
Lecture 10: RNNs (Part 2)

Topics in AI (CPSC 532S):
Multimodal Learning with Vision, Language and Sound

Course Logistics

— Assignment 3 due next week

— Assignment 1 & 2 is being graded (solution will be out this week)

— Course Projects

Final Project — Reminder

• Group project (groups of 3 are encouraged, but fewer is OK)

• Groups are self-formed

• You need to come up with a project proposal and then work on the project
as a group (each person in the group gets the same grade for the project)

• Project needs to be research oriented (not simply implementing an existing
paper); you can use code of existing paper as a starting point though

Project proposal and class presentation
Presentation (~3-5 minutes irrespective of the group size)
1. Clear explanation of the overall problem you want to solve and relationship to the topics covered in class

2. What model/algorithms you planning to explore: this can be somewhat abstract (e.g., CNN+RNN)

3. The dataset(s) you will use and how will you evaluate performance

4. List of papers you plan to read as references

5. How will you structure the project, who will do what and a rough timeline

After proposal you will get the feedback from me

Project proposal and class presentation
Presentation (~3-5 minutes irrespective of the group size)
1. Clear explanation of the overall problem you want to solve and relationship to the topics covered in class

2. What model/algorithms you planning to explore: this can be somewhat abstract (e.g., CNN+RNN)

3. The dataset(s) you will use and how will you evaluate performance

4. List of papers you plan to read as references

5. How will you structure the project, who will do what and a rough timeline

Proposal
— Same as above but in more detail, with well defined algorithms and timeline

— Will be in the form of the PDF document (initial paper draft)

After proposal you will get the feedback from me

Review: One Hot Encoding

dog
cat
person
holding
tree
computer
using

Vocabulary

*slide from V. Ordonex

Review: One Hot Encoding

dog
cat
person
holding
tree
computer
using

1
2
3
4
5
6
7

Vocabulary

*slide from V. Ordonex

Review: One Hot Encoding

dog
cat
person
holding
tree
computer
using

1
2
3
4
5
6
7

one-hot encodings

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

Vocabulary

*slide from V. Ordonex

Review: Neural-based Language Mode

* Slides from Louis-Philippe Morency

Review: Neural-based Language Mode

* Slides from Louis-Philippe Morency

Problem: Does not model sequential information (too local)

Review: Neural-based Language Mode

* Slides from Louis-Philippe Morency

Problem: Does not model sequential information (too local)

We need sequence modeling!

Review: Sequences Models

Input: No sequence
Output: No seq.

Example:
“standard”

classification /
regression problems

Input: No
sequence
Output:

Sequence
Example:

Im2Caption

Input: Sequence
Output: No seq.

Example: sentence
classification,

multiple-choice
question answering

Input: Sequence
Output: Sequence

Example: machine translation, video captioning,
open-ended question answering, video question

answering

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

(Vanilla) Recurrent Neural Network

x

RNN

y

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

(Vanilla) Recurrent Neural Network

x

RNN

y

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

(Vanilla) Recurrent Neural Network

x

RNN

y

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

(Vanilla) Recurrent Neural Network

x

RNN

y

Intuition: RNN incorporates one element of sequence at a time
(e.g. letter, word, video frame, etc.)

building up a representation of the sequence “so far”

(Vanilla) Recurrent Neural Network

x

RNN

y

Intuition: RNN incorporates one element of sequence at a time
(e.g. letter, word, video frame, etc.)

building up a representation of the sequence “so far”

Alternative: RNN computes a representation of sequence element
(e.g. letter, word, video frame, etc.)

with context provided by all previous processed elements

Sequence to Sequence: Many to One + One to Many

h0 fW h1 fW h2 fW h3

x3

…

x2x1W1

hT

Many to one: Encode input
sequence in a single vector

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Sequence to Sequence: Many to One + One to Many

h0 fW h1 fW h2 fW h3

x3

…

x2x1W1

hT

Many to one: Encode input
sequence in a single vector

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Basically a fully connected
layer (with shared params)

