
Lecture 9: RNNs (part 2)

Topics in AI (CPSC 532S): 
Multimodal Learning with Vision, Language and Sound



Course Logistics 

— Assignment 3 due date is Wednesday 

— Assignment 1 solutions are out, being graded 
— Assignment 2 solutions will be graded and out soon 

— Course Projects 
Start thinking of ideas and forming groups 
Survey topic discussion 
Student assignment survey will be up by the end of the week



Review: One Hot Encoding

dog   
cat 
person 
holding 
tree 
computer 
using

Vocabulary

*slide from V. Ordonex 
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Review: One Hot Encoding

dog   
cat 
person 
holding 
tree 
computer 
using

1 
2 
3 
4 
5 
6 
7

one-hot encodings

[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ] 

Vocabulary

*slide from V. Ordonex 



Review: Neural-based Language Mode

* Slides from Louis-Philippe Morency
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Problem: Does not model sequential information (too local)



Review: Neural-based Language Mode

* Slides from Louis-Philippe Morency

Problem: Does not model sequential information (too local)

We need sequence modeling!



Review: Sequences Models

Input: No sequence 
Output: No seq. 

Example: 
“standard” 

classification /  
regression problems

Input: No 
sequence 
Output: 

Sequence 
Example: 

Im2Caption

Input: Sequence 
Output: No seq. 

Example: sentence 
classification, 

multiple-choice 
question answering

Input: Sequence 
Output: Sequence 

Example: machine translation, video captioning, 
open-ended question answering, video question 

answering

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



(Vanilla) Recurrent Neural Network

x

RNN

y
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(Vanilla) Recurrent Neural Network

x

RNN
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Intuition: RNN incorporates one element of sequence at a time 
(e.g. letter, word, video frame, etc.)  

building up a representation of the sequence “so far”



(Vanilla) Recurrent Neural Network

x

RNN

y

Intuition: RNN incorporates one element of sequence at a time 
(e.g. letter, word, video frame, etc.)  

building up a representation of the sequence “so far”

Alternative: RNN computes a representation of sequence element 
(e.g. letter, word, video frame, etc.)  

with context provided by all previous processed elements



(Vanilla) Recurrent Neural Network

x

RNN

y

dog   
cat 
person 
holding 
tree 
computer 
using

1 
2 
3 
4 
5 
6 
7

one-hot encodings

[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ] 

Vocabulary

person holding dog



(Vanilla) Recurrent Neural Network

x

RNN

y

dog   
cat 
person 
holding 
tree 
computer 
using

1 
2 
3 
4 
5 
6 
7

one-hot encodings

[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ] 

Vocabulary

Identity Identity zero

person holding dog



[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

(Vanilla) Recurrent Neural Network

x

RNN

y

dog   
cat 
person 
holding 
tree 
computer 
using

1 
2 
3 
4 
5 
6 
7

one-hot encodings

[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ] 

Vocabulary

Identity Identity zero

person holding dog



[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ]

(Vanilla) Recurrent Neural Network

x

RNN

y

dog   
cat 
person 
holding 
tree 
computer 
using

1 
2 
3 
4 
5 
6 
7

one-hot encodings

[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ] 

Vocabulary

person holding dog

Identity Identity zero



[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ]

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

[ 0, 0, 0.76, 0, 0, 0, 0, 0, 0, 0 ]

(Vanilla) Recurrent Neural Network

x

RNN

y

dog   
cat 
person 
holding 
tree 
computer 
using

1 
2 
3 
4 
5 
6 
7

one-hot encodings

[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ] 

Vocabulary

person holding dog

Identity Identity zero



[ 0, 0, 0.76, 0, 0, 0, 0, 0, 0, 0 ]

(Vanilla) Recurrent Neural Network

x

RNN

y

dog   
cat 
person 
holding 
tree 
computer 
using

1 
2 
3 
4 
5 
6 
7

one-hot encodings

[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ] 

Vocabulary

Identity Identity zero

person holding dog



[ 0, 0, 0.76, 0, 0, 0, 0, 0, 0, 0 ]

person holding dog

[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ]

(Vanilla) Recurrent Neural Network

x

RNN

y

dog   
cat 
person 
holding 
tree 
computer 
using

1 
2 
3 
4 
5 
6 
7

one-hot encodings

[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ] 

Vocabulary

Identity Identity zero



person holding dog

[ 0, 0, 0.76, 0, 0, 0, 0, 0, 0, 0 ]

[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ]

(Vanilla) Recurrent Neural Network

x

RNN

y

dog   
cat 
person 
holding 
tree 
computer 
using

1 
2 
3 
4 
5 
6 
7

one-hot encodings

[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ] 

Vocabulary

Identity Identity zero

[ 0, 0, 0.64, 0.76, 0, 0, 0, 0, 0, 0 ]



Like bag of words with some 
notion of recency

[ 0, 0, 0.76, 0, 0, 0, 0, 0, 0, 0 ]

[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ]

(Vanilla) Recurrent Neural Network

x

RNN

y

dog   
cat 
person 
holding 
tree 
computer 
using

1 
2 
3 
4 
5 
6 
7

one-hot encodings

[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ] 

