
Lecture 5: Convolutional Neural Networks (Part 2)

Topics in AI (CPSC 532S):
Multimodal Learning with Vision, Language and Sound

Logistics:

Assignment 2 is out

Last time: Convolutional Layer

32 width

3 depth

32 x 32 x 3 image

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

convolve (slide) over all
spatial locations

5 x 5 x 3 filter ()
W

T
x+ b,where W,x 2 R75

28 width

1 depth

28 height

activation map

CONV,
ReLU
e.g. 6 5x5x3
filters

Last time: Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

28 width

6 depth

28 height

24 width

10 depth

24 height

CONV,
ReLU
e.g. 10 5x5x6
filters

CONV,
ReLU

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Convolutional Neural Networks

VGG-16 Network

CNNs: Reminder Fully Connected Layers

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Input Activation

3072 10
(32 x 32 x 3 image -> stretches to 3072 x 1)

W

T
x+ b,where W 2 R10⇥3072

each neuron looks at the full
input volume

Convolutional Neural Networks

VGG-16 Network

W

T
x+ b,where W 2 R25,088⇥4,096

CNNs: Reminder Fully Connected Layers

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Input Activation

25,088 4,096
(7 x 7 x 512 image -> stretches to 25,088 x 1)

each neuron looks at the full
input volume

102,760,448 parameters!

Convolutional Neural Networks

VGG-16 Network

Pooling Layer
Let us assume the filter is an “eye” detector

How can we make detection spatially invariant
(insensitive to position of the eye in the image)

* slide from Marc’Aurelio Renzato

Pooling Layer
Let us assume the filter is an “eye” detector

How can we make detection spatially invariant
(insensitive to position of the eye in the image)

By “pooling” (e.g., taking a max) response
over a spatial locations we gain robustness
to position variations

* slide from Marc’Aurelio Renzato

Pooling Layer
• Makes representation smaller, more manageable and spatially invariant
• Operates over each activation map independently

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

How many parameters?

None!

Max Pooling

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

6 8

3 4
max pool with 2 x 2 filter

and stride of 2

activation map

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Average Pooling

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

3.25 5.25

2 2
avg pool with 2 x 2 filter

and stride of 2

activation map

Pooling Layer Receptive Field

* slide from Marc’Aurelio Renzato

If convolutional filters have size KxK and stride 1, and pooling layer has pools of
size PxP, then each unit in the pooling layer depends upon a patch (at the input of
the preceding conv. layer) of size: (P+K-1)x(P+K-1)

Pooling Layer Receptive Field
If convolutional filters have size KxK and stride 1, and pooling layer has pools of
size PxP, then each unit in the pooling layer depends upon a patch (at the input of
the preceding conv. layer) of size: (P+K-1)x(P+K-1)

* slide from Marc’Aurelio Renzato

Pooling Layer Summary

Accepts a volume of size:
Requires hyperparameters:
 — Spatial extent of filters:
 — Stride of application:
Produces a volume of size:

Number of total learnable parameters: 0

Wi ⇥Hi ⇥Di

W
o

⇥H
o

⇥D
o

K

F

W
o

= (W
i

� F)/S + 1 H
o

= (H
i

� F)/S + 1 D
o

= D
i

Convolutional Neural Networks

VGG-16 Network

Improving Single Model

Regularization

- L2, L1
- Dropout / Inverted Dropout
- Data augmentation

L2 Regularization: Learn a more (dense) distributed representation

L1 Regularization: Learn a sparse representation (few non-zero wight elements)

R(W) = ||W||2 =
X

i

X

j

W2
i,j

R(W) = ||W||1 =
X

i

X

j

|Wi,j |

Dropout

Regularization: Data Augmentation

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

Load image
and label

CNN Compute
Loss

cat

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Regularization: Data Augmentation

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

catLoad image
and label

CNN Compute
Loss

Transform
image

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Regularization: Data Augmentation
Horizontal flips Random crops & scales Color Jitter

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Regularization: Data Augmentation
Horizontal flips Random crops & scales Color Jitter

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Regularization: Data Augmentation
Horizontal flips Random crops & scales Color Jitter

Training: sample random crops and scales
e.g., ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short size = L
3. Sample random 224x224 patch

Testing: average a fix set of crops
e.g., ResNet:
1. Resize image to 5 scales (224, 256, 384, 480, 640)
2. For each image use 10 224x224 crops: 4 corners + center, + flips

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Regularization: Data Augmentation
Horizontal flips Random crops & scales Color Jitter

Random perturbations in
contrast and brightness

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Regularization: Stochastic Depth

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[Huang et al., ECCV 2016]

Effectively “dropout” but for layers

Stochastically with some probability turn off
some layer (for each batch)

Effectively trains a collection of neural networks

Transfer Learning with CNNs

Common “Wisdom”: You need a lot of data to train a CNN

Solution: Transfer learning — taking a model trained on the task that has
lots of data and adopting it to the task that may not

This strategy is PERVASIVE.