Sequence to Sequence: Many to One + One to Many

h0 fW h1 fW h2 fW h3

x3

…

x2x1W1

hT

Many to one: Encode input
sequence in a single vector

y1 y2

fW h1 fW h2 fW

W2

One to many: Produce output
sequence from single input vector

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Assignment 3: Part 1

Example: Character-level Language Model (Training)

Assignment 3: Decoder of Part 1
(encoder is similar, but with no outputs, so easier)

Example: Character-level Language Model (Training)

Vocabulary:
[‘h’, ‘e’, ‘l’, ‘o’]

Example training sequence:
“hello”

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Example: Character-level Language Model (Training)

Vocabulary:
[‘h’, ‘e’, ‘l’, ‘o’]

Example training sequence:
“hello”

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Example: Character-level Language Model (Training)

Vocabulary:
[‘h’, ‘e’, ‘l’, ‘o’]

Example training sequence:
“hello”

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Example: Character-level Language Model (Sampling)

Vocabulary:
[‘h’, ‘e’, ‘l’, ‘o’]

At test time sample one
character at a time and feed
back to the model

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02.08

.79
Softmax

“e” “l” “l” “o”Sample

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Example: Character-level Language Model (Sampling)

Vocabulary:
[‘h’, ‘e’, ‘l’, ‘o’]

At test time sample one
character at a time and feed
back to the model

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02.08

.79
Softmax

“e” “l” “l” “o”Sample

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Example: Character-level Language Model (Sampling)

Vocabulary:
[‘h’, ‘e’, ‘l’, ‘o’]

At test time sample one
character at a time and feed
back to the model

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02.08

.79
Softmax

“e” “l” “l” “o”Sample

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Example: Character-level Language Model (Sampling)

Vocabulary:
[‘h’, ‘e’, ‘l’, ‘o’]

At test time sample one
character at a time and feed
back to the model

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79

Softmax

“e” “l” “l” “o”Sample

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79

Softmax

“e” “l” “l” “o”Sample

Inverse Transform Sampling

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

“h” “e” “l” “o”

0.03

0.16

1.00

Draw rand() from Uniform,
then look up the bin

Example: Character-level Language Model (Sampling)

CDF

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79

Softmax

“e” “l” “l” “o”Sample

Inverse Transform Sampling

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

“h” “e” “l” “o”

0.03

0.16

1.00

Draw rand() from Uniform,
then look up the bin

Example: Character-level Language Model (Sampling)

CDF

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79

Softmax

“e” “l” “l” “o”Sample

Inverse Transform Sampling

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

“h” “e” “l” “o”

0.03

0.16

1.00

Draw rand() from Uniform,
then look up the bin

Example: Character-level Language Model (Sampling)

CDF

Sampling vs. ArgMax vs. Beam Search

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79

Softmax

“o” “o” “l” “o”ArgMax

Sampling: allows to generate
diverse outputs

ArgMax: could be more stable in
practice

Beam Search: typically gets the
best results

Beam Search

Beam Search

Teacher Forcing

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02.08

.79
Softmax

“e” “l” “l” “o”SampleTraining Objective: Predict the next word
 (cross entropy loss)

Testing: Sample the full sequence

Teacher Forcing

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02.08

.79
Softmax

“e” “l” “l” “o”Sample

Testing: Sample the full sequence

Training Objective: Predict the next word
 (cross entropy loss)

Training and testing objectives are not consistent!
(in training we did not anticipate that errors)

Teacher Forcing
Slowly move from Teacher Forcing to Sampling

[Bengio et al., 2015]

* slide from Marco Pedersoli and Thomas Lucas

Note: for the Assignment 3 its OK to sample once
per sequence (not per step as is illustrated here)

Teacher Forcing
Slowly move from Teacher Forcing to Sampling

Probability of sampling from
the ground truth

[Bengio et al., 2015]

