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Lecture 11: RNNs (Part 3), Applications



Course Logistics

— Assignment 3 due date is Monday -> Wednesday

— Assignment 4 is released Monday

— Assignment 1 & 2 solutions are out
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RNNs: Review

Key E na blers: one to one one to many many to one many to many many to many

— Parameter sharing in computational graphs

! 1 1 T Pt 1 Pt

— “Unrolling” in computational graphs

— Allows modeling arbitrary length sequences!

Loss functions: often cross-entropy (for classification); could be max-margin (ke in SVM)
or Squared LoSS (regression)

Vanilla RNN

Long-Short Term Memory (LSTM)

or o| o ( Tt
hy = fW(ht—la wt) Exploding \9/ \t“mh/
! Gradients ¢ =f0Oc1+10g

hy = tanh(Wyphi_1 + Wypae + bp) X ht = 0 ® tanh(ct)

Uninterrupted aradient flow!



Soft Attention in details
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Relevance of encoding at Attention Layer

o (enc) 1.(dec)
Bir = score(h; 7, hy ) token i for decoding token t

Normalize the weights

a;,¢ = Softmax(f; ¢) to sum to 1

C; = Z ozi,thgenc) Form a context vector that would simply be added to the standard decoder input
0



Encoder (English)




Encoder (English)










Encoder (English)

0 0 0
0 0 1
1 0 0
0 0 0

<SOS> You are my best friend



Encoder (English) Summary Veciior

0 0 0
0 0 1
1 0 0
0 0 0

<SOS> You are my best friend



<S0S> You are my best friend Decoder (S paﬂiSh)






<S0S> You are my best friend Decoder (S paﬂiSh)



<50S> You are my best friend Decoder (S paﬂiSh)



<50S> You are my best friend Decoder (S paﬂiSh)



Encoder (English) Summary Vecto:r

<SOS> Eres

<50S> You are my best friend Decoder (S paﬂiSh)



Encoder (English) Summary Vecto:r

<SOS> Eres

1 0 0 0
0 0 0 1
0 1 0 0
0 0 0

<50S> You are my best friend Decoder (S paﬂiSh)



<SOS> Eres

<50S> You are my best friend Decoder (S paﬂiSh)



<S0OS> Eres mi major amiga

0
0
0
0

<S0OS> You are my best friend Decoder (S Pan ISh)



<S0S> You are my best fiend <SOS> Eres amiga



<S05> You are my pest fiend i <SOS> Eres mi major amiga
























1 0 0

0 0 1
0 1 0 0
0 0 0

<SOS> You are my best friend



1 0 0 0
0 0 0 1
0 1 0 0
0 0 0

<S0OS> You are my best friend



—_—
o
O

0 0 0 1
0 1 0 0
0 0 0

<S0OS> You are my best friend



Context Vector

1 0 0

0 0 0 1
0 1 0 0
0 0 0

<S0OS> You are my best friend



Context Vector

1 0 0

0 0 0 1
0 1 0 0
0 0 0

<S0OS> You are my best friend



Context Vector

1 0 0

0 0 0 1
0 1 0 0
0 0 0

<S0OS> You are my best friend



Context Vector

1 0 0 0
0 0 0 1
0 1 0 0
0 0 0

<S0S> You are my best friend <S0S> Eres



<S05> You are my best friend <SOS> Eres



We don’t have this
(we need a proxy)

1 0 0 0

0 0 1
0 1 0 0
0 0 0

<S05> You are my best friend <SOS> Eres



We don’t have this
(we need a proxy)

<S05> You are my best friend <SOS> Eres



<S05> You are my best friend <SOS> Eres



<S05> You are my best friend <SOS> Eres



<S05> You are my best friend <SOS> Eres



Additive Attention

Br2 = SCOre(I , I ) = NIN(

key query

)




Additive Attention

query (replicated)

B1.2, 52,2, 83,2, 842,052,062 — NN IIIIII

keys




Additive Attention

query (replicated)

B1.2, 52,2, 83,2, 842,052,062 — NN IIIIII

keys




Dot-product Attention

B2 = Score(l , I ) =

key query




Dot-product Attention

B2 = SCOre(I ,
key query

keys




General Dot-product Attention



Scaled General Dot-product Attention
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Soft Attention in details

Name

Content-base
attention

Additive(*)
Location-
Base

General

Dot-Product

Scaled Dot-
Product(?)

