

THE UNIVERSITY OF BRITISH COLUMBIA

Topics in AI (CPSC 532S): **Multimodal Learning with Vision, Language and Sound**

Lecture 6: Convolutional Neural Networks (Part 3)

Assignment 2 is due on Monday

Computer Vision Problems (no language for now)

Categorization

Detection

Multi-class: Horse Church Toothbrush Person **IM** GENET

Multi-label: Horse

Church Toothbrush Person

Horse (x, y, w, h) Horse (x, y, w, h) Person (x, y, w, h) Person (x, y, w, h)

Segmentation

Horse Person

Instance Segmentation

Horse1 Horse₂ Person1 Person2

Computer Vision Problems (no language for now)

Categorization

Multi-**class:** Horse Church Toothbrush Person IM GENET

even deeper network with computational efficiency

- -22 layers
- Efficient "Inception" module
- No FC layers
- Only 5 million parameters!
- (12x less than AlexNet!)
- Better performance (@6.7 top 5 error)

[Szegedy et al., 2014]

these modules

Szegedy et al., 2014]

Idea: design good local topology ("network within network") and then stack

these modules

Apply parallel filter operations on the input from previous layer

 Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)

- Pooling operation (3x3)

Concatenate all filter outputs together at output depth-wise Szegedy et al., 2014

Idea: design good local topology ("network within network") and then stack

Naive Inception module

these modules

Apply parallel filter operations on the input from previous layer

 Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)

- Pooling operation (3x3)

Concatenate all filter outputs together at output depth-wise Szegedy et al., 2014]

Idea: design good local topology ("network within network") and then stack

What's the problem?

Naive Inception module

these modules

Apply parallel filter operations on the input from previous layer

 Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)

- Pooling operation (3x3)

Concatenate all filter outputs together at output depth-wise

Szegedy et al., 2014]

Idea: design good local topology ("network within network") and then stack

these modules

Apply parallel filter operations on the input from previous layer

 Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)

- Pooling operation (3x3)

Concatenate all filter outputs together at output depth-wise

Szegedy et al., 2014]

Idea: design good local topology ("network within network") and then stack

28x28x192 28x28x128 28x28x96 28x28x256

these modules

Apply parallel filter operations on the input from previous layer

 Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)

- Pooling operation (3x3)

Concatenate all filter outputs together at output depth-wise

Szegedy et al., 2014]

Idea: design good local topology ("network within network") and then stack

Convolutional Layer: 1x1 convolutions

56 x 56 x 64 **image**

Idea: design good local topology ("network within network") and then stack these modules

Naive Inception module

1x1 "bottleneck" layers

Inception module with dimension reduction

saves approximately 60% of computations

even deeper network with computational efficiency

- -22 layers
- Efficient "Inception" module
- No FC layers
- Only 5 million parameters!
- (12x less than AlexNet!)
- Better performance (@6.7 top 5 error)

[Szegedy et al., 2014]

even deeper network with computational efficiency

- -22 layers
- Efficient "Inception" module
- No FC layers
- Only 5 million parameters!
- (12x less than AlexNet!)
- Better performance (@6.7 top 5 error)

[Szegedy et al., 2014]

even deeper network with computational efficiency

- -22 layers
- Efficient "Inception" module
- No FC layers
- Only 5 million parameters!
- (12x less than AlexNet!)
- Better performance (@6.7 top 5 error)

[Szegedy et al., 2014]

even deeper network with computational efficiency

- -22 layers
- Efficient "Inception" module
- No FC layers
- Only 5 million parameters!
- (12x less than AlexNet!)
- Better performance (@6.7 top 5 error)

[Szegedy et al., 2014]

Consider multi-layer neural network with sigmoid activations and loss C

 $\frac{\partial C}{\partial b_1} = \sigma'(z_1) \times w_2 \times \sigma'(z_2) \times w_3 \times \sigma'(z_3) \times w_4 \times \sigma'(z_4) \times \frac{\partial C}{\partial a_4}$

Expression for **gradient** of bias in **Layer 1**:

Expression for gradient

 $\frac{\partial C}{\partial b_1} = \sigma'(z_1) \times w_2 \times \sigma'(z_2) \times w_3 \times \sigma'(z_3) \times w_4 \times \sigma'(z_4) \times \frac{\partial C}{\partial a_4}$

$$\frac{\partial C}{\partial b_1} = \sigma'(z_1) \, w_2 \sigma'(z_2) \, w_3 \sigma'(z_3) \, w_4 \sigma'(z_4) \frac{\partial C}{\partial a_4}$$

of bias in **Layer 3**:
$$\frac{\partial C}{\partial b_3} = \sigma'(z_3) w_4 \sigma'(z_4) \frac{\partial C}{\partial a_4}$$

