Topics in AI (CPSC 532S): Mulltimodal Learning with Vision, Language and Sound

Lecture 10: RNNs (Part 2)

Course Logistics

- Assignment 3 due next week
- Assignment $\mathbf{1 \& 2}$ is being graded (solution will be out this week)
- Course Projects

Final Project - Reminder

- Group project (groups of 3 are encouraged, but fewer is OK)
- Groups are self-formed
- You need to come up with a project proposal and then work on the project as a group (each person in the group gets the same grade for the project)
- Project needs to be research oriented (not simply implementing an existing paper); you can use code of existing paper as a starting point though

Project proposal and class presentation

Presentation (~3-5 minutes irrespective of the group size)

1. Clear explanation of the overall problem you want to solve and relationship to the topics covered in class
2. What model/algorithms you planning to explore: this can be somewhat abstract (e.g., CNN+RNN)
3. The dataset(s) you will use and how will you evaluate performance
4. List of papers you plan to read as references
5. How will you structure the project, who will do what and a rough timeline

After proposal you will get the feedback from me

Project proposal and class presentation

Presentation (~3-5 minutes irrespective of the group size)

1. Clear explanation of the overall problem you want to solve and relationship to the topics covered in class
2. What model/algorithms you planning to explore: this can be somewhat abstract (e.g., CNN+RNN)
3. The dataset(s) you will use and how will you evaluate performance
4. List of papers you plan to read as references
5. How will you structure the project, who will do what and a rough timeline

After proposal you will get the feedback from me

Proposal

- Same as above but in more detail, with well defined algorithms and timeline
- Will be in the form of the PDF document (initial paper draft)

Review: One Hot Encoding

Vocabulary
dog
cat
person
holding
tree
computer
using

Review: One Hot Encoding

Vocabulary	
dog	1
cat	2
person	3
holding	4
tree	5
computer	6
using	7

Review: One Hot Encoding

Vocabulary		one-hot encodings
dog	1	$[1,0,0,0,0,0,0,0,0,0]$
cat	2	$[0,1,0,0,0,0,0,0,0,0]$
person	3	$[0,0,1,0,0,0,0,0,0,0]$
holding	4	$[0,0,0,1,0,0,0,0,0,0]$
tree	5	$[0,0,0,0,1,0,0,0,0,0]$
computer	6	$[0,0,0,0,0,1,0,0,0,0]$
using	7	$[0,0,0,0,0,0,1,0,0,0]$

Review: Neural-based Language Mode

Review: Neural-based Language Mode

Problem: Does not model sequential information (too local)

Review: Neural-based Language Mode

Problem: Does not model sequential information (too local)

We need sequence modeling!

Review: Sequences Models

one to one

Input: No sequence
Output: No seq.
Example:
"standard"
classification /
regression problems
one to many

Input: No
sequence
Output:
Sequence
Example:
Im2Caption
many to one

Input: Sequence Output: No seq.
Example: sentence classification, multiple-choice question answering
many to many

many to many

Input: Sequence
Output: Sequence
Example: machine translation, video captioning, open-ended question answering, video question answering

(Vanilla) Recurrent Neural Network

(Vanilla) Recurrent Neural Network

$$
\begin{gathered}
h_{t}=f_{W}\left(h_{t-1}, x_{t}\right) \\
\downarrow \\
h_{t}=\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}+b_{h}\right)
\end{gathered}
$$

(Vanilla) Recurrent Neural Network

$$
\begin{gathered}
y_{t}=W_{h y} h_{t}+b_{y} \\
h_{t}=f_{W}\left(h_{t-1}, x_{t}\right) \\
\downarrow \\
h_{t}=\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}+b_{h}\right)
\end{gathered}
$$

(Vanilla) Recurrent Neural Network

Intuition: RNN incorporates one element of sequence at a time (e.g. letter, word, video frame, etc.)

$$
\begin{aligned}
& \text { building up a representation of the sequence "so far" } \\
& h_{t}=\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}+b_{h}\right)
\end{aligned}
$$

(Vanilla) Recurrent Neural Network

Intuition: RNN incorporates one element of sequence at a time (e.g. letter, word, video frame, etc.)
building up a representation of the sequence "so far"

