
Lecture 6: Convolutional Neural Networks (Part 3)

Topics in AI (CPSC 532S):
Multimodal Learning with Vision, Language and Sound

Logistics:

Assignment 2 is due on Monday

Computer Vision Problems (no language for now)

Detection

Horse (x, y, w, h)
Horse (x, y, w, h)
Person (x, y, w, h)
Person (x, y, w, h)

Segmentation Instance Segmentation

Multi-class:

Multi-label:

Horse
Church
Toothbrush
Person

Horse
Church
Toothbrush
Person

Categorization

Horse
Person

Horse1
Horse2
Person1
Person2

Computer Vision Problems (no language for now)

Multi-class: Horse
Church
Toothbrush
Person

Categorization

ILSVRC winner 2012

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

ILSVRC winner 2012

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

ILSVRC winner 2012

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

GoogleLeNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

even deeper network with computational efficiency
— 22 layers
— Efficient “Inception” module
— No FC layers
— Only 5 million parameters!
(12x less than AlexNet!)
— Better performance (@6.7 top 5 error)

[Szegedy et al., 2014]

GoogleLeNet: Inception Module

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Idea: design good local topology (“network within network”) and then stack
these modules

[Szegedy et al., 2014]

GoogleLeNet: Inception Module

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Idea: design good local topology (“network within network”) and then stack
these modules

[Szegedy et al., 2014]

Apply parallel filter operations on
the input from previous layer
— Multiple receptive field sizes for convolution
(1x1, 3x3, 5x5)

— Pooling operation (3x3)

Concatenate all filter outputs
together at output depth-wise

GoogleLeNet: Inception Module

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Idea: design good local topology (“network within network”) and then stack
these modules

[Szegedy et al., 2014]

Apply parallel filter operations on
the input from previous layer
— Multiple receptive field sizes for convolution
(1x1, 3x3, 5x5)

— Pooling operation (3x3)

Concatenate all filter outputs
together at output depth-wise

What’s the problem?

GoogleLeNet: Inception Module

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Idea: design good local topology (“network within network”) and then stack
these modules

[Szegedy et al., 2014]

Apply parallel filter operations on
the input from previous layer
— Multiple receptive field sizes for convolution
(1x1, 3x3, 5x5)

— Pooling operation (3x3)

Concatenate all filter outputs
together at output depth-wise

1x1 conv,
128 filters

3x3 conv,
192 filters

5x5 conv,
96 filters

28x28x256

GoogleLeNet: Inception Module

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Idea: design good local topology (“network within network”) and then stack
these modules

[Szegedy et al., 2014]

Apply parallel filter operations on
the input from previous layer
— Multiple receptive field sizes for convolution
(1x1, 3x3, 5x5)

— Pooling operation (3x3)

Concatenate all filter outputs
together at output depth-wise

1x1 conv,
128 filters

3x3 conv,
192 filters

5x5 conv,
96 filters

28x28x256

28x28x128 28x28x192 28x28x96 28x28x256

GoogleLeNet: Inception Module

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Idea: design good local topology (“network within network”) and then stack
these modules

[Szegedy et al., 2014]

Apply parallel filter operations on
the input from previous layer
— Multiple receptive field sizes for convolution
(1x1, 3x3, 5x5)

— Pooling operation (3x3)

Concatenate all filter outputs
together at output depth-wise

1x1 conv,
128 filters

3x3 conv,
192 filters

5x5 conv,
96 filters

28x28x256

28x28x128 28x28x192 28x28x96 28x28x256

28x28x672

Convolutional Layer: 1x1 convolutions

56 width

64 depth

56 x 56 x 64 image

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

32 filters of size, 1 x 1 x 64

56 height

56 x 56 x 32 image

56 width

32 depth

56 height

GoogleLeNet: Inception Module

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Idea: design good local topology (“network within network”) and then stack
these modules

[Szegedy et al., 2014]

1x1 “bottleneck” layers

saves approximately 60% of computations

GoogleLeNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

even deeper network with computational efficiency
— 22 layers
— Efficient “Inception” module
— No FC layers
— Only 5 million parameters!
(12x less than AlexNet!)
— Better performance (@6.7 top 5 error)

[Szegedy et al., 2014]

GoogleLeNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

even deeper network with computational efficiency
— 22 layers
— Efficient “Inception” module
— No FC layers
— Only 5 million parameters!
(12x less than AlexNet!)
— Better performance (@6.7 top 5 error)

[Szegedy et al., 2014]

GoogleLeNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

even deeper network with computational efficiency
— 22 layers
— Efficient “Inception” module
— No FC layers
— Only 5 million parameters!
(12x less than AlexNet!)
— Better performance (@6.7 top 5 error)

[Szegedy et al., 2014]

GoogleLeNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

even deeper network with computational efficiency
— 22 layers
— Efficient “Inception” module
— No FC layers
— Only 5 million parameters!
(12x less than AlexNet!)
— Better performance (@6.7 top 5 error)

[Szegedy et al., 2014]