* slide from Marco Pedersoli and Thomas Lucas

Note: for the Assignment 3 its OK to sample once
per sequence (not per step as is illustrated here)

Baseline: Google NIC captioning model

Baseline with Dropout: Regularized RNN version

Always sampling: Use sampling from the beginning of training

Scheduled sampling: Sampling with inverse Sigmoid decay

Uniformed scheduled sampling: Scheduled sampling but uniformly

Teacher Forcing

* slide from Marco Pedersoli and Thomas Lucas

BackProp Through Time

Loss

Forward through entire sequence to compute loss, then backward through entire
sequence to compute gradient

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Truncated BackProp Through Time

Loss

Run backwards and forwards through (fixed length) chunks of the sequence,
instead of the whole sequence

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Truncated BackProp Through Time
Run backwards and forwards through (fixed length) chunks of the sequence,
instead of the whole sequence

Loss Carry hidden states
forward, but only
BackProp through some
smaller number of steps

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Truncated BackProp Through Time
Run backwards and forwards through (fixed length) chunks of the sequence,
instead of the whole sequence

Loss

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Learning to Write Like Shakespeare — Training Decoder

x

RNN

y

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

train more

train more

train more

at first:

Learning to Write Like Shakespeare … after training a bit

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Learning to Write Like Shakespeare … after training

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Learning Code
Trained on entire source code of Linux kernel

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

DopeLearning: Computational Approach to Rap Lyrics

[Malmi et al., KDD 2016]

Sunspring: First movie generated by AI

Multilayer RNNs

time

depth

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Vanilla RNN Gradient Flow

ht-1

xt

W

stack

tanh

ht

[Bengio et al., 1994]
[Pascanu et al., ICML 2013]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Vanilla RNN Gradient Flow

ht-1

xt

W

stack

tanh

ht

[Bengio et al., 1994]
[Pascanu et al., ICML 2013]

Backpropagation from ht to ht-1
multiplies by W (actually WhhT)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Vanilla RNN Gradient Flow [Bengio et al., 1994]
[Pascanu et al., ICML 2013]

h0

x1

W
stack

tanh

h1

x2

W
stack

tanh

h2

x3

W
stack

tanh

h3

x4

W
stack

tanh

h4

Computing gradient
of h0 involves many
factors of W
(and repeated tanh)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

h0

x1

W
stack

tanh

h1

x2

W
stack

tanh

h2

x3

W
stack

tanh

h3

x4

W
stack

tanh

h4

Vanilla RNN Gradient Flow [Bengio et al., 1994]
[Pascanu et al., ICML 2013]

Computing gradient
of h0 involves many
factors of W
(and repeated tanh)

 Fully connected

 Fully connected

 Fully connected

 Fully connected

h0 x1 x2 x3 x4

h1

h2

h3

h4

Vanilla RNN Gradient Flow [Bengio et al., 1994]
[Pascanu et al., ICML 2013]

h0

x1

W
stack

tanh

h1

x2

W
stack

tanh

h2

x3

W
stack

tanh

h3

x4

W
stack

tanh

h4

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Computing gradient
of h0 involves many
factors of W
(and repeated tanh)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Vanilla RNN Gradient Flow [Bengio et al., 1994]
[Pascanu et al., ICML 2013]

h0

x1

W
stack

tanh

h1

x2

W
stack

tanh

h2

x3

W
stack

tanh

h3

x4

W
stack

tanh

h4

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Computing gradient
of h0 involves many
factors of W
(and repeated tanh)

Gradient clipping: Scale
gradient if its norm is too big

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Vanilla RNN Gradient Flow [Bengio et al., 1994]
[Pascanu et al., ICML 2013]

h0

x1

W
stack

tanh

h1

x2

W
stack

tanh

h2

x3

W
stack

tanh

h3

x4

W
stack

tanh

h4

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Computing gradient
of h0 involves many
factors of W
(and repeated tanh) Change RNN architecture