Alternative: RNN computes a representation of sequence element (e.g. letter, word, video frame, etc.)
with context provided by all previous processed elements

$$
h_{t}=\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}+b_{h}\right)
$$

Sequence to Sequence: Many to One + One to Many

Many to one: Encode input sequence in a single vector

Sequence to Sequence: Many to One + One to Many

Many to one: Encode input sequence in a single vector

$$
h_{t}=\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}+b_{h}\right)
$$

Basically a fully connected layer (with shared params)

Sequence to Sequence: Many to One + One to Many

Many to one: Encode input sequence in a single vector

One to many: Produce output sequence from single input vector

Assignment 3: Part 1

Example: Character-level Language Model (Training)

Assignment 3: Decoder of Part 1

(encoder is similar, but with no outputs, so easier)

Example: Character-level Language Model (Training)

Vocabulary:

['h', ‘e', 'l', 'o']

Example training sequence:
"hello"

Example: Character-level Language Model (Training)

Vocabulary:

$$
h_{t}=\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}+b_{h}\right)
$$

Example training sequence: "hello"

Example: Character-level Language Model (Training)

Vocabulary:

 ['h', 'e', 'l', 'o']Example training sequence: "hello"

target chars:	"e"	" ${ }^{\prime}$	" ${ }^{\prime}$		"о"
	1.0	0.5	0.1		0.2
output layer	2.2	0.3	0.5		-1.5
output layer	-3.0	-1.0	1.9		-0.1
	4.1	1.2	-1.1		2.2
		4	\uparrow		4 W_hy
	0.3	1.0	0.1	W_hh	-0.3
hidden layer	-0.1	0.3	-0.5		0.9
	0.9	0.1	-0.3		0.7
	\uparrow				$\overline{W_{-}} x h$
	1	0	0		0
input layer	0	1	0		0
input layer	0	0	1		1
	0	0	0		0
input chars:	"h"	"e"	" ${ }^{\prime \prime}$		" ${ }^{\prime}$

Example: Character-level Language Model (Sampling)

Vocabulary:

['h', 'e', 'l', 'o']

At test time sample one character at a time and feed back to the model

Sample	"e"
	1
	. 03
Softmax	. 13
	. 00
	. 84
	\uparrow
	1.0
output layer	2.2
	-3.0
	4.1
	0.3
hidden layer	-0.1
	0.9
	\uparrow
	1
input layer	0
	0
	0
input chars:	"h"

Example: Character-level Language Model (Sampling)

Vocabulary:

['h', ‘e', 'l', 'o']

At test time sample one character at a time and feed back to the model

Example: Character-level Language Model (Sampling)

Vocabulary:

['h', ‘e', 'l', 'o']

At test time sample one character at a time and feed back to the model

Example: Character-level Language Model (Sampling)

Vocabulary:

['h’, ‘e', 'l', 'o’]

At test time sample one character at a time and feed back to the model

Example: Character-level Language Model (Sampling)

Inverse Transform Sampling

Draw rand() from Uniform, then look up the bin

Example: Character-level Language Model (Sampling)

Inverse Transform Sampling

Draw rand() from Uniform, then look up the bin

Example: Character-level Language Model (Sampling)

Inverse Transform Sampling

Draw rand() from Uniform, then look up the bin

Sampling vs. ArgMax vs. Beam Search

Sampling: allows to generate diverse outputs

ArgMax: could be more stable in practice

Beam Search: typically gets the best results

Beam Search

Beam Search

Beam Search
A steam engine train travelling down train tracks. A steam engine train travelling down tracks. A steam engine train travelling through a forest. A steam engine train travelling through a lush green forest. A steam engine train travelling through a lush green countryside A train on a train track with a sky background.

Diverse Beam Search

A steam engine travelling down train tracks. A steam engine train travelling through a forest. An old steam engine train travelling down train tracks. An old steam engine train travelling through a forest. A black train is on the tracks in a wooded area. A black train is on the tracks in a rural area.

