
Lecture 6: Convolutional Neural Networks (Part 3)

Topics in AI (CPSC 532S): 
Multimodal Learning with Vision, Language and Sound



Logistics:

Assignment 2 is due on Monday



Computer Vision Problems (no language for now)

Detection

Horse (x, y, w, h) 
Horse (x, y, w, h) 
Person (x, y, w, h) 
Person (x, y, w, h)

Segmentation Instance Segmentation

Multi-class:

Multi-label:

Horse
Church
Toothbrush
Person

Horse
Church
Toothbrush
Person

Categorization

Horse 
Person

Horse1 
Horse2 
Person1 
Person2



Computer Vision Problems (no language for now)

Multi-class: Horse
Church
Toothbrush
Person

Categorization



ILSVRC winner 2012

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



ILSVRC winner 2012

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



ILSVRC winner 2012

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



GoogleLeNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

even deeper network with computational efficiency  
— 22 layers 
— Efficient “Inception” module 
— No FC layers 
— Only 5 million parameters! 
(12x less than AlexNet!) 
— Better performance (@6.7 top 5 error)

[ Szegedy et al., 2014 ]



GoogleLeNet: Inception Module

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Idea: design good local topology (“network within network”)  and then stack 
these modules

[ Szegedy et al., 2014 ]
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Apply parallel filter operations on 
the input from previous layer 
— Multiple receptive field sizes for convolution 
(1x1, 3x3, 5x5) 

— Pooling operation (3x3) 

Concatenate all filter outputs 
together at output depth-wise
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Apply parallel filter operations on 
the input from previous layer 
— Multiple receptive field sizes for convolution 
(1x1, 3x3, 5x5) 

— Pooling operation (3x3) 

Concatenate all filter outputs 
together at output depth-wise

What’s the problem?
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Idea: design good local topology (“network within network”)  and then stack 
these modules

[ Szegedy et al., 2014 ]

Apply parallel filter operations on 
the input from previous layer 
— Multiple receptive field sizes for convolution 
(1x1, 3x3, 5x5) 

— Pooling operation (3x3) 

Concatenate all filter outputs 
together at output depth-wise

1x1 conv, 
128 filters

3x3 conv, 
192 filters

5x5 conv, 
96 filters

28x28x256

28x28x128 28x28x192 28x28x96 28x28x256



GoogleLeNet: Inception Module

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Idea: design good local topology (“network within network”)  and then stack 
these modules

[ Szegedy et al., 2014 ]

Apply parallel filter operations on 
the input from previous layer 
— Multiple receptive field sizes for convolution 
(1x1, 3x3, 5x5) 

— Pooling operation (3x3) 

Concatenate all filter outputs 
together at output depth-wise

1x1 conv, 
128 filters

3x3 conv, 
192 filters

5x5 conv, 
96 filters

28x28x256

28x28x128 28x28x192 28x28x96 28x28x256

28x28x672



Convolutional Layer: 1x1 convolutions 

56 width

64 depth

56 x 56 x 64 image 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

32 filters of size, 1 x 1 x 64

56 height

56 x 56 x 32 image 

56 width

32 depth

56 height



GoogleLeNet: Inception Module

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Idea: design good local topology (“network within network”)  and then stack 
these modules

[ Szegedy et al., 2014 ]

1x1 “bottleneck” layers

saves approximately 60% of computations
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GoogleLeNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

even deeper network with computational efficiency  
— 22 layers 
— Efficient “Inception” module 
— No FC layers 
— Only 5 million parameters! 
(12x less than AlexNet!) 
— Better performance (@6.7 top 5 error)

[ Szegedy et al., 2014 ]



Optimizing Deep Neural Networks

Consider multi-layer neural network with sigmoid activations and loss C

Source: http://neuralnetworksanddeeplearning.com/chap5.html
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Source: http://neuralnetworksanddeeplearning.com/chap5.html

Observations: 
    |weight| < 1 (due to initialization) 
    max of derivative of sigmoid = 1/4 @ 0



Optimizing Deep Neural Networks

Source: http://neuralnetworksanddeeplearning.com/chap5.html

Observations: 
    |weight| < 1 (due to initialization) 
    max of derivative of sigmoid = 1/4 @ 0