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Long-Short Term Memory (LSTM)

Vanilla RNN LSTM

[Hochreiter and Schmidhuber, NC 1977]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

fully connected layer of size |h| x (|x| + |h|) with
tanh activation function

four fully connected layers of size |h| x (|x| + |h|) with
sigmoid and tanh activation function

Long-Short Term Memory (LSTM)

Vanilla RNN LSTM

[Hochreiter and Schmidhuber, NC 1977]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

fully connected layer of size |h| x (|x| + |h|) with
tanh activation function

four fully connected layers of size |h| x (|x| + |h|) with
sigmoid and tanh activation function

Long-Short Term Memory (LSTM)

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

Long-Short Term Memory (LSTM)

Cell state / memory

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

0.1
-0.6
0.1
0.55
-0.67
0.4
0.01
0.7
…
0.9

LSTM Intuition: Forget Gate

Should we continue to remember this “bit” of information or not?

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

0.1
-0.6
0.1
0.55
-0.67
0.4
0.01
0.7
…
0.9

LSTM Intuition: Forget Gate

Should we continue to remember this “bit” of information or not?

Intuition: memory and forget gate output multiply, output of forget gate can
be though of as binary (0 or 1)

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

0.1
-0.6
0.1
0.55
-0.67
0.4
0.01
0.7
…
0.9

LSTM Intuition: Forget Gate

Should we continue to remember this “bit” of information or not?

Intuition: memory and forget gate output multiply, output of forget gate can
be though of as binary (0 or 1)

anything x 0 = 0 (forget)
anything x 1 = anything (remember)

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

0.1
-0.6
0.1
0.55
-0.67
0.4
0.01
0.7
…
0.9

0
0
0
0
1
1
1
1
…
1

LSTM Intuition: Forget Gate

Should we continue to remember this “bit” of information or not?

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

0.1
-0.6
0.1
0.55
-0.67
0.4
0.01
0.7
…
0.9

0
0
0
0
1
1
1
1
…
1

0
0
0
0

-0.67
0.4
0.01
0.7
…
0.9

x =

selective read

LSTM Intuition: Forget Gate

Should we continue to remember this “bit” of information or not?

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

0.1
-0.6
0.1
0.55
-0.67
0.4
0.01
0.7
…
0.9

0.1
0.6
0.5
0.3
0.8
0.2
0.1
1
…
0.9

..

..

..

..

..

..

..

..
…
..

x =

selective read

LSTM Intuition: Forget Gate

Should we continue to remember this “bit” of information or not?

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

0.1
-0.6
0.1
0.55
-0.67
0.4
0.01
0.7
…
0.9

0.1
0.9
0.8
0.1
0

0.2
0
1
…
0.4

LSTM Intuition: Input Gate

Should we update this “bit” of information or not?
If yes, then what should we remember?