Teacher Forcing

Training Objective: Predict the next word (cross entropy loss)

Testing: Sample the full sequence

Teacher Forcing

Testing: Sample the full sequence

Training Objective: Predict the next word (cross entropy loss)

Teacher Forcing

Slowly move from Teacher Forcing to Sampling

Note: for the Assignment 3 its OK to sample once per sequence (not per step as is illustrated here)

Teacher Forcing

Slowly move from Teacher Forcing to Sampling

Probability of sampling from the ground truth

Note: for the Assignment 3 its OK to sample once per sequence (not per step as is illustrated here)

Teacher Forcing

Microsoft COCO developement set

Approach vs Metric	BLEU-4	METEOR	CIDER
Baseline	28.8	24.2	89.5
Baseline with Dropout	28.1	23.9	87.0
Always Sampling	11.2	15.7	49.7
Scheduled Sampling	$\mathbf{3 0 . 6}$	$\mathbf{2 4 . 3}$	$\mathbf{9 2 . 1}$
Uniform Scheduled Sampling	29.2	24.2	90.9
Baseline ensemble of 10	30.7	25.1	95.7
Scheduled Sampling ensemble of 5	$\mathbf{3 2 . 3}$	$\mathbf{2 5 . 4}$	$\mathbf{9 8 . 7}$

Baseline: Google NIC captioning model
Baseline with Dropout: Regularized RNN version
Always sampling: Use sampling from the beginning of training
Scheduled sampling: Sampling with inverse Sigmoid decay
Uniformed scheduled sampling: Scheduled sampling but uniformly

BackProp Through Time

Forward through entire sequence to compute loss, then backward through entire

Truncated BackProp Through Time

Run backwards and forwards through (fixed length) chunks of the sequence, instead of the whole sequence

Truncated BackProp Through Time

Run backwards and forwards through (fixed length) chunks of the sequence, instead of the whole sequence

Carry hidden states forward, but only
BackProp through some smaller number of steps

Truncated BackProp Through Time

Run backwards and forwards through (fixed length) chunks of the sequence, instead of the whole sequence

Learning to Write Like Shakespeare - Training Decoder

THE SONNETS

by William Shakespeare

From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thyself thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament,
And only herald to the gaudy spring,
And tender churl mak'st waste in niggarding
Pity the world, or else this glutton be
To eat the world's due, by the grave and thee.

When forty winters shall besiege thy brow, And dig deep trenches in thy beauty's field, And dig deep trenches in thy beauty's field, Will be a tatter'd weed of small worth held: Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days,
oo say, within thine own deep sunken eyes
Were an all-eating shame, and thriftless praise. How much more praise deserv'd thy beauty's use If thou couldst answer 'This fair child of mine Shall sum my count, and make my old excuse, Proving his beauty by succession thine!
This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.

Learning to Write Like Shakespeare ... after training a bit

```
tyntd-iafhatawiaoihrdemot lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng
```

 train more
    ```
"Tmont thithey" fomesscerliund
Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome
coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."
```


\downarrow train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort how, and Gogition is so overelical and ofter.

train more

"Why do what that day," replied Natasha, and wishing to himself the fact the princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

[^0]
Learning to Write Like Shakespeare ... after training

```
PANDARUS:
Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.
Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.
DUKE VINCENTIO:
Well, your wit is in the care of side and that.
Second Lord:
They would be ruled after this chamber, and
my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.
Clown:
Come, sir, I will make did behold your worship.
VIOLA:
I'll drink it.
```

```
VIOLA:
Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire,
To show the reining of the raven and the wars
To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;
When I was heaven of presence and our fleets,
We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there
My power to give thee but so much as hell:
Some service in the noble bondman here,
Would show him to her wine.
KING LEAR:
O, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods
With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.
```


Learning Code

Trained on entire source code of Linux kernel

```
static void do_command(struct seq_file *m, void *v)
{
    int column = 32 << (cmd[2] & 0x80);
    if (state)
        cmd = (int)(int_state ^ (in_8(&ch->ch_flags) & Cmd) ? 2 : 1);
    else
        seq = 1;
    for (i = 0; i < 16; i++) {
        if (k& (1 << 1))
            pipe = (in_use & UMXTHREAD_UNCCA) +
                ((count & 0x00000000fffffff8) & 0x000000f) << 8;
        if (count == 0)
            sub(pid, ppc_md.kexec_handle, 0x20000000);
        pipe_set_bytes(i, 0);
    }
    /* Free our user pages pointer to place camera if all dash */
    subsystem_info = &of_changes[PAGE_SIZE];
    rek_controls(offset, idx, &soffset);
    /* Now we want to deliberately put it to device */
    control_check_polarity(&context, val, 0);
    for (i = 0; i < COUNTER; i++)
        seq_puts(s, "policy ");
}
```


DopeLearning: Computational Approach to Rap Lyrics

Everybody got one
And all the pretty mommies want some And what i told you all was
But you need to stay such do not touch
They really do not want you to vote what do you condone
Music make you lose control
What you need is right here ahh oh
This is for you and me
I had to dedicate this song to you Mami
Now I see how you can be
I see u smiling i kno u hattig
Best I Eva Had x4
That I had to pay for
Do I have the right to take yours
Trying to stay warm

