THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 8: Language Models and RNNs

Language Models

Model the probability of a sentence; ideally be able to sample plausible
SEeNteNces

* Slides from Louis-Philippe Morency

Language Models

Model the probability of a sentence; ideally be able to sample plausible
SEeNteNces

Why is this useful?

* Slides from Louis-Philippe Morency

Language Models

Model the probability of a sentence; ideally be able to sample plausible
SEeNteNces

Why is this useful?

arg max P(wordsequence | acoustics) =

wordsequence

P(acoustics | wordsequence) x P(wordsequence)

alr'g 1max)
wordsequence P (CZC oustics)

arg max P(acoustics | wordsequence) x P(wordsequence)

wordsequence

* Slides from Louis-Philippe Morency

Language Models

Model the probability of a sentence; ideally be able to sample plausible
SEeNteNces

Why is this useful?

arg max P(wordsequence | acoustics) =

wordsequence

P(acoustics | wordsequence) x _
arg max

wordsequence P (a coustics)

arg max P(acoustics | wordsequence) X _

wordsequence

* Slides from Louis-Philippe Morency

Simple Language Models: N-Grams

Given a word sequence: Wi.p = W1, W, ..., Wy

We want to estimate p(wlzn)

* Slides from Louis-Philippe Morency

Simple Language Models: N-Grams

Given a word sequence: Wi.p = W1, W, ..., Wy

We want to estimate p(wlzn)

Using Chain Rule of probabilities:

p(w1;n) — p(wl)]?(w2|w1)]?(w3|w1, wz) ' 'P(wn\w1:n—1)

* Slides from Louis-Philippe Morency

Simple Language Models: N-Grams

Given a word sequence: Wi.p = W1, W, ..., Wy

We want to estimate p(wlzn)

Using Chain Rule of probabilities:
p(wi.n) = p(w1)p(w2|w1)p(ws|wi, w2) - - - p(Wn |W1:n—1)

Bi-gram Approximation' N-gram Approximation:

wl n Hp wk|wk 1 p(wlzn) — Hp(wk‘wkz—]\f—l—lzk—l)
k=1

* Slides from Louis-Philippe Morency

Estimating Probabilities

N-gram conditional probabilities can be estimated based on raw concurrence
counts In the observed sequences

Bi-gram:
C’(wn_ 1 wn)

C’(wn_l)

p(wn|wn—1) —

N-gram:

C(wn—N—lzn—lwn)
C(wn—N—1:n—1)

p(wn|wn—N—1:n—1) —

* Slides from Louis-Philippe Morency

P(next word is
“dog”)

tttttt

Neural

Network

f

_

1-0f-N encoding

of “"START”

P(next word is
“On”)

tttttt

Neural

Network

f

_

1-0f-N encoding

Of “dog”

P(next word is
“the”)

tttttt

Neural

Network

f

_

1-0f-N encoding

Of “On”

Neural-based Unigram Language Mode

P(next word is
“beach”)

tttttt

Neural
Network

f

_

1-0f-N encoding
of “the”

* Slides from Louis-Philippe Morency

Neural-based Unigram Language Mode

P(next word is P(next word is P(next word is P(next word is

“dog”) “on”) “the™) “beach”)
tttttt tttttt tetttt tttttt
Neural Neural Neural Neural
Network Network Network Network

f

f

f

f

1-0f-N encoding 1-of-N encoding 1-of-N encoding 1-0f-N encoding
of “"START” of “dog” of “on” of “the”

Problem: Does not model sequential information (too local)

* Slides from Louis-Philippe Morency

Neural-based Unigram Language Mode

P(next word is P(next word is P(next word is P(next word is
“dog”) “on”) “the™) “beach™)
tttttt tetttt ttettt titttt
Neural Neural Neural Neural
Network Network Network Network

f f f f

1-0f-N encoding 1-of-N encoding 1-of-N encoding 1-0f-N encoding
of “START” of “dog” of “on” of “the”

Problem: Does not model sequential information (too local)

We need sequence modeling!

* Slides from Louis-Philippe Morency

Sequence Modeling

Image Maps
Input
K x | \Nutput
v '\ * %
Convolutions Fully Connected

Subsampling

Why Model Sequences”

;W M/Q/) FOREIGN MINISTER.

—) THE SOUND OF

bringen sie bitte das auto zuriick

A X/

= please return the car

£

* glide from Dhruv Batra

Multi-modal tasks

Vision

Deep CNN Generating

o

—>

Language

RNN

o

A group of people
shopping at an
outdoor market.

