
Lecture 5: Convolutional Neural Networks (Part 2)

Topics in AI (CPSC 532S): 
Multimodal Learning with Vision, Language and Sound



Logistics:

Assignment 2 is out 



Last time: Convolutional Layer

32 width

3 depth

32 x 32 x 3 image 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

convolve (slide) over all 
spatial locations

5 x 5 x 3 filter (      )
W

T
x+ b,where W,x 2 R75

28 width

1 depth

28 height

activation map



CONV, 
ReLU 
e.g. 6 5x5x3 
filters

Last time: Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

28 width

6 depth

28 height

24 width

10 depth

24 height

CONV, 
ReLU 
e.g. 10 5x5x6 
filters

CONV, 
ReLU

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Convolutional Neural Networks

VGG-16 Network



CNNs: Reminder Fully Connected Layers

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Input Activation

3072 10
(32 x 32 x 3 image -> stretches to 3072 x 1)

W

T
x+ b,where W 2 R10⇥3072

each neuron looks at the full 
input volume



Convolutional Neural Networks

VGG-16 Network



W

T
x+ b,where W 2 R25,088⇥4,096

CNNs: Reminder Fully Connected Layers

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Input Activation

25,088 4,096
(7 x 7 x 512 image -> stretches to 25,088 x 1)

each neuron looks at the full 
input volume

102,760,448 parameters!



Convolutional Neural Networks

VGG-16 Network



Pooling Layer 
Let us assume the filter is an “eye” detector  

How can we make detection spatially invariant 
(insensitive to position of the eye in the image)

* slide from Marc’Aurelio Renzato 



Pooling Layer 
Let us assume the filter is an “eye” detector  

How can we make detection spatially invariant 
(insensitive to position of the eye in the image)

By “pooling” (e.g., taking a max) response 
over a spatial locations we gain robustness 
to position variations

* slide from Marc’Aurelio Renzato 



Pooling Layer
• Makes representation smaller, more manageable and spatially invariant 
• Operates over each activation map independently 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

How many parameters?

None!



Max Pooling

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

6 8

3 4
max pool with 2 x 2 filter 

and stride of 2

activation map 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Average Pooling

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

3.25 5.25

2 2
avg pool with 2 x 2 filter 

and stride of 2

activation map 



Pooling Layer Receptive Field

* slide from Marc’Aurelio Renzato 

If convolutional filters have size KxK and stride 1, and pooling layer has pools of 
size PxP, then each unit in the pooling layer depends upon a patch (at the input of 
the preceding conv. layer) of size: (P+K-1)x(P+K-1)



Pooling Layer Receptive Field
If convolutional filters have size KxK and stride 1, and pooling layer has pools of 
size PxP, then each unit in the pooling layer depends upon a patch (at the input of 
the preceding conv. layer) of size: (P+K-1)x(P+K-1)

* slide from Marc’Aurelio Renzato 



Pooling Layer Summary 

Accepts a volume of size: 
Requires hyperparameters: 
  — Spatial extent of filters:      
  — Stride of application:       
Produces a volume of size:   

Number of total learnable parameters: 0
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Convolutional Neural Networks

VGG-16 Network



Improving Single Model

Regularization 

- L2, L1 
- Dropout / Inverted Dropout  
- Data augmentation

L2 Regularization: Learn a more (dense) distributed representation 

L1 Regularization: Learn a sparse representation (few non-zero wight elements)

R(W) = ||W||2 =
X
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Dropout



Regularization: Data Augmentation

21

…

…
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𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

Load image 
and label

CNN Compute 
Loss

cat

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Regularization: Data Augmentation

21

…

…

𝒘𝟎
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𝒘𝟐

𝒘𝑵−𝟏
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…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

catLoad image 
and label

CNN Compute 
Loss

Transform 
image

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Regularization: Data Augmentation
Horizontal flips Random crops & scales Color Jitter

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Regularization: Data Augmentation
Horizontal flips Random crops & scales Color Jitter

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Regularization: Data Augmentation
Horizontal flips Random crops & scales Color Jitter

Training: sample random crops and scales  
e.g., ResNet: 
1.  Pick random L in range [256, 480] 
2.  Resize training image, short size = L 
3.  Sample random 224x224 patch 

Testing: average a fix set of crops 
e.g., ResNet:  
1.  Resize image to 5 scales (224, 256, 384, 480, 640) 
2.  For each image use 10 224x224 crops: 4 corners + center, + flips

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Regularization: Data Augmentation
Horizontal flips Random crops & scales Color Jitter

Random perturbations in 
contrast and brightness 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Regularization: Stochastic Depth

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[ Huang et al., ECCV 2016 ]

Effectively “dropout” but for layers

Stochastically with some probability turn off 
some layer (for each batch)

Effectively trains a collection of neural networks 



Transfer Learning with CNNs

Common “Wisdom”: You need a lot of data to train a CNN 

Solution: Transfer learning — taking a model trained on the task that has 
lots of data and adopting it to the task that may not 

This strategy is PERVASIVE. 

