
Lecture 9: RNNs (part 2)

Topics in AI (CPSC 532S):
Multimodal Learning with Vision, Language and Sound

Course Logistics

— Assignment 3 due date is Wednesday

— Assignment 1 solutions are out, being graded
— Assignment 2 solutions will be graded and out soon

— Course Projects
Start thinking of ideas and forming groups
Survey topic discussion
Student assignment survey will be up by the end of the week

Review: One Hot Encoding

dog
cat
person
holding
tree
computer
using

Vocabulary

*slide from V. Ordonex

Review: One Hot Encoding

dog
cat
person
holding
tree
computer
using

1
2
3
4
5
6
7

Vocabulary

*slide from V. Ordonex

Review: One Hot Encoding

dog
cat
person
holding
tree
computer
using

1
2
3
4
5
6
7

one-hot encodings

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

Vocabulary

*slide from V. Ordonex

Review: Neural-based Language Mode

* Slides from Louis-Philippe Morency

Review: Neural-based Language Mode

* Slides from Louis-Philippe Morency

Problem: Does not model sequential information (too local)

Review: Neural-based Language Mode

* Slides from Louis-Philippe Morency

Problem: Does not model sequential information (too local)

We need sequence modeling!

Review: Sequences Models

Input: No sequence
Output: No seq.

Example:
“standard”

classification /  
regression problems

Input: No
sequence
Output:

Sequence
Example:

Im2Caption

Input: Sequence
Output: No seq.

Example: sentence
classification,

multiple-choice
question answering

Input: Sequence
Output: Sequence

Example: machine translation, video captioning,
open-ended question answering, video question

answering

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

(Vanilla) Recurrent Neural Network

x

RNN

y

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

(Vanilla) Recurrent Neural Network

x

RNN

y

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

(Vanilla) Recurrent Neural Network

x

RNN

y

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

(Vanilla) Recurrent Neural Network

x

RNN

y

Intuition: RNN incorporates one element of sequence at a time
(e.g. letter, word, video frame, etc.)

building up a representation of the sequence “so far”

(Vanilla) Recurrent Neural Network

x

RNN

y

Intuition: RNN incorporates one element of sequence at a time
(e.g. letter, word, video frame, etc.)

building up a representation of the sequence “so far”

Alternative: RNN computes a representation of sequence element
(e.g. letter, word, video frame, etc.)

with context provided by all previous processed elements

(Vanilla) Recurrent Neural Network

x

RNN

y

dog
cat
person
holding
tree
computer
using

1
2
3
4
5
6
7

one-hot encodings

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

Vocabulary

person holding dog

(Vanilla) Recurrent Neural Network

x

RNN

y

dog
cat
person
holding
tree
computer
using

1
2
3
4
5
6
7

one-hot encodings

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

Vocabulary

Identity Identity zero

person holding dog

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

(Vanilla) Recurrent Neural Network

x

RNN

y

dog
cat
person
holding
tree
computer
using

1
2
3
4
5
6
7

one-hot encodings

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

Vocabulary

Identity Identity zero

person holding dog

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

(Vanilla) Recurrent Neural Network

x

RNN

y

dog
cat
person
holding
tree
computer
using

1
2
3
4
5
6
7

one-hot encodings

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

Vocabulary

person holding dog

Identity Identity zero

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0.76, 0, 0, 0, 0, 0, 0, 0]

(Vanilla) Recurrent Neural Network

x

RNN

y

dog
cat
person
holding
tree
computer
using

1
2
3
4
5
6
7

one-hot encodings

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

Vocabulary

person holding dog

Identity Identity zero

[0, 0, 0.76, 0, 0, 0, 0, 0, 0, 0]

(Vanilla) Recurrent Neural Network

x

RNN

y

dog
cat
person
holding
tree
computer
using

1
2
3
4
5
6
7

one-hot encodings

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

Vocabulary

Identity Identity zero

person holding dog

[0, 0, 0.76, 0, 0, 0, 0, 0, 0, 0]

person holding dog

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

(Vanilla) Recurrent Neural Network

x

RNN

y

dog
cat
person
holding
tree
computer
using

1
2
3
4
5
6
7

one-hot encodings

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

Vocabulary

Identity Identity zero

person holding dog

[0, 0, 0.76, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

(Vanilla) Recurrent Neural Network

x

RNN

y

dog
cat
person
holding
tree
computer
using

1
2
3
4
5
6
7

one-hot encodings

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

Vocabulary

Identity Identity zero

[0, 0, 0.64, 0.76, 0, 0, 0, 0, 0, 0]