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Transfer Learning with CNNs
Train on ImageNet

Why on ImageNet?
- Convenience, lots of data
- We know how to train these well

However, for some tasks we would need to start
with something else (e.g., videos for optical flow)

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[Donahue et al., ICML 2014]
[Razavian et al., CVPR Workshop 2014]

[Yosinski et al., NIPS 2014]

Transfer Learning with CNNs
Train on ImageNet

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Small dataset with C classes

Freeze
these
layers

Re-initialize
and train

Lower levels of the CNN are at
task independent anyways

[Donahue et al., ICML 2014]
[Razavian et al., CVPR Workshop 2014]

[Yosinski et al., NIPS 2014]

Transfer Learning with CNNs
Train on ImageNet

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Small dataset with C classes

Freeze
these
layers

Re-initialize
and train

[Donahue et al., ICML 2014]
[Razavian et al., CVPR Workshop 2014]

[Yosinski et al., NIPS 2014]

Larger dataset

Freeze
these
layers

Re-initialize
and train

Transfer Learning with CNNs

[Yosinski et al., NIPS 2014]

Model Ensemble

Training: Train multiple independent models
Test: Average their results

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Alternative: Multiple snapshots of the single model during training!

~ 2% improved performance in practice

Improvement: Instead of using the actual parameter vector, keep a moving
average of the parameter vector and use that at test time (Polyak averaging)

CPU vs. GPU (Why do we need Azure?)

Data from https://github.com/jcjohnson/cnn-benchmarks

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

https://github.com/jcjohnson/cnn-benchmarks

Frameworks: Super quick overview

1. Easily build computational graphs

2. Easily compute gradients in computational graphs

3. Run it all efficiently on a GPU (weap cuDNN, cuBLAS, etc.)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Frameworks: Super quick overview

Core DNN Frameworks

Caffe
(UC Berkeley)

Caffe 2
(Facebook)

Torch
(NYU/Facebook)

PyTorch
(Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Puddle
(Baidu)

CNTK
(Microsoft)

MXNet
(Amazon)

Wrapper Libraries

Keras
TFLearn
TensorLayer
tf.layers
TF-Slim
tf.contrib.learn
Pretty Tensor

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Frameworks: PyTorch vs. TensorFlow
Dynamic vs. Static computational graphs

Frameworks: PyTorch vs. TensorFlow

Dynamic vs. Static computational graphs

With static graphs, framework
can optimize the graph for you
before it runs!

Original Graph
Optimized Graph

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Frameworks: PyTorch vs. TensorFlow

Dynamic vs. Static computational graphs

Graph building and execution is
intertwined. Graph can be
different for every sample.

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

PyTorch: Three levels of abstraction

Tensor: Imperative ndarray, but runs on GPU

Variable: Node in a computational graph; stores data and gradients

Module: A neural network layer; may store state or learnable weights

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Computer Vision Problems (no language for now)

Computer Vision Problems (no language for now)

Multi-class: Horse
Church
Toothbrush
Person

Multi-label: Horse
Church
Toothbrush
Person

Categorization

Computer Vision Problems (no language for now)

Detection

Horse (x, y, w, h)
Horse (x, y, w, h)
Person (x, y, w, h)
Person (x, y, w, h)

Multi-class:

Multi-label:

Horse
Church
Toothbrush
Person

Horse
Church
Toothbrush
Person

Categorization

Computer Vision Problems (no language for now)

Detection

Horse (x, y, w, h)
Horse (x, y, w, h)
Person (x, y, w, h)
Person (x, y, w, h)

Segmentation

Multi-class:

Multi-label:

Horse
Church
Toothbrush
Person

Horse
Church
Toothbrush
Person

Categorization

Horse
Person

Computer Vision Problems (no language for now)

Detection

Horse (x, y, w, h)
Horse (x, y, w, h)
Person (x, y, w, h)
Person (x, y, w, h)

Segmentation Instance Segmentation

Multi-class:

Multi-label:

Horse
Church
Toothbrush
Person

Horse
Church
Toothbrush
Person

Categorization

Horse
Person

Horse1
Horse2
Person1
Person2

Object Classification

Dog
Cat
Couch
Flowers
Leopard
…

No
No
No
No
Yes
…

Category Prediction

Problem: For each image predict which category it belongs to out of a fixed set

Object Classification

Dog
Cat
Couch
Flowers
Leopard
…

No
No
No
No
Yes
…

Category Prediction

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

Problem: For each image predict which category it belongs to out of a fixed set

Object Classification

Dog
Cat
Couch
Flowers
Leopard
…

Category Prediction

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

0 1
Probability

Problem: For each image predict which category it belongs to out of a fixed set

CNN Architectures: LeNet-5

Architecture: CONV —> POOL —> CONV —> POOL —> FC —> FC
Conv filters: 5x5, Stride: 1
Pooling: 2x2, Stride: 2

[LeCun et al., 1998]

ImageNet Dataset

Over 14 million (high resolution) web images
Roughly labeled with 22K synset categories
Labeled on Amazon Mechanical Turk (AMT)

ImageNet Competition (ILSVRC)

Annual competition of image classification at scale
Focuses on a subset of 1K synset categories
Scoring: need to predict true label within top K (K=5)

AlexNet

[Krizhevsky et al., 2012]

Input: 227 x 227 x 3 images

CONV1: 96 11 x 11 filters applied at stride 4
Output: 55 x 55 x 96

Output: 27 x 27 x 96
MAX POOL1: 96 11 x 11 filters applied at stride 4

Parameters: 35K

Parameters: 0

* slide adopeted Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Local Contrast Normalization Layer

* images from Marc’Aurelio Renzato

ensures response is the same in both case (details omitted, no longer popular)

AlexNet

[Krizhevsky et al., 2012]

Details / Comments
— First use of ReLU
— Used contrast normalization layers
— Heavy data augmentation
— Dropout of 0.5
— Batch size of 128
— SGD Momentum (0.9)
— Learning rate (1e-2) reduced by 10 manually
when validation accuracy plateaus
— L2 weight decay
— 7 CNN ensamble: 18.2% -> 15.4%

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

ILSVRC winner 2012

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

ZF Net

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[Zeiler and Fergus, 2013]

AlexNet with small modifications:
— CONV1 (11 x 11 stride 4) to (7 x 7 stride 2)
— CONV3 # of filters 384 -> 512
— CONV4 # of filters 384 -> 1024
— CONV5 # of filters 256 -> 512

ILSVRC winner 2012

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Significant Error Drop

VGG Net

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Trend:

—smaller filters (3 x 3)
—deeper network (16 or 19 vs. 8 in AlexNet)

Why?

— receptive field of a 3 layer ConvNet with filter size = 3x3
is the same as 1 layer ConvNet with filter 7x7 (at stride 1)

— deeper = more non-linearity (so richer filters)

— fewer parameters

[Simonyan and Zisserman, 2014]

VGG Net

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[Simonyan and Zisserman, 2014]

ILSVRC winner 2012

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

GoogleLeNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

even deeper network with computational efficiency

— 22 layers
— Efficient “Inception” module
— No FC layers
— Only 5 million parameters!
(12x less than AlexNet!)
— Better performance (@6.7 top 5 error)

[Szegedy et al., 2014]

GoogleLeNet: Inception Module

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Idea: design good local topology (“network within network”) and then stack
these modules

[Szegedy et al., 2014]

GoogleLeNet: Inception Module

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Idea: design good local topology (“network within network”) and then stack
these modules

[Szegedy et al., 2014]

Apply parallel filter operations on
the input from previous layer
— Multiple receptive field sizes for convolution
(1x1, 3x3, 5x5)

— Pooling operation (3x3)

Concatenate all filter outputs
together at output depth-wise

What’s the problem?

GoogleLeNet: Inception Module

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Idea: design good local topology (“network within network”) and then stack
these modules

[Szegedy et al., 2014]

Apply parallel filter operations on
the input from previous layer
— Multiple receptive field sizes for convolution
(1x1, 3x3, 5x5)

— Pooling operation (3x3)

Concatenate all filter outputs
together at output depth-wise

1x1 conv,
128 filters

3x3 conv,
192 filters

5x5 conv,
96 filters

28x28x256

28x28x128 28x28x192 28x28x96 28x28x256

28x28x672

Convolutional Layer: 1x1 convolutions

56 width

64 depth

56 x 56 x 64 image

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

32 filters of size, 1 x 1 x 64

56 height

56 x 56 x 32 image

56 width

32 depth

56 height

GoogleLeNet: Inception Module

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Idea: design good local topology (“network within network”) and then stack
these modules

[Szegedy et al., 2014]

1x1 “bottleneck” layers

saves approximately 60% of computations

GoogleLeNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

even deeper network with computational efficiency

— 22 layers
— Efficient “Inception” module
— No FC layers
— Only 5 million parameters!
(12x less than AlexNet!)
— Better performance (@6.7 top 5 error)