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

0.1
-0.6
0.1
0.55
-0.67
0.4
0.01
0.7
…
0.9

1
1
1
1
0
0
0
0
…
0 0.3

0.5
0.62
-0.34
0.43
-0.78
0.1

-0.45
…
0.9

LSTM Intuition: Memory Update

Forget what needs to be forgotten + memorize what needs to be remembered

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

0.1
-0.6
0.1
0.55
-0.67
0.4
0.01
0.7
…
0.9

LSTM Intuition: Memory Update

Forget what needs to be forgotten + memorize what needs to be remembered

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

0.1
-0.6
0.1
0.55
-0.67
0.4
0.01
0.7
…
0.9

0.1
-0.6
0.1
0.55
-0.67
0.4
0.01
0.7
…
0.9

0
0
0
0
1
1
1
1
…
1

selective write

1
1
1
1
0
0
0
0
…
0

0.3
0.5
0.62
-0.34
0.43
-0.78
0.1

-0.45
…
0.9

x=

0.3
0.5
0.62
-0.34
-0.67
0.4
0.01
0.7
…
0.9

+ x

LSTM Intuition: Memory Update

Forget what needs to be forgotten + memorize what needs to be remembered

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

0.1
-0.6
0.1
0.55
-0.67
0.4
0.01
0.7
…
0.9

0.1
-0.6
0.1
0.55
-0.67
0.4
0.01
0.7
…
0.9

0.1
0.4
0.1
0.6
1

0.7
0.1
0
1
…
0.3

selective write

0.4
0.6
0.5
1

0.1
0.4
0.5
0.2
…
0.6

0.3
0.5
0.62
-0.34
0.43
-0.78
0.1

-0.45
…
0.9

x=

..

..

..

..

..

..

..

..
…
..

+ x

LSTM Intuition: Output Gate

Should we output this bit of information (e.g., to “deeper” LSTM layers)?

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

LSTM Intuition: Additive Updates
Backpropagation from ct to ct-1 only elementwise multiplication by

f, no matrix multiply by W

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

Uninterrupted gradient flow!

LSTM Intuition: Additive Updates

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

Uninterrupted gradient flow!

LSTM Intuition: Additive Updates

Input

Softm
ax

3x3 conv, 64

7x7 conv, 64 / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128 / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

...

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

Pool
Similar to ResNet

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

LSTM Variants: with Peephole Connections

Lets gates see the cell state / memory

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

LSTM Variants: with Peephole Connections

Lets gates see the cell state / memory

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

LSTM Variants: with Coupled Gates

Only memorize new information when you’re forgetting old

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

Gated Recurrent Unit (GRU)

No explicit memory; memory = hidden output

z = memorize new and forget old

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

LSTM/RNN Challenges

— LSTM can remember some history, but not too long
— LSTM assumes data is regularly sampled

Phased LSTM

Gates are controlled by phased (periodic) oscillations

[Neil et al., 2016]

Bi-directional RNNs/LSTMs

ht = fW (ht�1, xt)

yt = Whyht + by

ht = tanh(Whhht�1 +Wxhxt + bh)

ht = fW (ht�1, xt)

yt = Whyht + by

ht = tanh(Whhht�1 +Wxhxt + bh)

ht = fW (ht�1, xt)

yt = Whyht + by

ht = tanh(Whhht�1 +Wxhxt + bh)

�!
h t = f�!

W
(
�!
h t�1, xt)

 �
h t = f �

W
(
 �
h t+1, xt)

yt = Why[
�!
h t,
 �
h t]

T + by

�!
h t = tanh(

�!
Whh

�!
h t�1 +

�!
W xhxt +

�!
b h)

 �
h t = tanh(

 �
Whh

 �
h t+1 +

 �
W xhxt +

 �
b h)

�!
h t = f�!

W
(
�!
h t�1, xt)

 �
h t = f �

W
(
 �
h t+1, xt)

yt = Why[
�!
h t,
 �
h t]

T + by

�!
h t = tanh(

�!
Whh

�!
h t�1 +

�!
W xhxt +

�!
b h)

 �
h t = tanh(

 �
Whh

 �
h t+1 +

 �
W xhxt +

 �
b h)

�!
h t = f�!

W
(
�!
h t�1, xt)

 �
h t = f �

W
(
 �
h t+1, xt)

yt = Why[
�!
h t,
 �
h t]

T + by

�!
h t = tanh(

�!
Whh

�!
h t�1 +

�!
W xhxt +

�!
b h)

 �
h t = tanh(

 �
Whh

 �
h t+1 +

 �
W xhxt +

 �
b h)

Bi-directional RNNs/LSTMs

�!
h t = f�!

W
(
�!
h t�1, xt)

 �
h t = f �

W
(
 �
h t+1, xt)

yt = Why[
�!
h t,
 �
h t]

T + by

�!
h t = tanh(

�!
Whh

�!
h t�1 +

�!
W xhxt +

�!
b h)

 �
h t = tanh(

 �
Whh

 �
h t+1 +

 �
W xhxt +

 �
b h)

�!
h t = f�!