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Transfer Learning with CNNs
Train on ImageNet

Why on ImageNet?
- Convenience, lots of data 
- We know how to train these well

However, for some tasks we would need to start 
with something else (e.g., videos for optical flow)

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[ Donahue et al., ICML 2014 ]
[ Razavian et al., CVPR Workshop 2014 ]

[ Yosinski et al., NIPS 2014 ]



Transfer Learning with CNNs
Train on ImageNet

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Small dataset with C classes

Freeze 
these 
layers

Re-initialize 
and train

Lower levels of the CNN are at 
task independent anyways

[ Donahue et al., ICML 2014 ]
[ Razavian et al., CVPR Workshop 2014 ]

[ Yosinski et al., NIPS 2014 ]



Transfer Learning with CNNs
Train on ImageNet

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Small dataset with C classes

Freeze 
these 
layers

Re-initialize 
and train

[ Donahue et al., ICML 2014 ]
[ Razavian et al., CVPR Workshop 2014 ]

[ Yosinski et al., NIPS 2014 ]

Larger dataset

Freeze 
these 
layers

Re-initialize 
and train



Transfer Learning with CNNs

[ Yosinski et al., NIPS 2014 ]



Model Ensemble

Training: Train multiple independent models 
Test: Average their results 

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Alternative: Multiple snapshots of the single model during training! 

~ 2% improved performance in practice

Improvement: Instead of using the actual parameter vector, keep a moving 
average of the parameter vector and use that at test time (Polyak averaging)



CPU vs. GPU (Why do we need Azure?)

Data from https://github.com/jcjohnson/cnn-benchmarks

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

https://github.com/jcjohnson/cnn-benchmarks


Frameworks: Super quick overview

1. Easily build computational graphs 

2. Easily compute gradients in computational graphs 

3. Run it all efficiently on a GPU (weap cuDNN, cuBLAS, etc.) 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Frameworks: Super quick overview

Core DNN Frameworks

Caffe 
(UC Berkeley)

Caffe 2 
(Facebook)

Torch 
(NYU/Facebook)

PyTorch 
(Facebook)

Theano 
(U Montreal)

TensorFlow 
(Google)

Puddle 
(Baidu)

CNTK 
(Microsoft)

MXNet 
(Amazon)

Wrapper Libraries

Keras 
TFLearn 
TensorLayer 
tf.layers 
TF-Slim 
tf.contrib.learn 
Pretty Tensor

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Frameworks: PyTorch vs. TensorFlow
Dynamic vs. Static computational graphs



Frameworks: PyTorch vs. TensorFlow

Dynamic vs. Static computational graphs

With static graphs, framework 
can optimize the graph for you 
before it runs! 

Original Graph
Optimized Graph

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Frameworks: PyTorch vs. TensorFlow

Dynamic vs. Static computational graphs

Graph building and execution is 
intertwined. Graph can be 
different for every sample. 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



PyTorch: Three levels of abstraction

Tensor: Imperative ndarray, but runs on GPU 

Variable: Node in a computational graph; stores data and gradients 

Module: A neural network layer; may store state or learnable weights

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Computer Vision Problems (no language for now)



Computer Vision Problems (no language for now)

Multi-class: Horse
Church
Toothbrush
Person

Multi-label: Horse
Church
Toothbrush
Person

Categorization



Computer Vision Problems (no language for now)

Detection

Horse (x, y, w, h) 
Horse (x, y, w, h) 
Person (x, y, w, h) 
Person (x, y, w, h)

Multi-class:

Multi-label:

Horse
Church
Toothbrush
Person

Horse
Church
Toothbrush
Person

Categorization



Computer Vision Problems (no language for now)

Detection

Horse (x, y, w, h) 
Horse (x, y, w, h) 
Person (x, y, w, h) 
Person (x, y, w, h)

Segmentation

Multi-class:

Multi-label:

Horse
Church
Toothbrush
Person

Horse
Church
Toothbrush
Person

Categorization

Horse 
Person



Computer Vision Problems (no language for now)

Detection

Horse (x, y, w, h) 
Horse (x, y, w, h) 
Person (x, y, w, h) 
Person (x, y, w, h)

Segmentation Instance Segmentation

Multi-class:

Multi-label:

Horse
Church
Toothbrush
Person

Horse
Church
Toothbrush
Person

Categorization

Horse 
Person

Horse1 
Horse2 
Person1 
Person2



Object Classification

Dog 
Cat 
Couch 
Flowers 
Leopard 
…

No 
No 
No 
No 
Yes 
…

Category    Prediction

Problem: For each image predict which category it belongs to out of a fixed set 



Object Classification
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Visual representation by DCNN