```
(2 Chainz - Extremely Blessed)
(Mos Def - Undeniable)
(Lil Wayne - Welcome Back)
(Common - Heidi Hoe)
(KRS One - The Mind)
(Cam'ron - Bubble Music)
(Missy Elliot - Lose Control)
(Wiz Khalifa - Right Here)
(Missy Elliot - Hit Em Wit Da Hee)
(Fat Joe - Bendicion Mami)
(Lil Wayne - How To Hate)
(Wiz Khalifa - Damn Thing)
(Nicki Minaj - Best I Ever Had)
(Ice Cube - X Bitches)
(Common - Retrospect For Life)
(Everlast-2 Pieces Of Drama)
```

| Rank | Artist | Rhyme density |
| :--- | :--- | :--- |
| 1. | Inspectah Deck | 1.187 |
| 2. | Rakim | 1.180 |
| 3. | Redrama | 1.168 |
| 30. | The Notorious B.I.G. | 1.059 |
| 31. | Lil Wayne | 1.056 |
| 32. | Nicki Minaj | 1.056 |
| 33. | 2Pac | 1.054 |
| 39. | Eminem | 1.047 |
| 40. | Nas | 1.043 |
| 50. | Jay-Z | 1.026 |
| 63. | Wu-Tang Clan | 1.002 |
| 77. | Snoop Dogg | 0.967 |
| 78. | Dr. Dre | 0.966 |
| 94. | The Lonely Island | 0.870 |

Sunspring: First movie generated by Al

Sunspring, a short science fiction movie written entirely by AI, debuts exclusively on Ars today.

Multilayer RNNs

Vanilla RNN Gradient Flow

$$
\begin{aligned}
h_{t} & =\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}\right) \\
& =\tanh \left(\left(\begin{array}{ll}
W_{h h} & \left.W_{h x}\right)
\end{array}\right)\binom{h_{t-1}}{x_{t}}\right) \\
& =\tanh \left(W\binom{h_{t-1}}{x_{t}}\right)
\end{aligned}
$$

Vanilla RNN Gradient Flow

Backpropagation from h_{t} to h_{t-1} multiplies by W (actually $\mathrm{W}_{\mathrm{hn}}{ }^{\top}$)

$$
\begin{aligned}
h_{t} & =\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}\right) \\
& =\tanh \left(\left(\begin{array}{ll}
W_{h h} & W_{h x}
\end{array}\right)\binom{h_{t-1}}{x_{t}}\right) \\
& =\tanh \left(W\binom{h_{t-1}}{x_{t}}\right)
\end{aligned}
$$

Vanilla RNN Gradient Flow

Computing gradient of h_{0} involves many factors of W
(and repeated tanh)

Vanilla RNN Gradient Flow

Vanilla RNN Gradient Flow

Computing gradient of h_{0} involves many factors of W
(and repeated tanh)

Largest singular value > 1 :
Exploding gradients
Largest singular value <1:
Vanishing gradients

Vanilla RNN Gradient Flow

Computing gradient of h_{0} involves many factors of W (and repeated tanh)

Largest singular value > 1 :
Exploding gradients
Largest singular value <1 : Vanishing gradients

Gradient clipping: Scale gradient if its norm is too big