There are many
vegetables at the
fruit stand.

| Vinyals et al.,, 2015]

Sequences where you don’t expect them ...

Classify images by taking a
series of “glimpses”

| Gregor et al., ICML 2015]
[Mnih et al., ICLR 2015]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Sequences where you don’t expect them ...

Classify images by taking a
series of “glimpses”

| Gregor et al., ICML 2015]
[Mnih et al., ICLR 2015]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

one to one

Input: No sequence
Output: No sea.

Example:
“standard”
classification /
regression problems

Sequences in Inputs or Outputs?

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

one to one

Input: No sequence
Output: No sea.

Example:
“standard”
classification /
regression problems

one to many

Input: NO
seqguence

Output:
Seqguence

Example:
Im2Caption

Sequences in Inputs or Outputs?

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

one to one

Input: No sequence
Output: No sea.

Example:
“standard”
classification /
regression problems

one to many

Input: NO
seqguence

Output:
Seqguence

Example:
Im2Caption

Sequences in Inputs or Outputs?

many to one

Input: Sequence
Output: No seq.

Example: sentence
classification,
Mmultiple-choice
guestion answering

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Sequences in Inputs or Outputs?

one to one one to many many to one many to many many to many

Input: No sequence Input: NoO Input: Sequence Input: Sequence
Output: No sea. sequence Output: No seq. Output: Sequence
Example: Output: Example: sentence Example: machine translation, video captioning,
“standard” Sequence classification, open-ended question answering, video question
classification / Example: multiple-choice answering
regression problems Im2Caption question answering

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Key Conceptual [deas

Parameter Sharing

— In computational graphs = adding gradients

“Unrolling”

— In computational graphs with parameter sharing

Parameter Sharing + “Unrolling”
— Allows modeling arbitrary length sequences!

— Keeps number of parameters in check

* glide from Dhruv Batra

Recurrent Neural Network

AN

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Recurrent Neural Network

usually want to predict a
vector at some time steps

NN

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Recurrent Neural Network

We can process a sequence of vectors x by applying a
recurrence formula at every time step:

new state old state

hy = fW(ht—la mt)

Input vector at

_ some time step
some function X

with parameters W

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Recurrent Neural Network

We can process a sequence of vectors x by applying a
recurrence formula at every time step:

hy = fW(ht—h mt)

Note: the same function and the same set of

parameters are used at every time step

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

(Vanilla) Recurrent Neural Network

hy = fW(ht—la xt)

y
|
1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

(Vanilla) Recurrent Neural Network

hy = fW(ht—h $t)
1

ht — taﬂh(Whhht_l T rhLt T bh)

y
|
1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

(Vanilla) Recurrent Neural Network

Yt — Whyht aE by

hy = fW(ht—la xt)
l

ht — taﬂh(Whhht_l T rhLt T bh)

y
|
1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

RNN Computational Graph

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

RNN Computational Graph

hg— fy — hy— fy — ho— fy — hs — — Nt
T T T
X1 X5 X3

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

RNN Computational Graph

Re-use the same weight matrix at every time-step

No— fw — N1 — fw —hp— tw — N3 = — Nt
W i X3

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

RNN Computational Graph: Many to Many

Y1

Yo Y3 YT
T T T
Ny — foy —> hg — —» hy

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

RNN Computational Graph: Many to Many

Y1

yo —> Lo y3 — L3 yr —> Lt
T T T
Ny — foy —> hg — —» hy

X3

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

RNN Computational Graph: Many to Many

/_//4 -
vi — L ya —> Lo Y3 —* Ls yr —> Lt
T T T T
No— tw —hi— fw — ho— fw — 3 = — N7
VV/ i X3

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

RNN Computational Graph: Many to One

Y
No— tw —hi— fw — ho— fw — 3 = — N7
W 1 X3

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

RNN Computational Graph: One to Many

Y1

Yo Y3 YT
T T T
Ny — foy —> hg — —» hy

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Sequence to Sequence: Many to One + One to Many

Many to one: Encode input
seguence In a single vector

ho_) f\/\/ _)h1 f\/\/ _)hg f\/\/ _)hg_) _)hT
W1 X1 X2 X3
\

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Sequence to Sequence: Many to One + One to Many

Many to one: Encode input One to many: Produce output
seguence in a single vector seguence from single input vector
Y Yo
No—> f\/\/—)h1 f\/\/—)hg f\/\/—>h3_).“ - N |—> fw = D “’f\/\/th —> v —>
W, X4 X2 X3 /
~— ‘ Wo

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