Optimizing Deep Neural Networks

Source: http://neuralnetworksanddeeplearning.com/chap5.html

This is called vanishing gradient problem 
— makes deep networks hard to train 
— later layers learn faster than earlier ones



Optimizing Deep Neural Networks

Source: http://neuralnetworksanddeeplearning.com/chap5.html

Exploding gradient problem 
— makes weights large (e.g., 100) 
— make bias such that pre-activation = 0

>1 >1



GoogleLeNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

even deeper network with computational efficiency  
— 22 layers 
— Efficient “Inception” module 
— No FC layers 
— Only 5 million parameters! 
(12x less than AlexNet!) 
— Better performance (@6.7 top 5 error)

[ Szegedy et al., 2014 ]



ILSVRC winner 2012

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



ResNet [ He et al., 2015 ]

even deeper — 152 layers! 
using residual connections

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



ResNet: Motivation [ He et al., 2015 ]

What happens when we continue to stacking deeper layers on a “plain” CNN
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Hypothesis: deeper models are harder to optimize (optimization problem)
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(e.g., take shallower model and use identity for all remaining layers)



ResNet: Motivation [ He et al., 2015 ]

Hypothesis: deeper models are harder to optimize (optimization problem)

Observation: the deeper model should (conceptually) perform just as well 
(e.g., take shallower model and use identity for all remaining layers)

How do we implement this idea in practice 



ResNet [ He et al., 2015 ]

Solution: use network to fit residual mapping instead of directly trying to fit a 
desired underlying mapping 

H(x) = F(x) + X Use layers to fit residual  
F(x) = H(x) - X instead of H(x) directly

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



ResNet [ He et al., 2015 ]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Full details 
— Stacked residual blocks 

— Every residual block consists of two 3x3 filters 

— Periodically double # of filters and downsample spatially 
using stride of 2  

— Additional convolutional layer in the beginning 

— No FC layers at the end (only FC to output 1000 classes) 
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Regularization: Stochastic Depth

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[ Huang et al., ECCV 2016 ]

Effectively “dropout” but for layers

Stochastically with some probability turn off 
some layer (for each batch)

Effectively trains a collection of neural networks 



ResNet: A little theory
One can view a sequence of outputs from residual layers as a Dynamical 
System

[ Cheng et al., ICLR 2018 ]
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What happens if you take more layers and take smaller steps? 

[ Chen et al., NIPS 2018 best paper ]



ResNet: A little theory
One can view a sequence of outputs from residual layers as a Dynamical 
System

What happens if you take more layers and take smaller steps? 

You can actually treat a neural network as an ODE: 

[ Chen et al., NIPS 2018 best paper ]



Comparing Complexity

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Computer Vision Problems (no language for now)

Detection

Horse (x, y, w, h) 
Horse (x, y, w, h) 
Person (x, y, w, h) 
Person (x, y, w, h)

Segmentation Instance Segmentation

Multi-class:

Multi-label:

Horse
Church
Toothbrush
Person

Horse
Church
Toothbrush
Person

Categorization

Horse 
Person

Horse1 
Horse2 
Person1 
Person2



Computer Vision Problems (no language for now)

Segmentation

Horse 
Person



Semantic Segmentation

Cow

Grass

Sky
Tre

es

Grass

Cat

Sky Trees

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Label every pixel with a 
category label (without 
differentiating instances)



Semantic Segmentation: Sliding Window

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
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Visual representation by DCNN

Classify center pixel with CNNExtract patches

Cow

Cow

Grass

[ Farabet et al, TPAMI 2013 ] 
[ Pinheiro et al, ICML 2014 ]
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Classify center pixel with CNNExtract patches

Cow

Cow
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[ Farabet et al, TPAMI 2013 ] 
[ Pinheiro et al, ICML 2014 ]

Problem: VERY inefficient, no reuse of computations for overlapping patches



Semantic Segmentation: Fully Convolutional CNNs

CONV, 
ReLU

CONV, 
ReLU

CONV, 
ReLU

Argmax

Input Image

Convolutions

Class Scores Predicted Labels

C x H x W H x W

D x H x W

3 x H x W

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Design a network as a number of convolutional layers to make 
predictions for all pixels at once! 



