THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 7: Convolutional Neural Networks (part 3)



Logistics:

Assignment 2 was due yesterday

Assignment 3 will be posted tonight ...



Logistics:

Assignment 2 was due yesterday

Assignment 3 will be posted tonight ...
Final Projects ... poll results

... 3 more students voted for individual projects than for survey

we will start process of forming groups



COmpUter ViSiOn PrOblemS (no language for now)
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COmpUter ViSiOn PrOblemS (no language for now)

Detection
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Common Objects in Context



Datasets: Pascal VOC

20 classes: aeroplane, bicycle, boat, bottle, bus, car, cat, chair, cow, dining
table, dog, horse, motorbike, person, potted plant, sheep, train, 1V

Real images downloaded from flickr, not filtered for “quality”

* slide from Andrew Zisserman
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Datasets: COCO

CLCCCCCLS

Object segmentation
Recognition in context
Superpixel stuff segmentation
330K images (>200K labeled)
1.5 million object instances
80 object categories

91 stuff categories

5 captions per image

250,000 people with keypoints



Object Detection

mean Average Precision (mAP)
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* plot from Ross Girshick, 2015



Object Detection as Regression Problem

— CAT (X, y, W ,h)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
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Object Detection as Classification Problem

Category Prediction
Dog NO

. Cat NO
||| | —_—) (ouch NO

D P
|Ihg Flowers No

Background Yes

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
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Object Detection as Classification Problem

Problem: Need to apply CNN to many patches in each image

Category Prediction
Dog NO

. Cat Yes
|l| | —_—) (ouch NO
D P
|Ihg Flowers No

Background  No

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



A—.—..
| Alexe et al, TPAMI 20°

Region PFODOS&‘S (older idea in vision) [ Uilkings et al, IJCV 20°

[ Cheng et al, CVPR 201
[ Zitnick and Dollar, ECCV 201

Find image regions that are likely contain objects (any object at all)

B~ B WN

- typically works by looking at histogram distributions, region aspect ratio, closed contours, coherent color

Relatively fast to run (Selective Search gives 1000 region proposals in a few seconds on a CPU)

Goal: Get “true” object regions to be in as few top K proposals as possible

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford




| Girshick et al, CVPR 2014 |

Input Image

* image from Ross Girshick
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Regions of Interest from
a proposal method (~2k)
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a proposal method (~2k)

Input Image

* image from Ross Girshick
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[ Girshick et al, CVPR 2014 |

Forward each region
through a CNN

L ! /" Warped image regions

Regions of Interest from

a proposal method (~2k)

Input Image

* image from Ross Girshick



SVMs

SVMs
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[ Girshick et al, CVPR 2014 |

Classify regions with SVM

Forward each region
through a CNN

4 g /" Warped image regions

Regions of Interest from
a proposal method (~2k)

Input Image

* image from Ross Girshick



R-CNN

Linear Regression for bounding box offsets

Bbox reg

SVMs

Bbox reg

Bbox reg

SVMs
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[ Girshick et al, CVPR 2014 |

Classify regions with SVM

Forward each region
through a CNN

£ ! 7/ Warped image regions

Regions of Interest from
a proposal method (~2k)

Input Image

* image from Ross Girshick



R-CNN: Training

| Girshick et al, CVPR 2014 |

Fine-tuning ImageNet CNN on object proposal patches

— > b50% Intersection-over-Union overlap with GT considered “object” others “background”

— batches of 128 (32 positives, 96 negatives)

Bbox reg || SVMs

Bbox reg || SVMs f
Bbox reg SVMs
t ConvN
ConvN et
et
ConvN !

* image from Ross Girshick



R-CNN:

SSUES

Ad-hoc training objectives

— Fine-tune network with softmax objective (log loss)

— Train post-hoc linear SVM (hinge |0ss)

— Train post-hoc bounding-box regression (least squares)
Training is slow

— 84 hours and takes a lot of disk space

INnference / Detection is slow

— 47 sec /image with VGG16 [ Simonyan et al, ICLR 2015 ]

| Girshick et al, CVPR 2014 |

Bboxreg || SVMs

Bbox reg

Bbox reg

SVMs

ConvN

* image from Ross Girshick



R-CNN vs. SPP

| He et al, ECCV 2014 ]
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Fast R-CNN

| Girshick et al, ICCV 2015 |

* image from Ross Girshick



Fast R-CNN

| Girshick et al, ICCV 2015 |

/ /”convS” feat
/ Forward wi

* image from Ross Girshick



Fast R-CNN

[ Girshick et al, ICCV 2015 |

/ ‘convd” feature map
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Forward prop the whole image through CNN

ConvNet

* image from Ross Girshick



Fast R-CNN

[ Girshick et al, ICCV 2015 |

Regions of

Interest 4k /" “convs” feature map
T

from the
proposal Forward prop the whole image through CNN

method

ConvNet

* image from Ross Girshick



Fast R-CNN
[ Girshick et al, ICCV 2015 |
Regions of /7 ,~~ , RolPooling” layer
Interest 7@/ ) 7/ “convb” feature map
from the /
proposal Forward prop the whole image through CNN
method *

Input Image

Girshick, “Fast R-C
Figure copyright Ri

* image from Ross Girshick



Rol Align

15 x 15 pixel Region of Interest
in the original image
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Fast R-CNN