W
(
�!
h t�1, xt)

 �
h t = f �

W
(
 �
h t+1, xt)

yt = Why[
�!
h t,
 �
h t]

T + by

�!
h t = tanh(

�!
Whh

�!
h t�1 +

�!
W xhxt +

�!
b h)

 �
h t = tanh(

 �
Whh

 �
h t+1 +

 �
W xhxt +

 �
b h)

Attention Mechanisms and RNNs
Consider a translation task: This is one of the first neural translation models

En
gl

is
h

En
co

de
r

Fr
en

ch
 D

ec
od

er

Summary Vector

https://devblogs.nvidia.com/introduction-neural-machine-translation-gpus-part-3/

Attention Mechanisms and RNNs
Consider a translation task with a bi-directional encoder of the source language

En
gl

is
h

En
co

de
r

https://devblogs.nvidia.com/introduction-neural-machine-translation-gpus-part-3/

Attention Mechanisms and RNNs
Consider a translation task with a bi-directional encoder of the source language

En
gl

is
h

En
co

de
r

Fr
en

ch
 D

ec
od

er

https://devblogs.nvidia.com/introduction-neural-machine-translation-gpus-part-3/

Attention Mechanisms and RNNs
Consider a translation task with a bi-directional encoder of the source language

Fr
en

ch
 D

ec
od

er

Build a small neural network (one layer) with softmax output that takes
(1) everything decoded so far and (encoded by previous decoder state Zi)
(2) encoding of the current word (encoded by the hidden state of encoder hj)

and predicts relevance of every source word towards next translation

[Cho et al., 2015]

https://devblogs.nvidia.com/introduction-neural-machine-translation-gpus-part-3/

Attention Mechanisms and RNNs
Consider a translation task with a bi-directional encoder of the source language

Fr
en

ch
 D

ec
od

er

Build a small neural network (one layer) with softmax output that takes
(1) everything decoded so far and (encoded by previous decoder state Zi)
(2) encoding of the current word (encoded by the hidden state of encoder hj)

and predicts relevance of every source word towards next translation

ci =
TX

j=1

↵jhj

[Cho et al., 2015]

https://devblogs.nvidia.com/introduction-neural-machine-translation-gpus-part-3/

Soft Attention in details

�i,t = score(h(enc)
i ,h(dec)

t)

�i,t = score(h(enc)
i ,h(dec)

t�1)

�i,t = score(h(enc)
i , [x(dec)

t ,h(dec)
t�1])

�i,t = score(h(enc)
i ,x(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

�i,t = score(h(enc)
i ,h(dec)

t)

�i,t = score(h(enc)
i ,h(dec)

t�1)

�i,t = score(h(enc)
i , [x(dec)

t ,h(dec)
t�1])

�i,t = score(h(enc)
i ,x(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

Soft Attention in details

�i,t = score(h(enc)
i ,h(dec)

t)

�i,t = score(h(enc)
i ,h(dec)

t�1)

�i,t = score(h(enc)
i , [x(dec)

t ,h(dec)
t�1])

�i,t = score(h(enc)
i ,x(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

Relevance of encoding at
token i for decoding token t

�i,t = score(h(enc)
i ,h(dec)

t)

�i,t = score(h(enc)
i ,h(dec)

t�1)

�i,t = score(h(enc)
i , [x(dec)

t ,h(dec)
t�1])

�i,t = score(h(enc)
i ,x(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

�i,t = score(h(enc)
i ,h(dec)

t)

�i,t = score(h(enc)
i ,h(dec)

t�1)

�i,t = score(h(enc)
i , [x(dec)

t ,h(dec)
t�1])

�i,t = score(h(enc)
i ,x(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

Soft Attention in details

�i,t = score(h(enc)
i ,h(dec)

t)

�i,t = score(h(enc)
i ,h(dec)

t�1)

