is the background color of the digit at the left of it?	white
4	What is the style of the digit?	flat
5	What is the color of the digit at the left of it?	blue
6	What is the number of the blue digit?	4
7	Are there other blue digits?	two

Simple Visual Question Answering

Q: What color is a hydrant?

Simple Visual Question Answering

Q: What color is a hydrant?

[Seo et al., NIPS 2017]

Q: What color is a hydrant?

Q: What color is a hydrant?

Q: What color is a hydrant?

Q: What color is a hydrant?

[Seo et al., NIPS 2017]

 $\boldsymbol{\alpha}_t^{\text{tent}} = \operatorname{softmax}\left(\{s_{t,n}, 1 < n < N\}\right)$

Q: What color is a hydrant?

Q: What color is a hydrant?

[Seo et al., NIPS 2017]

Q: What color is a hydrant?

[Seo et al., NIPS 2017]

Q: What color is a hydrant?

[Seo et al., NIPS 2017]

Q: What color is a hydrant?

A: It is red
Visual Dialog Task

Interconnected questions in sequence: Typically questions later in the dialog make references to the earlier questions in the dialog history

Question \rightarrow 1 How many 9' How many br $\rightarrow 2$

		Answer
's are there in the image?	*	four
rown digits are there among them?		one

Attention Networks for Visual Question Answering

Attention Networks for Visual Dialogs

Hierarchical RNN (**HRNN**):

- Encode the question using LSTM
- Encode the answer using LSTM
- Obtain QA embedding by fusing them using FC layer

[Seo et al., NIPS 2017]

QA embeddings along the dialog are then encoded using higher-level LSTM

Attention Networks for Visual Dialogs

Associative Memory:

Question Turn	Key (has	
1	f (H: Emp	
2	f (H: ;	

[Seo et al., NIPS 2017]

sh)

Q3: What color is it?

Associative Memory:

Question Turn	Key (has	
1	f (H: Emp	
2	f (H: ; (

[Seo et al., NIPS 2017]

sh)

Q3: What color is it?

Associative Memory:

Question Turn	Key (has	
1	f (H: Emp	
2	f (H: ; (

[Seo et al., NIPS 2017]

sh)

Q3: What color is it?

Associative Memory:

Question Turn	Key (has	
1	f (H: Emp	
2	f (H: ; (

[Seo et al., NIPS 2017]

sh)

storing attentions used to answer previous questions

[Seo et al., NIPS 2017]

Key Idea: Every item in memory is (attention, key) pair — explicitly

storing attentions used to answer previous questions

Intuition: How similar is the current turn's context to each of the previous response scenarios?

[Seo et al., NIPS 2017]

Key Idea: Every item in memory is (attention, key) pair — explicitly

storing attentions used to answer previous questions

Intuition: How similar is the current turn's context to each of the previous response scenarios?

Observation: This formulation gives all previous turns equal weight (uniform prior)

[Seo et al., NIPS 2017]

Key Idea: Every item in memory is (attention, key) pair — explicitly

storing attentions used to answer previous questions

Intuition: How similar is the current turn's context to each of the previous response scenarios?

Observation: This formulation gives all previous turns equal weight (uniform prior)

Intuition: More recent questions are likely more relevant

[Seo et al., NIPS 2017]

Key Idea: Every item in memory is (attention, key) pair - explicitly

$$m_{t,\tau} = (\boldsymbol{W}^{\text{mem}} \boldsymbol{c}_t)$$

$$\boldsymbol{\beta}_{t} = \operatorname{softmax}\left(\{m_{t,\tau}, 0 < \tau\}\right)$$

$$oldsymbol{lpha}_t^{ ext{mem}} = \sum_{ au=0}^{t-1}oldsymbol{eta}_{t, au}oldsymbol{lpha}_{ au}$$

Weighted combination of attention maps

Observation: This formulation gives all previous turns equal weight (uniform prior)

 $^{\ulcorner}k_{ au}$

 $\tau < t - 1$)

Observation: This formulation gives all previous turns equal weight (uniform prior)