Like bag of words with some
notion of recency

[0, 0, 0.76, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

(Vanilla) Recurrent Neural Network

x

RNN

y

dog
cat
person
holding
tree
computer
using

1
2
3
4
5
6
7

one-hot encodings

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

Vocabulary

Identity Identity zero

[0, 0, 0.64, 0.76, 0, 0, 0, 0, 0, 0]

RNN Computational Graph

h0 fW h1

x1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph

h0 fW h1 fW h2

x2x1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph

h0 fW h1 fW h2 fW h3

x3

…

x2x1

hT

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph

h0 fW h1 fW h2 fW h3

x3

…

x2x1W

hT

Re-use the same weight matrix at every time-step

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph: Many to Many

h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1W

hT

y3y2y1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

fO fO

O
fO fO

RNN Computational Graph: Many to Many

h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1W

hT

y3y2y1 L1 L2 L3 LT

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

fO fO

O
fO fO

RNN Computational Graph: Many to Many

h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1W

hT

y3y2y1 L1 L2 L3 LT

L

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph: Many to One

h0 fW h1 fW h2 fW h3

x3

y

…

x2x1W

hT

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph: One to Many

h0 fW h1 fW h2 fW h3

yT

…

x
W

hT

y3y2y1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Sequence to Sequence: Many to One + One to Many

h0 fW h1 fW h2 fW h3

x3

…

x2x1W1

hT

Many to one: Encode input
sequence in a single vector

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Sequence to Sequence: Many to One + One to Many

h0 fW h1 fW h2 fW h3

x3

…

x2x1W1

hT

Many to one: Encode input
sequence in a single vector

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Basically a fully connected
layer (with shared params)

Sequence to Sequence: Many to One + One to Many

h0 fW h1 fW h2 fW h3

x3

…

x2x1W1

hT

Many to one: Encode input
sequence in a single vector

y1 y2

fW h1 fW h2 fW

W2

One to many: Produce output
sequence from single input vector

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Assignment 3: Part 1

Example: Character-level Language Model (Training)

Assignment 3: Decoder of Part 1
(encoder is similar, but with no outputs, so easier)

Example: Character-level Language Model (Training)

Vocabulary:
[‘h’, ‘e’, ‘l’, ‘o’]

Example training sequence:
“hello”

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Example: Character-level Language Model (Training)

Vocabulary:
[‘h’, ‘e’, ‘l’, ‘o’]

Example training sequence:
“hello”

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Example: Character-level Language Model (Training)

Vocabulary:
[‘h’, ‘e’, ‘l’, ‘o’]

Example training sequence:
“hello”

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Example: Character-level Language Model (Sampling)

Vocabulary:
[‘h’, ‘e’, ‘l’, ‘o’]

At test time sample one
character at a time and feed
back to the model

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02.08

.79
Softmax

“e” “l” “l” “o”Sample

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Example: Character-level Language Model (Sampling)

Vocabulary:
[‘h’, ‘e’, ‘l’, ‘o’]

At test time sample one
character at a time and feed
back to the model

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02.08

.79
Softmax

“e” “l” “l” “o”Sample

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Example: Character-level Language Model (Sampling)

Vocabulary:
[‘h’, ‘e’, ‘l’, ‘o’]

At test time sample one
character at a time and feed
back to the model

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02.08

.79
Softmax

“e” “l” “l” “o”Sample

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Example: Character-level Language Model (Sampling)

Vocabulary:
[‘h’, ‘e’, ‘l’, ‘o’]

At test time sample one
character at a time and feed
back to the model

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02.08

.79
Softmax

“e” “l” “l” “o”Sample

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Sampling vs. ArgMax vs. Beam Search

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02.08

.79
Softmax

“e” “l” “l” “o”Sample

Sampling: allows to generate
diverse outputs

ArgMax: could be more stable in
practice

Beam Search: typically gets the
best results

Beam Search

Beam Search

Teacher Forcing

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02.08

.79
Softmax

“e” “l” “l” “o”SampleTraining Objective: Predict the next word 
 (cross entropy loss)

Testing: Sample the full sequence

Teacher Forcing

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02.08

.79
Softmax

“e” “l” “l” “o”Sample

Testing: Sample the full sequence

Training Objective: Predict the next word 
 (cross entropy loss)

Training and testing objectives are not consistent!
(in training we did not anticipate that errors)

Teacher Forcing
Slowly move from Teacher Forcing to Sampling

Probability of sampling from
the ground truth

[Bengio et al., 2015]

* slide from Marco Pedersoli and Thomas Lucas

Note: for the Assignment 3 its OK to sample once
per sequence (not per step as is illustrated here)