�i,t = score(h(enc)
i , [x(dec)

t ,h(dec)
t�1])

�i,t = score(h(enc)
i ,x(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

Relevance of encoding at
token i for decoding token t

�i,t = score(h(enc)
i ,h(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

Normalize the weights
to sum to 1

�i,t = score(h(enc)
i ,h(dec)

t)

�i,t = score(h(enc)
i ,h(dec)

t�1)

�i,t = score(h(enc)
i , [x(dec)

t ,h(dec)
t�1])

�i,t = score(h(enc)
i ,x(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

�i,t = score(h(enc)
i ,h(dec)

t)

�i,t = score(h(enc)
i ,h(dec)

t�1)

�i,t = score(h(enc)
i , [x(dec)

t ,h(dec)
t�1])

�i,t = score(h(enc)
i ,x(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

Soft Attention in details

�i,t = score(h(enc)
i ,h(dec)

t)

�i,t = score(h(enc)
i ,h(dec)

t�1)

�i,t = score(h(enc)
i , [x(dec)

t ,h(dec)
t�1])

�i,t = score(h(enc)
i ,x(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

Relevance of encoding at
token i for decoding token t

�i,t = score(h(enc)
i ,h(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

Normalize the weights
to sum to 1

�i,t = score(h(enc)
i ,h(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i Form a context vector that would simply be added to the standard decoder input

�i,t = score(h(enc)
i ,h(dec)

t)

�i,t = score(h(enc)
i ,h(dec)

t�1)

�i,t = score(h(enc)
i , [x(dec)

t ,h(dec)
t�1])

�i,t = score(h(enc)
i ,x(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

�i,t = score(h(enc)
i ,h(dec)

t)

�i,t = score(h(enc)
i ,h(dec)

t�1)

�i,t = score(h(enc)
i , [x(dec)

t ,h(dec)
t�1])

�i,t = score(h(enc)
i ,x(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

Soft Attention in details

�i,t = score(h(enc)
i ,h(dec)

t)

�i,t = score(h(enc)
i ,h(dec)

t�1)

�i,t = score(h(enc)
i , [x(dec)

t ,h(dec)
t�1])

�i,t = score(h(enc)
i ,x(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

Relevance of encoding at
token i for decoding token t

�i,t = score(h(enc)
i ,h(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

Normalize the weights
to sum to 1

�i,t = score(h(enc)
i ,h(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i Form a context vector that would simply be added to the standard decoder input

�i,t = score(h(enc)
i ,h(dec)

t)

�i,t = score(h(enc)
i ,h(dec)

t�1)

�i,t = score(h(enc)
i , [x(dec)

t ,h(dec)
t�1])

�i,t = score(h(enc)
i ,x(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

�i,t = score(h(enc)
i ,h(dec)

t)

�i,t = score(h(enc)
i ,h(dec)

t�1)

�i,t = score(h(enc)
i , [x(dec)

t ,h(dec)
t�1])

�i,t = score(h(enc)
i ,x(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

Soft Attention in details

�i,t = score(h(enc)
i ,h(dec)

t)

�i,t = score(h(enc)
i ,h(dec)

t�1)

�i,t = score(h(enc)
i , [x(dec)

t ,h(dec)
t�1])

�i,t = score(h(enc)
i ,x(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

Relevance of encoding at
token i for decoding token t

�i,t = score(h(enc)
i ,h(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

Normalize the weights
to sum to 1

�i,t = score(h(enc)
i ,h(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i Form a context vector that would simply be added to the standard decoder input

�i,t = score(h(enc)
i ,h(dec)

t)

�i,t = score(h(enc)
i ,h(dec)

t�1)

�i,t = score(h(enc)
i , [x(dec)

t ,h(dec)
t�1])

�i,t = score(h(enc)
i ,x(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

�i,t = score(h(enc)
i ,h(dec)

t)

�i,t = score(h(enc)
i ,h(dec)

t�1)