```
grad_norm = np.sum(grad * grad)
if grad_norm > threshold:
    grad *= (threshold / grad_norm)
```


Vanilla RNN Gradient Flow

Computing gradient of h_{0} involves many factors of W
(and repeated tanh)

Largest singular value > 1 :
Exploding gradients
Largest singular value <1 :
Vanishing gradients

Change RNN architecture

Long-Short Term Memory (LSTM)

Vanilla RNN

$$
h_{t}=\tanh \left(W\binom{h_{t-1}}{x_{t}}\right)
$$

fully connected layer of size $|\mathrm{h}| \times(|\mathrm{x}|+|\mathrm{h}|)$ with tanh activation function

LSTM

$$
\begin{aligned}
\left(\begin{array}{l}
i \\
f \\
o \\
g
\end{array}\right) & =\left(\begin{array}{c}
\sigma \\
\sigma \\
\sigma \\
\tanh
\end{array}\right) W\binom{h_{t-1}}{x_{t}} \\
c_{t} & =f \odot c_{t-1}+i \odot g \\
h_{t} & =o \odot \tanh \left(c_{t}\right)
\end{aligned}
$$

four fully connected layers of size $|\mathrm{h}| \mathrm{x}(|\mathrm{x}|+|\mathrm{h}|)$ with sigmoid and tanh activation function

[Hochreiter and Schmidhuber, NC 1977]

Long-Short Term Memory (LSTM)

Vanilla RNN

$$
h_{t}=\tanh \left(W\binom{h_{t-1}}{x_{t}}\right)
$$

fully connected layer of size $|\mathrm{h}| \times(|\mathrm{x}|+|\mathrm{h}|)$ with tanh activation function

LSTM

$$
\begin{aligned}
\left(\begin{array}{l}
i \\
f \\
o \\
g
\end{array}\right) & =\left(\begin{array}{c}
\sigma \\
\sigma \\
\sigma \\
\tanh
\end{array}\right) W\binom{h_{t-1}}{x_{t}} \\
c_{t} & =f \odot c_{t-1}+i \odot g \\
h_{t} & =o \odot \tanh \left(c_{t}\right)
\end{aligned}
$$

four fully connected layers of size $|\mathrm{h}| \mathrm{x}(|\mathrm{x}|+|\mathrm{h}|)$ with sigmoid and tanh activation function

[Hochreiter and Schmidhuber, NC 1977]

Long-Short Term Memory (LSTM)

Long-Short Term Memory (LSTM)

Cell state / memory

| 0.1 |
| :---: |
| -0.6 |
| 0.1 |
| 0.55 |
| -0.67 |
| 0.4 |
| 0.01 |
| 0.7 |
| \ldots |
| 0.9 |

LSTM Intuition: Forget Gate

Should we continue to remember this "bit" of information or not?

$$
f_{t}=\sigma\left(W_{f} \cdot\left[h_{t-1}, x_{t}\right]+b_{f}\right)
$$

LSTM Intuition: Forget Gate

Should we continue to remember this "bit" of information or not?

Intuition: memory and forget gate output multiply, output of forget gate can be though of as binary (0 or 1)

LSTM Intuition: Forget Gate

Should we continue to remember this "bit" of information or not?

Intuition: memory and forget gate output multiply, output of forget gate can be though of as binary (0 or 1) anything $\times 1=$ anything (remember) anything $\times 0=0$ (forget)

LSTM Intuition: Forget Gate

Should we continue to remember this "bit" of information or not?

LSTM Intuition: Forget Gate

Should we continue to remember this "bit" of information or not?

LSTM Intuition: Forget Gate

Should we continue to remember this "bit" of information or not?

LSTM Intuition: Input Gate

Should we update this "bit" of information or not?
If yes, then what should we remember?

| 0.1 |
| :---: |
| -0.6 |
| 0.1 |
| 0.55 |
| -0.67 |
| 0.4 |
| 0.01 |
| 0.7 |
| \ldots |
| 0.9 |

LSTM Intuition: Memory Update

Forget what needs to be forgotten + memorize what needs to be remembered

$$
C_{t}=f_{t} * C_{t-1}+i_{t} * \tilde{C}_{t}
$$

LSTM Intuition: Memory Update

Forget what needs to be forgotten + memorize what needs to be remembered

LSTM Intuition: Memory Update