Optimizing Deep Neural Networks

Consider multi-layer neural network with sigmoid activations and loss C

Source: http://neuralnetworksanddeeplearning.com/chap5.html

Optimizing Deep Neural Networks

Source: http://neuralnetworksanddeeplearning.com/chap5.html

Optimizing Deep Neural Networks

Expression for gradient of bias in Layer 1:

Expression for gradient of bias in Layer 3:

Source: http://neuralnetworksanddeeplearning.com/chap5.html

Optimizing Deep Neural Networks

Expression for gradient of bias in Layer 1:

Expression for gradient of bias in Layer 3:

Source: http://neuralnetworksanddeeplearning.com/chap5.html

Optimizing Deep Neural Networks

Source: http://neuralnetworksanddeeplearning.com/chap5.html

Observations:
 |weight| < 1 (due to initialization)
 max of derivative of sigmoid = 1/4 @ 0

Optimizing Deep Neural Networks

Source: http://neuralnetworksanddeeplearning.com/chap5.html

Observations:
 |weight| < 1 (due to initialization)
 max of derivative of sigmoid = 1/4 @ 0

Optimizing Deep Neural Networks

Source: http://neuralnetworksanddeeplearning.com/chap5.html

This is called vanishing gradient problem
— makes deep networks hard to train
— later layers learn faster than earlier ones

Optimizing Deep Neural Networks

Source: http://neuralnetworksanddeeplearning.com/chap5.html

Exploding gradient problem
— makes weights large (e.g., 100)
— make bias such that pre-activation = 0

>1 >1

GoogleLeNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

even deeper network with computational efficiency
— 22 layers
— Efficient “Inception” module
— No FC layers
— Only 5 million parameters!
(12x less than AlexNet!)
— Better performance (@6.7 top 5 error)

[Szegedy et al., 2014]

ILSVRC winner 2012

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

ResNet [He et al., 2015]

even deeper — 152 layers!
using residual connections

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

ResNet: Motivation [He et al., 2015]

What happens when we continue to stacking deeper layers on a “plain” CNN

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

ResNet: Motivation [He et al., 2015]

What happens when we continue to stacking deeper layers on a “plain” CNN

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Whats the problem?

ResNet: Motivation [He et al., 2015]

What happens when we continue to stacking deeper layers on a “plain” CNN

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Whats the problem?

ResNet: Motivation [He et al., 2015]

Hypothesis: deeper models are harder to optimize (optimization problem)

ResNet: Motivation [He et al., 2015]

Hypothesis: deeper models are harder to optimize (optimization problem)

Observation: the deeper model should (conceptually) perform just as well
(e.g., take shallower model and use identity for all remaining layers)

ResNet: Motivation [He et al., 2015]

Hypothesis: deeper models are harder to optimize (optimization problem)

Observation: the deeper model should (conceptually) perform just as well
(e.g., take shallower model and use identity for all remaining layers)

How do we implement this idea in practice

ResNet [He et al., 2015]

Solution: use network to fit residual mapping instead of directly trying to fit a
desired underlying mapping

H(x) = F(x) + X Use layers to fit residual
F(x) = H(x) - X instead of H(x) directly

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

ResNet [He et al., 2015]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Full details
— Stacked residual blocks

— Every residual block consists of two 3x3 filters

— Periodically double # of filters and downsample spatially
using stride of 2

— Additional convolutional layer in the beginning

— No FC layers at the end (only FC to output 1000 classes)

ILSVRC winner 2012

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

ILSVRC winner 2012

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Regularization: Stochastic Depth

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[Huang et al., ECCV 2016]

Effectively “dropout” but for layers

Stochastically with some probability turn off
some layer (for each batch)

Effectively trains a collection of neural networks

ResNet: A little theory
One can view a sequence of outputs from residual layers as a Dynamical
System

[Cheng et al., ICLR 2018]

ResNet: A little theory
One can view a sequence of outputs from residual layers as a Dynamical
System

[Cheng et al., ICLR 2018]

ResNet: A little theory
One can view a sequence of outputs from residual layers as a Dynamical
System

What happens if you take more layers and take smaller steps?

[Chen et al., NIPS 2018 best paper]

ResNet: A little theory
One can view a sequence of outputs from residual layers as a Dynamical
System

What happens if you take more layers and take smaller steps?