Log loss + Smooth L1 loss | NMulti-task loss

Object
classification

Linear +
softmax

Bounding box regression

Regions of
Interest

‘Rol Pooling” layer

= /5/ “convb” feature map

from the

proposal
method

ConvNet

[ Girshick et al, ICCV 2015 |

Forward prop the whole image through CNN

* image from Ross Girshick



Fast R-CNN: Training

Object

Log loss + Smooth L1 loss | NMulti-task loss
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Forward prop the whole image through CNN

* image from Ross Girshick



R-CNN vs. SPP vs. Fast R-CNN Girehiok ot ol OVPR 20141

[ Girshick et al, ICCV 2015 ]
| He et al, ECCV 2014 |

e 3 Test time (seconds)
Tl'al ni ng tl me (HOU rS) B Including Region propos...
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* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



R-CNN vs. SPP vs. Fast R-CNN Girehiok ot ol OVPR 20141

[ Girshick et al, ICCV 2015 |
| He et al, ECCV 2014 |

e 3 Test time (seconds)
Tl'al ni ng t' me (HOU rS) B Including Region propos...

B Excluding Region Propo...

R-CNN R-CNN

SPP-Net

SPP-Net

Fast R-CNN 8.75

Fast R-CNN
0 25 50 75 100

60

Observation: Performance dominated by the region proposals at this point!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Faster R-CNN

Make CNN do proposals!

Insert Region Proposal
Network (RPN) to predict

proposals from features

D proposeV /
Jointly train with 4 losses:

/ Rol pooling

1. RPN classify object / not object Region Proposal Network '

2. RPN regress box coordinates ﬁ

3. Final classification score (object TaRir e
classes) l

4. Final box coordinates

CNN

y 4

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
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Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015 P L A 7=
Figure copyright 2015, Ross Girshick; reproduced with permission



Mask R-CNN
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Mask R-CNN
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| He et al, 2017 |




Summary of R-CNN Family of Models

Mask FCN
predictor

Box offset softmax Box offset soﬂmgx Box offset

regressor classifier regressor classifier regressor
Jount Joint

: | - Region CNN Region CNN
features e features Teatures featuree

|| Region

Box offset SVM object softmax
regressor classifier classifier

Independent

Rol pooling

Rol pooling RolAlign

proposa

Independent Independent

R-CNN Fast R-CNN Faster R-CNN Mask R-CNN

https://lilianweng.github.io/lil-log/2017/12/31/0bject-recognition-for-dummies-part-3.html



LSDA: Large Scale Detection through Adaptation
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YOLO: You Only Look Once

| Redmon et al, CVPR 2016 |

Within each grid cell:

- Regress from each of the B
base boxes to a final box with
S numbers:
(dx, dy, dh, dw, confidence)

- Predict scores for each of C
classes (including
background as a class)

Input image Divide image into grid Output:
3XHXW 7x7 Ix7x(5*B+C)

Image a set of base boxes
centered at each grid cell
Here B =3

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
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Feature Pyramid Networks

predict

(a) Featurized image pyramid

» predict
/ / -» predict

¥
/ ~ ~—»| predict
» W{ 7

predict

(e) Stmilar Structure with (d)

(c) Pyramidal feature hierarchy (d) Feature Pyramid Network

[ Lin et al, CVPR 2017 |



Focal Loss
_ P it y=1
Pr=9 1- p otherwise
S
CE(py) = — log(p) — -0
— -0
4 FL(p) = —(1 — pi)” log(p) =1
e ) = D
3 S
/)
S

well-classified
examples

 m——

0 0.2 0.4 0.6 0.8 1

probability of ground truth class
[Lin et al, ICCV 2017 ]



Review of CNNs
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Review of CNNs

Input Activation
Convolutional Layer Wix +b

> O

activation map

32 height

convolutional
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32 width MU UNUUNUNN

28 height
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3 depth
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Input Activation
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activation map
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Effective Technigues for Training

— Regularization: L1, L2, data augmentation

32 height

— Transfer Learning: fine-tuning networks



Review of CNNs

Input Activation

Convolutional Layer Wix +b

> O

activation map

28 height
| )
e Pooling Layer

/ 11 2 4
28 width
32 width LU NN
6 depth 5 6 7 8 6 8
3 depth max pool with 2 x 2 filter
3 2 ] 0 and stride of 2 3 4

Effective Technigues for Training

— Regularization: L1, L2, data augmentation

32 height

— Transfer Learning: fine-tuning networks

Vision Applications of CNNs e

— Classification: AlexNet, VGG, GoogleLeNet, ResNet

IMAGE

Multi-label: Horse

— Segmentation: Fully convolutional CNNs
— Detection: R-CNN, Fast R-CNN, Faster R-CNN, YOLO



Any CNN Could be Fully Convolutional
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Any CNN Could be Fully Convolutional
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Review of CNNs

Input Activation
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3 depth max pool with 2 x 2 filter
3 2 ] 0 and stride of 2 3 4

Effective Technigues for Training

— Regularization: L1, L2, data augmentation

32 height

— Transfer Learning: fine-tuning networks

Vision Applications of CNNs e

— Classification: AlexNet, VGG, GoogleLeNet, ResNet

IMAGE

Multi-label: Horse

— Segmentation: Fully convolutional CNNs
— Detection: R-CNN, Fast R-CNN, Faster R-CNN, YOLO