Semantic Segmentation: Fully Convolutional CNNs

CONV, 
ReLU

CONV, 
ReLU

CONV, 
ReLU

Argmax

Input Image

Convolutions

Class Scores Predicted Labels

C x H x W H x W

D x H x W

3 x H x W

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Design a network as a number of convolutional layers to make 
predictions for all pixels at once! 

Problem: Convolutions at the original image scale will be very expensive



Semantic Segmentation: Fully Convolutional CNNs

Input Image Predicted Labels

H x W3 x H x W

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Design a network as a number of convolutional layers with 
downsampling and upsampling inside the network! 

High-res: 
D1 x H/2 x W/2

High-res: 
D1 x H/2 x W/2

Med-res: 
D2 x H/4 x W/4

Med-res: 
D2 x H/4 x W/4

Low-res: 
D3 x H/4 x W/4

[ Long et al, CVPR 2015 ] 
[ Noh et al, ICCV 2015 ]



Semantic Segmentation: Fully Convolutional CNNs

Input Image Predicted Labels

H x W3 x H x W

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Design a network as a number of convolutional layers with 
downsampling and upsampling inside the network! 

High-res: 
D1 x H/2 x W/2

High-res: 
D1 x H/2 x W/2

Med-res: 
D2 x H/4 x W/4

Med-res: 
D2 x H/4 x W/4

Low-res: 
D3 x H/4 x W/4

[ Long et al, CVPR 2015 ] 
[ Noh et al, ICCV 2015 ]

Downsampling = Pooling Upsampling = ???



In-network Up Sampling (a.k.a “Unpooling”)

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4

Nearest Neighbor

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



In-network Up Sampling (a.k.a “Unpooling”)

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4

Nearest Neighbor

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 0 2 0
0 0 0 0
3 0 4 0
0 0 0 0

“Bed of Nails”

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



In-network Up Sampling: Max Unpooling

Input: 4 x 4

1 2 6 3
3 5 2 1
1 2 2 1
7 3 4 8

1 2
3 4

Input: 2 x 2
Output: 4 x 4

0 0 2 0
0 1 0 0
0 0 0 0
3 0 0 4

Max Unpooling 
Use positions from pooling layer

5 6
7 8

Max Pooling 
Remember which element was max!

… 

Rest of the network

Output: 2 x 2

Corresponding pairs of downsampling and upsampling layers

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



In-network Up Sampling: Transpose Convolution

Input: 4 x 4 Output: 4 x 4

Dot product between 
filter and input

Recall: Normal 3 x 3 convolution, stride 1 pad 1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



In-network Up Sampling: Transpose Convolution

Input: 4 x 4 Output: 4 x 4

Dot product between 
filter and input

Recall: Normal 3 x 3 convolution, stride 1 pad 1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



In-network Up Sampling: Transpose Convolution

Input: 4 x 4

Dot product between 
filter and input

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Output: 2 x 2

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



In-network Up Sampling: Transpose Convolution

Input: 4 x 4

Output: 2 x 2

Dot product between 
filter and input

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Filter moves 2 pixels in the input for every one 
pixel in the output 

Stride gives ratio in movement in input vs output

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



In-network Up Sampling: Transpose Convolution

Input: 2 x 2
Output: 4 x 4

3 x 3 transpose convolution, stride 2 pad 1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



In-network Up Sampling: Transpose Convolution

Input gives 
weight for 
filter

Input: 2 x 2
Output: 4 x 4

3 x 3 transpose convolution, stride 2 pad 1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



In-network Up Sampling: Transpose Convolution

Input gives 
weight for 
filter

Sum where 
output overlaps

Input: 2 x 2
Output: 4 x 4

3 x 3 transpose convolution, stride 2 pad 1

Filter moves 2 pixels in the output for every one 
pixel in the input 

Stride gives ratio in movement in output vs input

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Transpose Convolution: 1-D Example

a

b

x

y

z

 ax

 ay

az + bx

 by       

bz

Input Filter

Output

Output contains copies of the filter weighted multiplied by the input, summing 
at overlaps in the output 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



U-Net Architecture

[ Ronneberger  et al, CVPR 2015 ]

ResNet-like Fully convolutional CNN 



Computer Vision Problems (no language for now)
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Multi-class:

Multi-label:
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Church
Toothbrush
Person
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