You can actually treat a neural network as an ODE:

[Chen et al., NIPS 2018 best paper]

Comparing Complexity

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Computer Vision Problems (no language for now)

Detection

Horse (x, y, w, h)
Horse (x, y, w, h)
Person (x, y, w, h)
Person (x, y, w, h)

Segmentation Instance Segmentation

Multi-class:

Multi-label:

Horse
Church
Toothbrush
Person

Horse
Church
Toothbrush
Person

Categorization

Horse
Person

Horse1
Horse2
Person1
Person2

Computer Vision Problems (no language for now)

Segmentation

Horse
Person

Semantic Segmentation

Cow

Grass

Sky
Tre

es

Grass

Cat

Sky Trees

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Label every pixel with a
category label (without
differentiating instances)

Semantic Segmentation: Sliding Window

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

Classify center pixel with CNNExtract patches

Cow

Cow

Grass

[Farabet et al, TPAMI 2013]
[Pinheiro et al, ICML 2014]

Semantic Segmentation: Sliding Window

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

Classify center pixel with CNNExtract patches

Cow

Cow

Grass

[Farabet et al, TPAMI 2013]
[Pinheiro et al, ICML 2014]

Problem: VERY inefficient, no reuse of computations for overlapping patches

Semantic Segmentation: Fully Convolutional CNNs

CONV,
ReLU

CONV,
ReLU

CONV,
ReLU

Argmax

Input Image

Convolutions

Class Scores Predicted Labels

C x H x W H x W

D x H x W

3 x H x W

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Design a network as a number of convolutional layers to make
predictions for all pixels at once!

Semantic Segmentation: Fully Convolutional CNNs

CONV,
ReLU

CONV,
ReLU

CONV,
ReLU

Argmax

Input Image

Convolutions

Class Scores Predicted Labels

C x H x W H x W

D x H x W

3 x H x W

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Design a network as a number of convolutional layers to make
predictions for all pixels at once!

Problem: Convolutions at the original image scale will be very expensive

Semantic Segmentation: Fully Convolutional CNNs

Input Image Predicted Labels

H x W3 x H x W

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Design a network as a number of convolutional layers with
downsampling and upsampling inside the network!

High-res:
D1 x H/2 x W/2

High-res:
D1 x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4

[Long et al, CVPR 2015]
[Noh et al, ICCV 2015]

Semantic Segmentation: Fully Convolutional CNNs

Input Image Predicted Labels

H x W3 x H x W

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Design a network as a number of convolutional layers with
downsampling and upsampling inside the network!

High-res:
D1 x H/2 x W/2

High-res:
D1 x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4

[Long et al, CVPR 2015]
[Noh et al, ICCV 2015]

Downsampling = Pooling Upsampling = ???

In-network Up Sampling (a.k.a “Unpooling”)

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4

Nearest Neighbor

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

In-network Up Sampling (a.k.a “Unpooling”)

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4

Nearest Neighbor

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 0 2 0
0 0 0 0
3 0 4 0
0 0 0 0

“Bed of Nails”

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

In-network Up Sampling: Max Unpooling

Input: 4 x 4

1 2 6 3
3 5 2 1
1 2 2 1
7 3 4 8

1 2
3 4

Input: 2 x 2
Output: 4 x 4

0 0 2 0
0 1 0 0
0 0 0 0
3 0 0 4

Max Unpooling
Use positions from pooling layer

5 6
7 8

Max Pooling
Remember which element was max!

…

Rest of the network

Output: 2 x 2

Corresponding pairs of downsampling and upsampling layers

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

In-network Up Sampling: Transpose Convolution

Input: 4 x 4 Output: 4 x 4

Dot product between
filter and input

Recall: Normal 3 x 3 convolution, stride 1 pad 1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

In-network Up Sampling: Transpose Convolution

Input: 4 x 4 Output: 4 x 4

Dot product between
filter and input

Recall: Normal 3 x 3 convolution, stride 1 pad 1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

In-network Up Sampling: Transpose Convolution

Input: 4 x 4

Dot product between
filter and input

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Output: 2 x 2

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

In-network Up Sampling: Transpose Convolution

Input: 4 x 4

Output: 2 x 2

Dot product between
filter and input

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Filter moves 2 pixels in the input for every one
pixel in the output

Stride gives ratio in movement in input vs output

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

In-network Up Sampling: Transpose Convolution

Input: 2 x 2
Output: 4 x 4

3 x 3 transpose convolution, stride 2 pad 1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

In-network Up Sampling: Transpose Convolution

Input gives
weight for
filter

Input: 2 x 2
Output: 4 x 4

3 x 3 transpose convolution, stride 2 pad 1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

In-network Up Sampling: Transpose Convolution

Input gives
weight for
filter

Sum where
output overlaps

Input: 2 x 2
Output: 4 x 4

3 x 3 transpose convolution, stride 2 pad 1

Filter moves 2 pixels in the output for every one
pixel in the input

Stride gives ratio in movement in output vs input

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Transpose Convolution: 1-D Example

a

b

x

y

z

 ax

 ay

az + bx

 by

bz

Input Filter

Output

Output contains copies of the filter weighted multiplied by the input, summing
at overlaps in the output

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

U-Net Architecture

[Ronneberger et al, CVPR 2015]

ResNet-like Fully convolutional CNN

Computer Vision Problems (no language for now)

Detection

Horse (x, y, w, h)
Horse (x, y, w, h)
Person (x, y, w, h)
Person (x, y, w, h)

Segmentation Instance Segmentation

Multi-class:

Multi-label:

Horse
Church
Toothbrush
Person

Horse
Church
Toothbrush
Person

Categorization

Horse
Person

Horse1
Horse2
Person1
Person2