Forget what needs to be forgotten + memorize what needs to be remembered

LSTM Intuition: Output Gate

Should we output this bit of information (e.g., to "deeper" LSTM layers)?

$$
\begin{aligned}
o_{t} & =\sigma\left(W_{o}\left[h_{t-1}, x_{t}\right]+b_{o}\right) \\
h_{t} & =o_{t} * \tanh \left(C_{t}\right)
\end{aligned}
$$

LSTM Intuition: Additive Updates

Backpropagation from c_{t} to $\mathrm{c}_{\mathrm{t}-1}$ only elementwise multiplication by
f , no matrix multiply by W

LSTM Intuition: Additive Updates

LSTM Intuition: Additive Updates

Similar to ResNet

LSTM Variants: with Peephole Connections

Lets gates see the cell state / memory

$$
\begin{aligned}
f_{t} & =\sigma\left(W_{f} \cdot\left[\boldsymbol{C}_{t-1}, h_{t-1}, x_{t}\right]+b_{f}\right) \\
i_{t} & =\sigma\left(W_{i} \cdot\left[\boldsymbol{C}_{t-1}, h_{t-1}, x_{t}\right]+b_{i}\right) \\
o_{t} & =\sigma\left(W_{o} \cdot\left[\boldsymbol{C}_{\boldsymbol{t}}, h_{t-1}, x_{t}\right]+b_{o}\right)
\end{aligned}
$$

LSTM Variants: with Peephole Connections

Lets gates see the cell state / memory

$$
\begin{aligned}
f_{t} & =\sigma\left(W_{f} \cdot\left[\boldsymbol{C}_{t-1}, h_{t-1}, x_{t}\right]+b_{f}\right) \\
i_{t} & =\sigma\left(W_{i} \cdot\left[\boldsymbol{C}_{t-1}, h_{t-1}, x_{t}\right]+b_{i}\right) \\
o_{t} & =\sigma\left(W_{o} \cdot\left[\boldsymbol{C}_{\boldsymbol{t}}, h_{t-1}, x_{t}\right]+b_{o}\right)
\end{aligned}
$$

LSTM Variants: with Coupled Gates

Only memorize new information when you're forgetting old

$$
C_{t}=f_{t} * C_{t-1}+\left(1-f_{t}\right) * \tilde{C}_{t}
$$

Gated Recurrent Unit (GRU)

No explicit memory; memory = hidden output

$$
\begin{aligned}
z_{t} & =\sigma\left(W_{z} \cdot\left[h_{t-1}, x_{t}\right]\right) \\
r_{t} & =\sigma\left(W_{r} \cdot\left[h_{t-1}, x_{t}\right]\right) \\
\tilde{h}_{t} & =\tanh \left(W \cdot\left[r_{t} * h_{t-1}, x_{t}\right]\right) \\
h_{t} & =\left(1-z_{t}\right) * h_{t-1}+z_{t} * \tilde{h}_{t}
\end{aligned}
$$

$z=$ memorize new and forget old

LSTM/RNN Challenges

- LSTM can remember some history, but not too long
- LSTM assumes data is regularly sampled

Phased LSTM

Gates are controlled by phased (periodic) oscillations

Bi-directional RNNs/LSTMs

$$
\begin{gathered}
y_{t}=W_{h y} h_{t}+b_{y} \\
h_{t}=f_{W}\left(h_{t-1}, x_{t}\right) \\
h_{t}=\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}+b_{h}\right)
\end{gathered}
$$

Bi-directional RNNs/LSTMs

$$
\begin{gathered}
y_{t}=W_{h y}\left[\vec{h}_{t}, \overleftarrow{h}_{t}\right]^{T}+b_{y} \\
\vec{h}_{t}=f_{\vec{W}}\left(\vec{h}_{t-1}, x_{t}\right) \\
\overleftarrow{h}_{t}=f_{\overleftarrow{W}}\left(\overleftarrow{h}_{t+1}, x_{t}\right) \\
\vec{h}_{t}=\tanh \left(\vec{W}_{h h} \vec{h}_{t-1}+\vec{W}_{x h} x_{t}+\vec{b}_{h}\right) \\
\overleftarrow{h}_{t}=\tanh \left(\overleftarrow{W}_{h h} \overleftarrow{h}_{t+1}+\overleftarrow{W}_{x h} x_{t}+\overleftarrow{b}_{h}\right)
\end{gathered}
$$

Attention Mechanisms and RNNs

Consider a translation task: This is one of the first neural translation models

Attention Mechanisms and RNNs

Consider a translation task with a bi-directional encoder of the source language

Attention Mechanisms and RNNs

Consider a translation task with a bi-directional encoder of the source language

Attention Mechanisms and RNNs

Consider a translation task with a bi-directional encoder of the source language