Intuition: More recent questions are likely more relevelant

$$m_{t,\tau} = (\boldsymbol{W}^{\text{mem}} \boldsymbol{c}_t)$$

$$\boldsymbol{\beta}_{t} = \operatorname{softmax}\left(\{m_{t,\tau}, 0 < \gamma\}\right)$$

$$oldsymbol{lpha}_t^{ ext{mem}} = \sum_{ au=0}^{t-1}oldsymbol{eta}_{t, au}oldsymbol{lpha}_{ au}$$

Weighted combination of attention maps

Observation: This formulation gives all previous turns equal weight (uniform prior)

Intuition: More recent questions are likely more relevelant

$$m_{t,\tau} = \left(\boldsymbol{W}^{\text{mem}} \boldsymbol{c}_t \right)^\top \boldsymbol{k}_\tau + \theta \left(t - \tau \right)$$

$$\boldsymbol{\beta}_{t} = \operatorname{softmax}\left(\{m_{t,\tau}, 0 < \gamma\}\right)$$

$$oldsymbol{lpha}_t^{ ext{mem}} = \sum_{ au=0}^{t-1}oldsymbol{eta}_{t, au}oldsymbol{lpha}_{ au}$$

Weighted combination of attention maps

* learnable parameter

 $\tau < t - 1$

Dynamic Attention Combination

Two types of attention that focus on distinctly different aspect:

- **Tentative** Attention: What do we need to focus on given the current question
- Associative Memory Attention: What regions (attentions) used by previous

Seo et al., NIPS 2017]

turns are useful for the current question (a.k.a. visual reference resolution)

Dynamic Attention Combination

Two types of attention that focus on distinctly different aspect:

- **Tentative** Attention: What do we need to focus on given the current question
- Associative Memory Attention: What regions (attentions) used by previous

turns are useful for the current question (a.k.a. visual reference resolution)

Intuition: We need a dynamic mechanism to fuse these attention models

[Noh et al., CVPR 2016]

 c_{t}

Q3: What color is it?

Associative Memory:

Question Turn	Key (has	
1	f (H: Emp	
2	f (H: ; (

Associative Memory:

Question Turn	Key (has
1	f (H: Em
2	f (H: ;

????

[Seo et al., NIPS 2017]

sh)

Associative Memory:

Question Turn	Key (has
1	f (H: Emp
2	f (H: ;

????

[Seo et al., NIPS 2017]

Training

Network is fully differentiable, can be trained using BackProp

Experiments

MNIST Dialog Dataset (Programmatically Generated)

- 4x4 grid of MNIST digits
- Each digit has 4 **attributes** (color, background, numbers style)
- Questions: counting, attribute
- **Answers**: single word

Experiments

MNIST Dialog Dataset (Programmatically Generated)

- 4x4 grid of MNIST digits
- Each digit has 4 **attributes** (color, background, numbers style)
- Questions: counting, attribute
- **Answers**: single word
- VisDial Dataset (Real images + AMT)
- MS-COCO images + Caption
- Questions: unconstrained
- **Answers:** free form text, 100 candidates

[Das, Kottur, Gupta, Singh, Yadav, Moura, Lee, Parikh, Batra, ICCV 2017]

Results: MNIST Dialog

Basemodel	+H	+SEQ	Accuracy	
I	1 <u>12-1</u> 1	-	20.18	1.0 -
0		1000	36.58	
Q	\checkmark	-	37.58	0.9 -
LF 1	\checkmark	; <u>1000</u>	45.06	~
HRE 1	\checkmark	1000	49.10	6 0.8 -
MN I	\checkmark	10000	48.51	GG
ATT	<u></u>	<u>100</u>	62.62	
ALL	\checkmark		79.72	0.7
		3 <u>174</u>	87.53	
AMEN	\checkmark	<u>,</u>	89.20	0.6 -
AMEN	3000	\checkmark	90.05	
	\checkmark	\checkmark	96.39	

Results: Interpretability / Implicit Reasoning

Are there any 9's in the image? History: How many digits in a yellow backgroun What is the color of the digit? What is the color of the digit at the right What is the style of the blue digit?