Vocabulary

Identity Identity zero

[ 0, 0, 0.64, 0.76, 0, 0, 0, 0, 0, 0 ]



RNN Computational Graph

h0 fW h1

x1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



RNN Computational Graph

h0 fW h1 fW h2

x2x1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



RNN Computational Graph

h0 fW h1 fW h2 fW h3

x3

… 

x2x1

hT

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



RNN Computational Graph

h0 fW h1 fW h2 fW h3

x3

… 

x2x1W

hT

Re-use the same weight matrix at every time-step

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



RNN Computational Graph: Many to Many

h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1W

hT

y3y2y1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
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RNN Computational Graph: Many to Many

h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1W

hT

y3y2y1 L1 L2 L3 LT
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RNN Computational Graph: Many to Many

h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1W

hT

y3y2y1 L1 L2 L3 LT

L

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



RNN Computational Graph: Many to One

h0 fW h1 fW h2 fW h3

x3

y

… 

x2x1W

hT

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



RNN Computational Graph: One to Many

h0 fW h1 fW h2 fW h3

yT

… 

x
W

hT

y3y2y1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Sequence to Sequence: Many to One + One to Many

h0 fW h1 fW h2 fW h3

x3

… 

x2x1W1

hT

Many to one: Encode input 
sequence in a single vector

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Sequence to Sequence: Many to One + One to Many

h0 fW h1 fW h2 fW h3

x3

… 

x2x1W1

hT

Many to one: Encode input 
sequence in a single vector

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Basically a fully connected  
layer (with shared params) 



Sequence to Sequence: Many to One + One to Many

h0 fW h1 fW h2 fW h3

x3

… 

x2x1W1

hT

Many to one: Encode input 
sequence in a single vector

y1 y2

fW h1 fW h2 fW

W2

One to many: Produce output 
sequence from single input vector

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Assignment 3: Part 1



Example: Character-level Language Model (Training)

Assignment 3: Decoder of Part 1
(encoder is similar, but with no outputs, so easier)



Example: Character-level Language Model (Training)

Vocabulary: 
[‘h’, ‘e’, ‘l’, ‘o’]

Example training sequence: 
“hello”

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Example: Character-level Language Model (Training)

Vocabulary: 
[‘h’, ‘e’, ‘l’, ‘o’]

Example training sequence: 
“hello”

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Example: Character-level Language Model (Training)

Vocabulary: 
[‘h’, ‘e’, ‘l’, ‘o’]

Example training sequence: 
“hello”

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Example: Character-level Language Model (Sampling)

Vocabulary: 
[‘h’, ‘e’, ‘l’, ‘o’]

At test time sample one 
character at a time and feed 
back to the model
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.11 

.02.08 

.79
Softmax

“e” “l” “l” “o”Sample

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Example: Character-level Language Model (Sampling)

Vocabulary: 
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Example: Character-level Language Model (Sampling)

Vocabulary: 
[‘h’, ‘e’, ‘l’, ‘o’]

At test time sample one 
character at a time and feed 
back to the model
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Example: Character-level Language Model (Sampling)

Vocabulary: 
[‘h’, ‘e’, ‘l’, ‘o’]

At test time sample one 
character at a time and feed 
back to the model

.03 

.13 

.00 

.84

.25 

.20 

.05 

.50

.11 

.17 

.68 

.03

.11 

.02.08 

.79
Softmax

“e” “l” “l” “o”Sample

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Sampling vs. ArgMax vs. Beam Search

.03 

.13 

.00 

.84

.25 

.20 

.05 

.50

.11 

.17 

.68 

.03

.11 

.02.08 

.79
Softmax

“e” “l” “l” “o”Sample

Sampling: allows to generate 
diverse outputs

ArgMax: could be more stable in 
practice 

Beam Search: typically gets the 
best results



Beam Search



Beam Search



Teacher Forcing

.03 

.13 

.00 

.84

.25 

.20 

.05 

.50

.11 

.17 

.68 

.03

.11 

.02.08 

.79
Softmax

“e” “l” “l” “o”SampleTraining Objective: Predict the next word 
                                 (cross entropy loss)

Testing: Sample the full sequence



Teacher Forcing

.03 

.13 

.00 

.84

.25 

.20 

.05 

.50

.11 

.17 

.68 

.03

.11 

.02.08 

.79
Softmax

“e” “l” “l” “o”Sample

Testing: Sample the full sequence

Training Objective: Predict the next word 
                                 (cross entropy loss)

Training and testing objectives are not consistent! 
(in training we did not anticipate that errors) 



Teacher Forcing
Slowly move from Teacher Forcing to Sampling

Probability of sampling from 
the ground truth

[ Bengio et al., 2015 ]

* slide from Marco Pedersoli and Thomas Lucas

Note: for the Assignment 3 its OK to sample once 
per sequence (not per step as is illustrated here)