[Szegedy et al., 2014]

GoogleLeNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

even deeper network with computational efficiency

— 22 layers
— Efficient “Inception” module
— No FC layers
— Only 5 million parameters!
(12x less than AlexNet!)
— Better performance (@6.7 top 5 error)

[Szegedy et al., 2014]

GoogleLeNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

even deeper network with computational efficiency

— 22 layers
— Efficient “Inception” module
— No FC layers
— Only 5 million parameters!
(12x less than AlexNet!)
— Better performance (@6.7 top 5 error)

[Szegedy et al., 2014]

GoogleLeNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

even deeper network with computational efficiency

— 22 layers
— Efficient “Inception” module
— No FC layers
— Only 5 million parameters!
(12x less than AlexNet!)
— Better performance (@6.7 top 5 error)

[Szegedy et al., 2014]

Optimizing Deep Neural Networks

Consider multi-layer neural network with sigmoid activations and loss C

Source: http://neuralnetworksanddeeplearning.com/chap5.html

Optimizing Deep Neural Networks

Source: http://neuralnetworksanddeeplearning.com/chap5.html

Optimizing Deep Neural Networks

Expression for gradient of bias in Layer 1:

Expression for gradient of bias in Layer 3:

Source: http://neuralnetworksanddeeplearning.com/chap5.html

Optimizing Deep Neural Networks

Expression for gradient of bias in Layer 1:

Expression for gradient of bias in Layer 3:

Source: http://neuralnetworksanddeeplearning.com/chap5.html

Optimizing Deep Neural Networks

Source: http://neuralnetworksanddeeplearning.com/chap5.html

Observations:
 |weight| < 1 (due to initialization)
 max of derivative of sigmoid = 1/4 @ 0

Optimizing Deep Neural Networks

Source: http://neuralnetworksanddeeplearning.com/chap5.html

Observations:
 |weight| < 1 (due to initialization)
 max of derivative of sigmoid = 1/4 @ 0

Optimizing Deep Neural Networks

Source: http://neuralnetworksanddeeplearning.com/chap5.html

This is called vanishing gradient problem
— makes deep networks hard to train
— later layers learn faster than earlier ones

Optimizing Deep Neural Networks

Source: http://neuralnetworksanddeeplearning.com/chap5.html

Exploding gradient problem
— makes weights large (e.g., 100)
— make bias such that pre-activation = 0

>1 >1

GoogleLeNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

even deeper network with computational efficiency

— 22 layers
— Efficient “Inception” module
— No FC layers
— Only 5 million parameters!
(12x less than AlexNet!)
— Better performance (@6.7 top 5 error)

[Szegedy et al., 2014]

ILSVRC winner 2012

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

ResNet [He et al., 2015]

even deeper — 152 layers!
using residual connections

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

ResNet: Motivation [He et al., 2015]

What happens when we continue to stacking deeper layers on a “plain” CNN

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Whats the problem?

ResNet: Motivation [He et al., 2015]

Hypothesis: deeper models are harder to optimize (optimization problem)

Observation: the deeper model should (conceptually) perform just as well
(e.g., take shallower model and use identity for all remaining layers)

How do we implement this idea in practice

ResNet [He et al., 2015]

Solution: use network to fit residual mapping instead of directly trying to fit a
desired underlying mapping

H(x) = F(x) + X Use layers to fit residual
F(x) = H(x) - X instead of H(x) directly

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

ResNet [He et al., 2015]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Full details
— Stacked residual blocks

— Every residual block consists of two 3x3 filters

— Periodically double # of filters and downsample spatially
using stride of 2

— Additional convolutional layer in the beginning

— No FC layers at the end (only FC to output 1000 classes)

ILSVRC winner 2012

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Regularization: Stochastic Depth

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[Huang et al., ECCV 2016]

Effectively “dropout” but for layers

Stochastically with some probability turn off
some layer (for each batch)

Effectively trains a collection of neural networks

ResNet: A little theory
One can view a sequence of outputs from residual layers as a Dynamical
System

[Cheng et al., ICLR 2018]

ResNet: A little theory
One can view a sequence of outputs from residual layers as a Dynamical
System

[Cheng et al., ICLR 2018]

ResNet: A little theory
One can view a sequence of outputs from residual layers as a Dynamical
System

What happens if you take more layers and take smaller steps?

[Chen et al., NIPS 2018 best paper]

ResNet: A little theory
One can view a sequence of outputs from residual layers as a Dynamical
System

What happens if you take more layers and take smaller steps?

You can actually treat a neural network as an ODE:

[Chen et al., NIPS 2018 best paper]

Comparing Complexity

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

