
Lecture 7: Convolutional Neural Networks (part 3)

Topics in AI (CPSC 532S): 
Multimodal Learning with Vision, Language and Sound



Logistics:

Assignment 2 was due yesterday

Assignment 3 will be posted tonight …
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Final Projects … poll results

… 3 more students voted for individual projects than for survey 

we will start process of forming groups



Computer Vision Problems (no language for now)
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Datasets: Pascal VOC

* slide from Andrew Zisserman

20 classes: aeroplane, bicycle, boat, bottle, bus, car, cat, chair, cow, dining 
table, dog, horse, motorbike, person, potted plant, sheep, train, TV  

Real images downloaded from flickr, not filtered for “quality”  
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Datasets: COCO



Object Detection

* plot from Ross Girshick, 2015 
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Problem: each image needs a different number of outputs 
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Problem: Need to apply CNN to many patches in each image



Region Proposals (older idea in vision)

Find image regions that are likely contain objects (any object at all) 
- typically works by looking at histogram distributions, region aspect ratio, closed contours, coherent color 

Relatively fast to run (Selective Search gives 1000 region proposals in a few seconds on a CPU)

[ Alexe et al, TPAMI 2012 ] 
[ Uijkings et al, IJCV 2013 ] 
[ Cheng et al, CVPR 2014 ] 

[ Zitnick and Dollar, ECCV 2014 ]

Goal: Get “true” object regions to be in as few top K proposals as possible 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
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R-CNN
[ Girshick et al, CVPR 2014 ]

* image from Ross Girshick

Input Image

Regions of Interest from 
a proposal method (~2k)

Warped image regions

Forward each region 
through a CNN

Classify regions with SVM

Linear Regression for bounding box offsets



R-CNN: Training
[ Girshick et al, CVPR 2014 ]

* image from Ross Girshick
            

          

Fine-tuning ImageNet CNN on object proposal patches 
— > 50% Intersection-over-Union overlap with GT considered “object” others “background” 

— batches of 128 (32 positives, 96 negatives)



R-CNN: Issues
[ Girshick et al, CVPR 2014 ]

* image from Ross Girshick
            

          

Ad-hoc training objectives 
— Fine-tune network with softmax objective (log loss) 

— Train post-hoc linear SVM (hinge loss) 

— Train post-hoc bounding-box regression (least squares) 

Training is slow  
— 84 hours and takes a lot of disk space 

Inference / Detection is slow 
— 47 sec / image with  VGG16 [ Simonyan et al, ICLR 2015 ]



R-CNN vs. SPP
[ He et al, ECCV 2014 ]
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[ Girshick et al, ICCV 2015 ]

* image from Ross Girshick
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* image from Ross Girshick

Input Image

Forward prop the whole image through CNN

“conv5” feature map
Regions of 
Interest 
from the 
proposal 
method

“RoI Pooling” layer

Bounding box regression
Object  
classification

                    Fast R-CNN: Training
Multi-task loss



R-CNN vs. SPP vs. Fast R-CNN

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[ Girshick et al, ICCV 2015 ]
[ He et al, ECCV 2014 ]

[ Girshick et al, CVPR 2014 ]



R-CNN vs. SPP vs. Fast R-CNN

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[ Girshick et al, ICCV 2015 ]
[ He et al, ECCV 2014 ]

[ Girshick et al, CVPR 2014 ]

Observation: Performance dominated by the region proposals at this point! 



Faster R-CNN

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Mask R-CNN

[ He et al, 2017 ]



[ He et al, 2017 ]

Mask R-CNN



Summary of R-CNN Family of Models

https://lilianweng.github.io/lil-log/2017/12/31/object-recognition-for-dummies-part-3.html



LSDA: Large Scale Detection through Adaptation

[ Hoffman et al, NIPS 2014 ]

WDETECT
cat = WCLASIFY

cat + �Wcat



YOLO: You Only Look Once

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[ Redmon et al, CVPR 2016 ]



YOLO: You Only Look Once
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Optional subtitle



Optional subtitle



Feature Pyramid Networks

[ Lin et al, CVPR 2017 ]



Focal Loss
pt =

⇢
p if y = 1

1� p otherwise

[ Lin et al, ICCV 2017 ]



Review of CNNs
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Effective Techniques for Training  
— Regularization: L1, L2, data augmentation 
— Transfer Learning: fine-tuning networks

Vision Applications of CNNs 
— Classification: AlexNet, VGG, GoogleLeNet, ResNet 
— Segmentation: Fully convolutional CNNs 
— Detection: R-CNN, Fast R-CNN, Faster R-CNN, YOLO
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Effective Techniques for Training  
— Regularization: L1, L2, data augmentation 
— Transfer Learning: fine-tuning networks

Vision Applications of CNNs 
— Classification: AlexNet, VGG, GoogleLeNet, ResNet 
— Segmentation: Fully convolutional CNNs 
— Detection: R-CNN, Fast R-CNN, Faster R-CNN, YOLO