Alignment score function

score(st, h,-) = COSiIle[St, hz‘]

score(s;, h;) = v, tanh(W,[s;; h;])

a; ; = softmax(W,s;)
Note: This simplifies the softmax alignment to only depend on the target
position.

score(s;, h;) = s, W h;
where W, is a trainable weight matrix in the attention layer.
score(s;, h;) = s, h;

sth.-
NLD

score(sy, h;) =

Note: very similar to the dot-product attention except for a scaling factor;

where n is the dimension of the source hidden state.

Citation

Grave52014

Bahdanau201s
Luong2015
Luong2015

Luong2015
V_alswani2017
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Context Vector
C —
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Forming a General Context Vector

Context Vector
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Relevance of encoding at Attention Layer
token | for decoding token t

it = score(hgenc), h, C))

Query: Q;

hrgenc), X(dec))

B+ = score( ;

Bit = scare(hgenc), hﬁef))
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Normalize the weights
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Generalized Soft Attention in details yT

Relevance of encoding at Attention Layer
token | for decoding token t

it = scare(hgem), h, C))

Query: Qt

Bit = Scare(th(em) W X<d€c))
Bit = scare(th(enc) W h(dec))
ﬂi,t _ SCOT@(thgenc), Wq[ (dec) h(dec)])

Normalize the weights

a;,¢ = Softmax(f; ¢) to sum to 1

C; = Z ai,twvhgem) Form a context vector that would simply be added to the standard decoder input




Attention Mechanisms and RNNs

| Cho et al., 2015 ]

Economic growth has slowed down In recent years
//

Das Wirtschaftswachstum hat sich in den letzten Jahren verlangsamt .
Economic growth has slowed down in recent vyears

7SO

La croissance economique s' est ralentie ces dernieres années .

https://devblogs.nvidia.com/introduction-neural-machine-translation-gpus-part-3/



Self Attention

(Source-Target-Attention) (Self-Attention)
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Transformers: Attention is all you need (Encoder)
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Add & Normalize

Transformers: Attention is all you need (Encoder)
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Transformers: Attention is all you neeo
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Self Attention
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Benefits of Iransformers

1. Tokens are processes in parallel in both encoder and decoder, which is
much faster than RNN or LSTM

2. Can (in principle) model infinite history, unlike RNN or LSTM that typically
only carries context for relatively small number of steps

3. No gradient flow issues, due to residual architecture design of Transformer
layers — similar to LSTM in some sense.



Benefits of Iransformers

Note: In principle Transformer can model RNN-line or LSTM-like recursion by
using causal mask and computing relevance based on “positional” information
stored In a token representation and context based on “content” information
stored In a token

(iIn other words, It Is more or less strict aeneralization)



| et us ook at some actual practical
uses of RNNS



Applications: Skip-thought Vectors

word2vec but for sentences, where each sentence is processed by an LSTM

' got back home <@05>
A <e0s5=> I got back home
O—>»C & ) [ B 5 5 B !
o This was trange < >
l could see the cat on the steps . . 9 o
& -{_ 18 {_
<eos> This was strange

| Kiros et al., 2015 |



Applications: Google Language Translation

One model to translate from any language to any other language
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Applications: Google Language Translation

One model to translate from any language to any other language
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target language 8! layer LSTM decoder and encoder



Applications: Google Language Translation

One model to translate from any language to any other language
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Applications: Google Language Translation

One model to translate from any language to any other language
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8! layer LSTM decoder and encoder