Observations:

|weight| < 1 (due to initialization) max of derivative of sigmoid = 1/4 @ 0

 $\frac{\partial C}{\partial b_1} = \sigma'(z_1) \times w_2 \times \sigma'(z_2) \times w_3 \times \sigma'(z_3) \times w_4 \times \sigma'(z_4) \times \frac{\partial C}{\partial a_4}$ ^w4 $\rightarrow C$ $\xrightarrow{a_3} (b_3)$ (b4) $\xrightarrow{}$ (b_2) $\frac{\partial C}{\partial b_1} = \sigma'(z_1) w_2 \sigma'(z_2) w_3 \sigma'(z_3) w_4 \sigma'(z_4) \frac{\partial C}{\partial a_4}$ common terms $\frac{\partial C}{\partial b_3} = \sigma'(z_3) \, w_4 \sigma'(z_4) \frac{\partial C}{\partial a_4}$

Observations:

|weight| < 1 (due to initialization) max of derivative of sigmoid = 1/4 @ 0

 $\frac{\partial C}{\partial b_1} = \sigma'(z_1) \times w_2 \times \sigma'(z_2) \times w_3 \times \sigma'(z_3) \times w_4 \times \sigma'(z_4) \times \frac{\partial C}{\partial a_4}$ $\begin{pmatrix} b_1 \end{pmatrix} \xrightarrow{w_2} \begin{pmatrix} b_2 \end{pmatrix} \xrightarrow{w_3} \begin{pmatrix} b_3 \end{pmatrix}$ $\longrightarrow C$

This is called vanishing gradient problem

 makes deep networks hard to train later layers learn faster than earlier ones

 $\frac{\partial C}{\partial b_1} = \sigma'(z_1) \times w_2 \times \sigma'(z_2) \times w_3 \times \sigma'(z_3) \times w_4 \times \sigma'(z_4) \times \frac{\partial C}{\partial a_4}$ $\underbrace{\frac{\partial C}{\partial b_1}}_{=\sigma'(z_1)} \underbrace{\sigma'(z_2)}_{w_2\sigma'(z_2)} \underbrace{\frac{\partial C}{w_3\sigma'(z_3)}}_{w_3\sigma'(z_3)} w_4\sigma'(z_4) \frac{\partial C}{\partial a_4}$ common terms

 $\frac{\partial C}{\partial b_3} = \sigma'(z_3) w_4 \sigma'(z_4) \frac{\partial C}{\partial a_4}$

Exploding gradient problem

- makes weights large (e.g., 100) - make bias such that pre-activation = 0

 $\frac{\partial C}{\partial b_1} = \sigma'(z_1) \times w_2 \times \sigma'(z_2) \times w_3 \times \sigma'(z_3) \times w_4 \times \sigma'(z_4) \times \frac{\partial C}{\partial a_4}$ $\begin{pmatrix} b_1 \end{pmatrix} \xrightarrow{w_2} \begin{pmatrix} b_2 \end{pmatrix} \xrightarrow{w_3} \begin{pmatrix} b_3 \end{pmatrix} \xrightarrow{w_4} \begin{pmatrix} b_4 \end{pmatrix} \longrightarrow C$ >1 >1 $\frac{\partial C}{\partial b_1} = \sigma'(z_1) \underbrace{w_2 \sigma'(z_2)}_{w_2 \sigma'(z_2)} \underbrace{w_3 \sigma'(z_3)}_{w_3 \sigma'(z_3)} w_4 \sigma'(z_4) \frac{\partial C}{\partial a_4}$ common terms $\frac{\partial C}{\partial b_3} = \sigma'(z_3) w_4 \sigma'(z_4) \frac{\partial C}{\partial a_4}$

even deeper network with computational efficiency

- -22 layers
- Efficient "Inception" module
- No FC layers
- Only 5 million parameters!
- (12x less than AlexNet!)
- Better performance (@6.7 top 5 error)

[Szegedy et al., 2014]

ResNet

even deeper — **152 layers**! using residual connections

[He et al., 2015]

[He et al., 2015]

What happens when we continue to stacking deeper layers on a "plain" CNN

[He et al., 2015]

What happens when we continue to stacking deeper layers on a "plain" CNN

Whats the **problem**?

[He et al., 2015]

What happens when we continue to stacking deeper layers on a "plain" CNN

Whats the **problem**?

Hypothesis: deeper models are harder to optimize (optimization problem)

[He et al., 2015]

Hypothesis: deeper models are harder to optimize (optimization problem)

Observation: the deeper model should (conceptually) perform just as well (e.g., take shallower model and use identity for all remaining layers)

[He et al., 2015]

ResNet: Motivation

Hypothesis: deeper models are harder to optimize (optimization problem)

Observation: the deeper model should (conceptually) perform just as well (e.g., take shallower model and use identity for all remaining layers)

How do we implement this idea in practice

[He et al., 2015]

ResNet

Solution: use network to fit residual mapping instead of directly trying to fit a desired underlying mapping

H(x) = F(x) + X

[He et al., 2015]

ResNet

Full details

- Stacked **residual blocks**
- Every residual block consists of two 3x3 filters
- Periodically double # of filters and downsample spatially using stride of 2
- Additional convolutional layer in the beginning
- No FC layers at the end (only FC to output 1000 classes)