Baseline: Google NIC captioning model

Baseline with Dropout: Regularized RNN version

Always sampling: Use sampling from the beginning of training

Scheduled sampling: Sampling with inverse Sigmoid decay

Uniformed scheduled sampling: Scheduled sampling but uniformly

Teacher Forcing

* slide from Marco Pedersoli and Thomas Lucas

BackProp Through Time

Loss

Forward through entire sequence to compute loss, then backward through entire
sequence to compute gradient

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Truncated BackProp Through Time

Loss

Run backwards and forwards through (fixed length) chunks of the sequence,
instead of the whole sequence

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Truncated BackProp Through Time
Run backwards and forwards through (fixed length) chunks of the sequence,
instead of the whole sequence

Loss Carry hidden states
forward, but only
BackProp through some
smaller number of steps

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Truncated BackProp Through Time
Run backwards and forwards through (fixed length) chunks of the sequence,
instead of the whole sequence

Loss

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Learning to Write Like Shakespeare — Training Decoder

x

RNN

y

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

train more

train more

train more

at first:

Learning to Write Like Shakespeare … after training a bit

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Learning to Write Like Shakespeare … after training

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Learning Code
Trained on entire source code of Linux kernel

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

DopeLearning: Computational Approach to Rap Lyrics

[Malmi et al., KDD 2016]

Sunspring: First movie generated by AI

Multilayer RNNs

time

depth

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Vanilla RNN Gradient Flow

ht-1

xt

W

stack

tanh

ht

[Bengio et al., 1994]
[Pascanu et al., ICML 2013]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Vanilla RNN Gradient Flow

ht-1

xt

W

stack

tanh

ht

[Bengio et al., 1994]
[Pascanu et al., ICML 2013]

Backpropagation from ht to ht-1
multiplies by W (actually WhhT)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Vanilla RNN Gradient Flow [Bengio et al., 1994]
[Pascanu et al., ICML 2013]

h0

x1

W
stack

tanh

h1

x2

W
stack

tanh

h2

x3

W
stack

tanh

h3

x4

W
stack

tanh

h4

Computing gradient
of h0 involves many
factors of W
(and repeated tanh)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Vanilla RNN Gradient Flow [Bengio et al., 1994]
[Pascanu et al., ICML 2013]

h0

x1

W
stack

tanh

h1

x2

W
stack

tanh

h2

x3

W
stack

tanh

h3

x4

W
stack

tanh

h4

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Computing gradient
of h0 involves many
factors of W
(and repeated tanh)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Vanilla RNN Gradient Flow [Bengio et al., 1994]
[Pascanu et al., ICML 2013]

h0

x1

W
stack

tanh

h1

x2

W
stack

tanh

h2

x3

W
stack

tanh

h3

x4

W
stack

tanh

h4

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Computing gradient
of h0 involves many
factors of W
(and repeated tanh)

Gradient clipping: Scale
gradient if its norm is too big

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Vanilla RNN Gradient Flow [Bengio et al., 1994]
[Pascanu et al., ICML 2013]

h0

x1

W
stack

tanh

h1

x2

W
stack

tanh

h2

x3

W
stack

tanh

h3

x4

W
stack

tanh

h4

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Computing gradient
of h0 involves many
factors of W
(and repeated tanh) Change RNN architecture

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Long-Short Term Memory (LSTM)

Vanilla RNN LSTM

[Hochreiter and Schmidhuber, NC 1977]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Long-Short Term Memory (LSTM)

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

Long-Short Term Memory (LSTM)

Cell state / memory

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

LSTM Intuition: Forget Gate

Should we continue to remember this “bit” of information or not?

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

LSTM Intuition: Forget Gate

Should we continue to remember this “bit” of information or not?

Intuition: memory and forget gate output multiply, output of forget gate can
be though of as binary (0 or 1)

anything x 0 = 0 (forget)
anything x 1 = anything (remember)

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

LSTM Intuition: Input Gate

Should we update this “bit” of information or not?
If yes, then what should we remember?

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

LSTM Intuition: Memory Update

Forget what needs to be forgotten + memorize what needs to be remembered

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

LSTM Intuition: Output Gate

Should we output this bit of information (e.g., to “deeper” LSTM layers)?

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

LSTM Intuition: Additive Updates
Backpropagation from ct to ct-1 only elementwise multiplication by

f, no matrix multiply by W

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

Uninterrupted gradient flow!

LSTM Intuition: Additive Updates

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

Uninterrupted gradient flow!

LSTM Intuition: Additive Updates

Input

Softm
ax

3x3 conv, 64

7x7 conv, 64 / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128 / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

...

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

Pool
Similar to ResNet

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