Current QA: What is the color of the digit at the right of it?

Input image		•	Retrieved attention from network	Fi	
6	0	8	4		
0	3	9	2		
7	6	5	3		
9	9	8	4	8	

Predicted answer: violet

[Seo et al., NIPS 2017]

nd are there among them ?	
nt of it ?	

nal attention

three one red blue flat violet

Results: Interpretability / Implicit Reasoning

H	istory	:	Are the	ere any 9's in the image?		three	
How many digits in a yellow background are there among then					g them ? one		
			What i	s the color of the digit?		red	
			What i	s the color of the digit at the	he right of it?	blue	
			What i	s the style of the blue digit	t ?	flat	
Current QA: What is the color of the digit at the right of it?			violet				
Input image			;	Retrieved attention Final attention Manually mo from network Final attention		Manually modified retrieved attention	Final attention
6	0	8	4				
0	3	9	2			9	2
7	6	5	3				
9	9	8	4	8	4		

Predicted answer: violet

[Seo et al., NIPS 2017]

Predicted answer: green

Results: VisDial

Dialog Information

Caption: A large bear standing upright with mountains in the background Previous QA: Is this the only bear here ? / yes Current question: *What color is it's fur ?*

GT answer: Brown Predicted answer: Brown Rank of GT: 1

Caption: A train that is on a large rail way Previous QA: Is the train moving ? / No it is stopped Current question: What color is the train?

GT answer: It is white and red with some blue on it Predicted answer: It is white and red with some blue on it Rank of GT: 1

Caption: An airplane parked in the middle of a runway Previous QA: Can you see the airport? / No Current question: *Is it a sunny day ?*

GT answer: Yes Predicted answer: Yes Rank of GT: 1

[Seo et al., NIPS 2017]

Input image

Attended image

Results: VisDial

	· · · · · · · · · · · · · · · ·								
Model	+H	ATT	<pre># of params</pre>	MRR	R@1	R@5	R@10	MR	
Answer prior [24]	_	_	n/a	0.3735	23.55	48.52	53.23	26.50	
LF-Q [24]	_	_	8.3 M (3.6x)	0.5508	41.24	70.45	79.83	7.08	
LF-QH [24]	\checkmark	_	12.4 M (5.4x)	0.5578	41.75	71.45	80.94	6.74	
LF-QI [24]	_	_	10.4 M (4.6x)	0.5759	43.33	74.27	83.68	5.87	
LF-QIH [24]	\checkmark	_	14.5 M (6.3x)	0.5807	43.82	74.68	84.07	5.78	
HRE-QH [24]	✓	_	15.0 M (6.5x)	0.5695	42.70	73.25	82.97	6.11	
HRE-QIH [24]	\checkmark	_	16.8 M (7.3x)	0.5846	44.67	74.50	84.22	5.72	
HREA-QIH [24]	\checkmark	_	16.8 M (7.3x)	0.5868	44.82	74.81	84.36	5.66	
MN-QH [24]	✓		12.4 M(5.4 x)	0.5849	44.03	75.26	84.49	5.68	
MN-QIH [24]	\checkmark	_	14.7 M (6.4x)	0.5965	45.55	76.22	85.37	5.46	
SAN-QI [9]	_	\checkmark	n/a	0.5764	43.44	74.26	83.72	5.88	
HieCoAtt-QI [14]	—	\checkmark	n/a	0.5788	43.51	74.49	83.96	5.84	
AMEM-QI	_	\checkmark	1.7 M (0.7x)	0.6196	48.24	78.33	87.11	4.92	
AMEM-QIH	\checkmark	\checkmark	2.3 M (1.0x)	0.6192	48.05	78.39	87.12	4.88	
AMEM+SEQ-QI	_	\checkmark	1.7 M (0.7x)	0.6227	48.53	78.66	87.43	4.86	
AMEM+SEQ-QIH	\checkmark	\checkmark	2.3 M (1.0x)	0.6210	48.40	78.39	87.12	4.92	

Visual BERT (VilBERT)

(a) Masked multi-modal learning

(b) Multi-modal alignment prediction