

THE UNIVERSITY OF BRITISH COLUMBIA

Topics in AI (CPSC 532S): **Multimodal Learning with Vision, Language and Sound**

Lecture 8: Language Models and RNNs

Model the **probability of a sentence**; ideally be able to sample plausible sentences

Model the **probability of a sentence**; ideally be able to sample plausible sentences

Why is this useful?

Model the **probability of a sentence**; ideally be able to sample plausible sentences

Why is this useful?

arg max P(wordsequence | acoustics) = wordsequence

arg max *P*(*acoustics* | *wordsequence*) × *P*(*wordsequence*)

wordsequence

$P(acoustics | wordsequence) \times P(wordsequence)$ P(acoustics)

Model the **probability of a sentence**; ideally be able to sample plausible sentences

Why is this useful?

arg max P(wordsequence | acoustics) = wordsequence

arg max *P*(*acoustics* | *wordsequence*) × *P*(*wordsequence*)

wordsequence

$P(acoustics | wordsequence) \times P(wordsequence)$ P(acoustics)

Simple Language Models: N-Grams

Given a word sequence: $w_{1:n} = [w_1, w_2, ..., w_n]$

We want to estimate $p(w_{1:n})$

Simple Language Models: N-Grams

Given a word sequence: $w_{1:n} = [w_1, w_2, ..., w_n]$

We want to estimate $p(w_{1:n})$

Using **Chain Rule** of probabilities:

 $p(w_{1:n}) = p(w_1)p(w_2|w_1)p(w_3|w_1, w_2) \cdots p(w_n|w_{1:n-1})$

Simple Language Models: N-Grams

Given a word sequence: $w_{1:n} = [w_1, w_2, ..., w_n]$

We want to estimate $p(w_{1:n})$

Using **Chain Rule** of probabilities:

$$p(w_{1:n}) = p(w_1)p(w_2|w_1)p(w_3|w_1, w_2) \cdots p(w_n|w_{1:n-1})$$

Bi-gram Approximation:

$$p(w_{1:n}) = \prod_{k=1}^{n} p(w_k | w_{k-1})$$

N-gram Approximation:

$$p(w_{1:n}) = \prod_{k=1}^{n} p(w_k | w_{k-N+1:k-1})$$

Estimating **Probabilities**

counts in the observed sequences

Bi-gram:

 $p(w_n|w_{n-1}) =$

N-gram:

 $p(w_n | w_{n-N-1:n-1}) =$

N-gram conditional probabilities can be estimated based on raw concurrence

$$\frac{C(w_{n-1}w_n)}{C(w_{n-1})}$$

$$\frac{C(w_{n-N-1:n-1}w_n)}{C(w_{n-N-1:n-1})}$$

Neural-based Unigram Language Mode

Neural-based Unigram Language Mode

Problem: Does not model sequential information (too local)

Neural-based Unigram Language Mode

We need sequence modeling!

Problem: Does not model sequential information (too local)

Sequence Modeling

Why Model Sequences?

Image Credit: Alex Graves and Kevin Gimpel

* slide from Dhruv Batra

Multi-modal tasks

[Vinyals *et al.*, 2015]

Sequences where you don't expect them ...

Classify images by taking a series of "glimpses"

[Gregor et al., ICML 2015] [Mnih et al., ICLR 2015]

2	54	8	2.	9	1	(1	ļ	8
3	3	3	8	6	9	6	5	1	3
8	8	1	8	2	6	9	¥	3	4
F	0	2	1	6	Õ	9		4	5
7	/	4	4	4	A	4	ų	7	9
3	1	8	9	3	4	2	4	2	3
6	6	1	6	З	- An	3	3	9	0
b	1	۵	Б	3	5	1	8	3	4
9	9	ł	1	3	0	5	9	5	4
ß	1	0	1	0	0	2	7	6	10
£	E.	Q		24	đ	2	-	-t	2 07

Sequences where you don't expect them ...

Classify images by taking a series of "glimpses"

[Gregor et al., ICML 2015] [Mnih et al., ICLR 2015]

2	54	8	2.	9	1	(1	ļ	8
3	3	3	8	6	9	6	5	1	3
8	8	1	8	2	6	9	¥	3	4
F	0	2	1	6	Õ	9		4	5
7	/	4	4	4	A	4	ų	7	9
3	1	8	9	3	4	2	4	2	3
6	6	1	6	З	- An	3	3	9	0
b	1	۵	Б	3	5	1	8	3	4
9	9	ł	1	3	0	5	9	5	4
ß	1	0	1	0	0	2	7	6	10
£	E.	Q		24	đ	2	-	-t	2 07

one to one

Input: No sequence Output: No seq.

Example:

"standard" classification / regression problems

one to many

Input: No sequence Output: No seq.

Example:

"standard" classification / regression problems Input: No sequence Output: Sequence Example: Im2Caption

Input: No sequence Output: No seq.

Example:

"standard" classification / regression problems

Input: No sequence **Output:** Sequence **Example:** Im2Caption

Input: Sequence Output: No seq. **Example:** sentence classification, multiple-choice question answering

Input: No sequence Output: No seq.

Example:

"standard" classification / regression problems

Input: No sequence **Output:** Sequence **Example:** Im₂Caption

Input: Sequence Output: No seq. **Example:** sentence classification, multiple-choice question answering

- **Input:** Sequence **Output:** Sequence
- **Example:** machine translation, video captioning, open-ended question answering, video question answering
- * slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Key Conceptual Ideas

Parameter Sharing

- in computational graphs = adding gradients

"Unrolling"

in computational graphs with parameter sharing

Parameter Sharing + "Unrolling"

- Allows modeling arbitrary length sequences!
- Keeps number of parameters in check

* slide from Dhruv Batra

y RNN

X

usually want to predict a vector at some time steps

We can process a sequence of vectors **x** by applying a recurrence formula at every time step:

We can process a sequence of vectors **x** by applying a recurrence formula at every time step:

$h_t = f_W(h_{t-1}, x_t)$

Note: the same function and the same set of parameters are used at every time step

(Vanilla) Recurrent Neural Network

$h_t = f_W(h_{t-1}, x_t)$

(Vanilla) **Recurrent** Neural Network

$h_{t} = f_{W}(h_{t-1}, x_{t})$ $h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t + b_h)$

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

V

RNN

Χ

(Vanilla) **Recurrent** Neural Network

$y_t = W_{hy}h_t + b_y$

$h_{t} = f_{W}(h_{t-1}, x_{t})$ $h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t + b_h)$

Re-use the same weight matrix at every time-step

RNN Computational Graph: Many to Many

RNN Computational Graph: Many to Many

RNN Computational Graph: Many to Many

RNN Computational Graph: Many to One

RNN Computational Graph: One to Many

Sequence to Sequence: Many to One + One to Many

Many to one: Encode input sequence in a single vector

Sequence to Sequence: Many to One + One to Many

Many to one: Encode input sequence in a single vector

One to many: Produce output sequence from single input vector