�i,t = score(h(enc)
i , [x(dec)

t ,h(dec)
t�1])

�i,t = score(h(enc)
i ,x(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

�i,t = score(h(enc)
i ,h(dec)

t)

�i,t = score(h(enc)
i ,h(dec)

t�1)

�i,t = score(h(enc)
i , [x(dec)

t ,h(dec)
t�1])

�i,t = score(h(enc)
i ,x(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

�i,t = score(h(enc)
i ,h(dec)

t)

�i,t = score(h(enc)
i ,h(dec)

t�1)

�i,t = score(h(enc)
i , [x(dec)

t ,h(dec)
t�1])

�i,t = score(h(enc)
i ,x(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

�i,t = score(h(enc)
i ,h(dec)

t)

�i,t = score(h(enc)
i ,h(dec)

t�1)

�i,t = score(h(enc)
i , [x(dec)

t ,h(dec)
t�1])

�i,t = score(h(enc)
i ,x(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

 Value:

�i,t = score(h(enc)
i ,h(dec)

t)

�i,t = score(h(enc)
i ,h(dec)

t�1)

�i,t = score(h(enc)
i , [x(dec)

t ,h(dec)
t�1])

�i,t = score(h(enc)
i ,x(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

Qt

Ki

Vi

 Query:

�i,t = score(h(enc)
i ,h(dec)

t)

�i,t = score(h(enc)
i ,h(dec)

t�1)

�i,t = score(h(enc)
i , [x(dec)

t ,h(dec)
t�1])

�i,t = score(h(enc)
i ,x(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

Qt

 Key:

Soft Attention in details

�i,t = score(h(enc)
i ,h(dec)

t)

�i,t = score(h(enc)
i ,h(dec)

t�1)

�i,t = score(h(enc)
i , [x(dec)

t ,h(dec)
t�1])

�i,t = score(h(enc)
i ,x(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

Relevance of encoding at
token i for decoding token t

�i,t = score(h(enc)
i ,h(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

Normalize the weights
to sum to 1

�i,t = score(h(enc)
i ,h(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i Form a context vector that would simply be added to the standard decoder input

�i,t = score(h(enc)
i ,h(dec)

t)

�i,t = score(h(enc)
i ,h(dec)

t�1)

�i,t = score(h(enc)
i , [x(dec)

t ,h(dec)
t�1])

�i,t = score(h(enc)
i ,x(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

�i,t = score(h(enc)
i ,h(dec)

t)

�i,t = score(h(enc)
i ,h(dec)

t�1)

�i,t = score(h(enc)
i , [x(dec)

t ,h(dec)
t�1])

�i,t = score(h(enc)
i ,x(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

�i,t = score(h(enc)
i ,h(dec)

t)

�i,t = score(h(enc)
i ,h(dec)

t�1)

�i,t = score(h(enc)
i , [x(dec)

t ,h(dec)
t�1])

�i,t = score(h(enc)
i ,x(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

�i,t = score(h(enc)
i ,h(dec)

t)

�i,t = score(h(enc)
i ,h(dec)

t�1)

�i,t = score(h(enc)
i , [x(dec)

t ,h(dec)
t�1])

�i,t = score(h(enc)
i ,x(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

�i,t = score(h(enc)
i ,h(dec)

t)

�i,t = score(h(enc)
i ,h(dec)

t�1)

�i,t = score(h(enc)
i , [x(dec)

t ,h(dec)
t�1])

�i,t = score(h(enc)
i ,x(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

�i,t = score(h(enc)
i ,h(dec)

t)

�i,t = score(h(enc)
i ,h(dec)

t�1)

�i,t = score(h(enc)
i , [x(dec)

t ,h(dec)
t�1])

�i,t = score(h(enc)
i ,x(dec)

t)

↵i,t = Softmax(�i,t)

ct =
X

i

↵i,th
(enc)
i

Qt

Ki

Vi