[He et al., 2015]

ILSVRC winner 2012

ILSVRC winner 2012

Regularization: Stochastic Depth

Effectively "dropout" but for layers

some layer (for each batch)

Huang et al., ECCV 2016]

One can view a sequence of outputs from residual layers as a **Dynamical** System

[Cheng et al., ICLR 2018]

One can view a sequence of outputs from residual layers as a **Dynamical** System

$\mathbf{Y}_{j+1} = \mathbf{Y}_j + G(\mathbf{Y}_j, \boldsymbol{\theta}_j)$

[Cheng et al., ICLR 2018]

One can view a sequence of outputs from residual layers as a **Dynamical** System

What happens if you take more layers and take smaller steps?

[Chen et al., NIPS 2018 **best paper**]

One can view a sequence of outputs from residual layers as a **Dynamical** System

What happens if you take more layers and take smaller steps?

You can actually treat a neural network as an **ODE**:

$$\frac{d\mathbf{h}(t)}{dt} = f(\mathbf{h}(t), t, \theta)$$

[Chen et al., NIPS 2018 **best paper**]

Comparing **Complexity**

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Computer Vision Problems (no language for now)

Categorization

Detection

Multi-class: Horse Church Toothbrush Person **IM** GENET

Multi-label: Horse

Church Toothbrush Person

Horse (x, y, w, h) Horse (x, y, w, h) Person (x, y, w, h) Person (x, y, w, h)

Segmentation

Horse Person

Instance Segmentation

Horse1 Horse₂ Person1 Person2

Computer Vision Problems (no language for now)

Segmentation

Horse Person

Semantic Segmentation

Label every pixel with a category label (without differentiating instances)

Sky

Semantic Segmentation: Sliding Window

Extract **patches**

[Farabet et al, TPAMI 2013] [Pinheiro et al, ICML 2014]

Classify center pixel with CNN

Semantic Segmentation: Sliding Window

Extract **patches**

Problem: VERY inefficient, no reuse of computations for overlapping patches

[Farabet et al, TPAMI 2013] [•] Pinheiro et al, ICML 2014]

Classify center pixel with CNN

Design a network as a number of convolutional layers to make predictions for all pixels at once!

Problem: Convolutions at the original image scale will be very expensive

Design a network as a number of convolutional layers to make predictions for all pixels at once!

Input **Image**

 $3 \times H \times W$

 $D_1 \times H/2 \times W/2$

Design a network as a number of convolutional layers with downsampling and upsampling inside the network!

Predicted Labels

HxW

[Long et al, CVPR 2015] [Noh et al, ICCV 2015]

Input **Image**

 $3 \times H \times W$

High-res: $D_1 \times H/2 \times W/2$

Downsampling = Pooling

Design a network as a number of convolutional layers with downsampling and upsampling inside the network!

Predicted Labels

HxW

Upsampling = ???

[Long et al, CVPR 2015] [Noh et al, ICCV 2015]

In-network Up Sampling (a.k.a "Unpooling")

Nearest Neighbor

Input: 2 x 2

Output: 4 × 4

In-network Up Sampling (a.k.a "Unpooling")

Nearest Neighbor

Input: 2 x 2

Output: 4 × 4

"Bed of Nails"

In-network Up Sampling: Max Unpooling

Max Pooling

Remember which element was max!

Corresponding pairs of downsampling and upsampling layers

Max Unpooling Use positions from pooling layer

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Input: 4 × 4

Dot product between filter and input

Output: 4 × 4

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Dot product between filter and input

Input: 4 × 4

Output: 4 × 4

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Input: 4 × 4

Dot product between filter and input

Output: 2 x 2

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Input: 4 × 4

Dot product between filter and input

Output: 2 × 2

Filter moves 2 pixels in the **input** for every one pixel in the **output**

Stride gives ratio in movement in input vs output

3 x 3 transpose convolution, stride 2 pad 1

Input: 2 x 2

Output: 4 × 4

3 x 3 transpose convolution, stride 2 pad 1

Input gives weight for filter

Input: 2 x 2

Output: 4 × 4

3 x 3 transpose convolution, stride 2 pad 1

Input gives weight for filter

Input: 2 x 2

Output: 4 × 4

Filter moves 2 pixels in the **output** for every one pixel in the **input**

Stride gives ratio in movement in output vs input

Transpose Convolution: 1-D Example

Output contains copies of the filter weighted multiplied by the input, summing at overlaps in the output

U-Net Architecture

ResNet-like Fully convolutional CNN

[Ronneberger et al, CVPR 2015]

Computer Vision Problems (no language for now)

Categorization

Detection

Multi-class: Horse Church Toothbrush Person **IM** GENET

Multi-label: Horse

Church Toothbrush Person

Horse (x, y, w, h) Horse (x, y, w, h) Person (x, y, w, h) Person (x, y, w, h)

Segmentation

Horse Person

Instance Segmentation

Horse1 Horse₂ Person1 Person2