Build a small neural network (one layer) with softmax output that takes
(1) everything decoded so far and (encoded by previous decoder state Zi)
(2) encoding of the current word (encoded by the hidden state of encoder hj)
and predicts relevance of every source word towards next translation

Attention Mechanisms and RNNs

Consider a translation task with a bi-directional encoder of the source language

Build a small neural network (one layer) with softmax output that takes
(1) everything decoded so far and (encoded by previous decoder state Zi)
(2) encoding of the current word (encoded by the hidden state of encoder hj)
and predicts relevance of every source word towards next translation

Soft Attention in details

Soft Attention in details

$$
\beta_{i, t}=\operatorname{score}\left(\mathbf{h}_{i}^{(e n c)}, \mathbf{h}_{t}^{(d e c)}\right)
$$

Relevance of encoding at token i for decoding token t

Soft Attention in details

$\beta_{i, t}=\operatorname{score}\left(\mathbf{h}_{i}^{(e n c)}, \mathbf{h}_{t}^{(d e c)}\right)$
Relevance of encoding at token i for decoding token t

$\alpha_{i, t}=\operatorname{Softmax}\left(\beta_{i, t}\right)$
Normalize the weights to sum to 1

Soft Attention in details

$$
\beta_{i, t}=\operatorname{score}\left(\mathbf{h}_{i}^{(e n c)}, \mathbf{h}_{t}^{(d e c)}\right)
$$

Relevance of encoding at token i for decoding token t

$\alpha_{i, t}=\operatorname{Softmax}\left(\beta_{i, t}\right)$
Normalize the weights
to sum to 1
$\mathbf{c}_{t}=\sum_{i} \alpha_{i, t} \mathbf{h}_{i}^{(e n c)}$
Form a context vector that would simply be added to the standard decoder input

Soft Attention in details

$\beta_{i, t}=\operatorname{score}\left(\mathbf{h}_{i}^{(e n c)}, \mathbf{h}_{t} \nu^{c c}\right)$
Relevance of encoding at token i for decoding token t
$\alpha_{i, t}=\operatorname{Softmax}\left(\beta_{i, t}\right)$
Normalize the weights
to sum to 1
$\mathbf{c}_{t}=\sum_{i} \alpha_{i, t} \mathbf{h}_{i}^{(e n c)}$
Form a context vector that would simply be added to the standard decoder input

Soft Attention in details

$$
\begin{aligned}
& \alpha_{i, t}=\operatorname{Softmax}\left(\beta_{i, t}\right) \\
& \text { Normalize the weights } \\
& \beta_{i, t}=\operatorname{score}\left(\mathbf{h}_{i}^{(e n c)}, \mathbf{x}_{t}^{(d e c)}\right) \\
& \beta_{i, t}=\operatorname{score}\left(\mathbf{h}_{i}^{(e n c)}, \mathbf{h}_{t-1}^{(d e c)}\right) \\
& \beta_{i, t}=\operatorname{score}\left(\mathbf{h}_{i}^{(e n c)},\left[\mathbf{x}_{t}^{(d e c)}, \mathbf{h}_{t-1}^{(d e c)}\right]\right) \\
& \beta_{i, t}=\operatorname{score}\left(\mathbf{h}_{i}^{(e n c)}, \mathbf{h}_{t}{ }_{y}(c)\right) \\
& \text { Relevance of encoding at } \\
& \text { token i for decoding token } t \\
& \text { to sum to } 1 \\
& \mathbf{c}_{t}=\sum_{i} \alpha_{i, t} \mathbf{h}_{i}^{(e n c)} \\
& \text { Form a context vector that would simply be added to the standard decoder input }
\end{aligned}
$$

Soft Attention in details

$\alpha_{i, t}=\operatorname{Softmax}\left(\beta_{i, t}\right)$
$\mathbf{c}_{t}=\sum_{i} \alpha_{i, t} \mathbf{h}_{i}^{(e n c)}$
Value: \mathbf{V}_{i}

Normalize the weights
to sum to 1

Form a context vector that would simply be added to the standard decoder input

[^0]: * slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