Baseline: Google NIC captioning model 

Baseline with Dropout:  Regularized RNN version  

Always sampling: Use sampling from the beginning of training 

Scheduled sampling: Sampling with inverse Sigmoid decay 

Uniformed scheduled sampling: Scheduled sampling but uniformly 

Teacher Forcing

* slide from Marco Pedersoli and Thomas Lucas



BackProp Through Time

Loss

Forward through entire sequence to compute loss, then backward through entire 
sequence to compute gradient

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Truncated BackProp Through Time

Loss

Run backwards and forwards through (fixed length) chunks of the sequence, 
instead of the whole sequence 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Truncated BackProp Through Time
Run backwards and forwards through (fixed length) chunks of the sequence, 
instead of the whole sequence 

Loss Carry hidden states 
forward, but only 
BackProp through some 
smaller number of steps

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Truncated BackProp Through Time
Run backwards and forwards through (fixed length) chunks of the sequence, 
instead of the whole sequence 

Loss

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Learning to Write Like Shakespeare — Training Decoder

x

RNN

y

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



train more

train more

train more

at first:

Learning to Write Like Shakespeare … after training a bit

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Learning to Write Like Shakespeare … after training

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Learning Code
Trained on entire source code of Linux kernel 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



DopeLearning: Computational Approach to Rap Lyrics

[ Malmi et al., KDD 2016 ]



Sunspring: First movie generated by AI 



Multilayer RNNs

time

depth

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Vanilla RNN Gradient Flow

ht-1

xt

W

stack

tanh

ht

[ Bengio et al., 1994 ]
[ Pascanu et al., ICML 2013 ]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Vanilla RNN Gradient Flow

ht-1

xt

W

stack

tanh

ht

[ Bengio et al., 1994 ]
[ Pascanu et al., ICML 2013 ]

Backpropagation from ht to ht-1 
multiplies by W (actually WhhT)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Vanilla RNN Gradient Flow [ Bengio et al., 1994 ]
[ Pascanu et al., ICML 2013 ]

h0

x1

W
stack

tanh

h1

x2

W
stack

tanh

h2

x3

W
stack

tanh

h3

x4

W
stack

tanh

h4

Computing gradient 
of h0 involves many 
factors of W 
(and repeated tanh)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Vanilla RNN Gradient Flow [ Bengio et al., 1994 ]
[ Pascanu et al., ICML 2013 ]

h0

x1

W
stack

tanh

h1

x2

W
stack

tanh

h2

x3

W
stack

tanh

h3

x4

W
stack

tanh

h4

Largest singular value > 1: 
Exploding gradients 

Largest singular value < 1: 
Vanishing gradients

Computing gradient 
of h0 involves many 
factors of W 
(and repeated tanh)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Vanilla RNN Gradient Flow [ Bengio et al., 1994 ]
[ Pascanu et al., ICML 2013 ]

h0

x1

W
stack

tanh

h1

x2

W
stack

tanh

h2

x3

W
stack

tanh

h3

x4

W
stack

tanh

h4

Largest singular value > 1: 
Exploding gradients 

Largest singular value < 1: 
Vanishing gradients

Computing gradient 
of h0 involves many 
factors of W 
(and repeated tanh)

Gradient clipping: Scale 
gradient if its norm is too big

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Vanilla RNN Gradient Flow [ Bengio et al., 1994 ]
[ Pascanu et al., ICML 2013 ]

h0

x1

W
stack

tanh

h1

x2

W
stack

tanh

h2

x3

W
stack

tanh

h3

x4

W
stack

tanh

h4

Largest singular value > 1: 
Exploding gradients 

Largest singular value < 1: 
Vanishing gradients

Computing gradient 
of h0 involves many 
factors of W 
(and repeated tanh) Change RNN architecture

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Long-Short Term Memory (LSTM)

Vanilla RNN LSTM

[ Hochreiter and Schmidhuber, NC 1977 ]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Long-Short Term Memory (LSTM)

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



Long-Short Term Memory (LSTM)

Cell state / memory 

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



LSTM Intuition: Forget Gate

Should we continue to remember this “bit” of information or not? 

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



LSTM Intuition: Forget Gate

Should we continue to remember this “bit” of information or not? 

Intuition: memory and forget gate output multiply, output of forget gate can 
be though of as binary (0 or 1) 

anything x 0 = 0 (forget)
anything x 1 = anything (remember)

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



LSTM Intuition: Input Gate

Should we update this “bit” of information or not? 
If yes, then what should we remember?

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



LSTM Intuition: Memory Update

Forget what needs to be forgotten + memorize what needs to be remembered

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



LSTM Intuition: Output Gate

Should we output this bit of information (e.g., to “deeper” LSTM layers)? 

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



LSTM Intuition: Additive Updates
Backpropagation from ct to ct-1 only elementwise multiplication by 

f, no matrix multiply by W

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



Uninterrupted gradient flow!

LSTM Intuition: Additive Updates
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Uninterrupted gradient flow!

LSTM Intuition: Additive Updates

Input

Softm
ax

3x3 conv, 64

7x7 conv, 64 / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128 / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

...

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

Pool
Similar to ResNet
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