Problem: For each image predict which category it belongs to out of a fixed set 



Object Classification

Dog 
Cat 
Couch 
Flowers 
Leopard 
…

Category    Prediction

21

…
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[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

0 1
Probability

Problem: For each image predict which category it belongs to out of a fixed set 



CNN Architectures: LeNet-5

Architecture: CONV —> POOL —> CONV —> POOL —> FC —> FC 
Conv filters: 5x5, Stride: 1 
Pooling: 2x2, Stride: 2

[ LeCun et al., 1998 ]



ImageNet Dataset

Over 14 million (high resolution) web images  
Roughly labeled with 22K synset categories 
Labeled on Amazon Mechanical Turk (AMT)



ImageNet Competition (ILSVRC)

Annual competition of image classification at scale  
Focuses on a subset of 1K synset categories 
Scoring: need to predict true label within top K (K=5)



AlexNet

[ Krizhevsky et al., 2012 ]

Input: 227 x 227 x 3 images

CONV1: 96 11 x 11 filters applied at stride 4
Output: 55 x 55 x 96

Output: 27 x 27 x 96
MAX POOL1: 96 11 x 11 filters applied at stride 4

Parameters: 35K

Parameters: 0

* slide adopeted Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Local Contrast Normalization Layer

* images from Marc’Aurelio Renzato 

ensures response is the same in both case (details omitted, no longer popular)



AlexNet

[ Krizhevsky et al., 2012 ]

Details / Comments 
— First use of ReLU 
— Used contrast normalization layers 
— Heavy data augmentation 
— Dropout of 0.5 
— Batch size of 128 
— SGD Momentum (0.9) 
— Learning rate (1e-2) reduced by 10 manually 
when validation accuracy plateaus  
— L2 weight decay 
— 7 CNN ensamble: 18.2% -> 15.4%

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



ILSVRC winner 2012

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



ZF Net

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[ Zeiler and Fergus, 2013 ]

AlexNet with small modifications: 
— CONV1 (11 x 11 stride 4) to (7 x 7 stride 2) 
— CONV3 # of filters 384 -> 512 
— CONV4 # of filters 384 -> 1024 
— CONV5 # of filters 256 -> 512 



ILSVRC winner 2012

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Significant Error Drop



VGG Net

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Trend:  

—smaller filters (3 x 3) 
—deeper network (16 or 19 vs. 8 in AlexNet)

Why?

— receptive field of a 3 layer ConvNet with filter size = 3x3 
is the same as 1 layer ConvNet with filter 7x7 (at stride 1)  

— deeper = more non-linearity (so richer filters) 

— fewer parameters 

[ Simonyan and Zisserman, 2014 ]



VGG Net

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[ Simonyan and Zisserman, 2014 ]



ILSVRC winner 2012

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



GoogleLeNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

even deeper network with computational efficiency  

— 22 layers 
— Efficient “Inception” module 
— No FC layers 
— Only 5 million parameters! 
(12x less than AlexNet!) 
— Better performance (@6.7 top 5 error)

[ Szegedy et al., 2014 ]



GoogleLeNet: Inception Module

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Idea: design good local topology (“network within network”)  and then stack 
these modules

[ Szegedy et al., 2014 ]



GoogleLeNet: Inception Module

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Idea: design good local topology (“network within network”)  and then stack 
these modules

[ Szegedy et al., 2014 ]

Apply parallel filter operations on 
the input from previous layer 
— Multiple receptive field sizes for convolution 
(1x1, 3x3, 5x5) 

— Pooling operation (3x3) 

Concatenate all filter outputs 
together at output depth-wise

What’s the problem?



GoogleLeNet: Inception Module

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Idea: design good local topology (“network within network”)  and then stack 
these modules

[ Szegedy et al., 2014 ]

Apply parallel filter operations on 
the input from previous layer 
— Multiple receptive field sizes for convolution 
(1x1, 3x3, 5x5) 

— Pooling operation (3x3) 

Concatenate all filter outputs 
together at output depth-wise

1x1 conv, 
128 filters

3x3 conv, 
192 filters

5x5 conv, 
96 filters

28x28x256

28x28x128 28x28x192 28x28x96 28x28x256

28x28x672



Convolutional Layer: 1x1 convolutions 

56 width

64 depth

56 x 56 x 64 image 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

32 filters of size, 1 x 1 x 64

56 height

56 x 56 x 32 image 

56 width

32 depth

56 height



GoogleLeNet: Inception Module

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Idea: design good local topology (“network within network”)  and then stack 
these modules

[ Szegedy et al., 2014 ]

1x1 “bottleneck” layers

saves approximately 60% of computations



GoogleLeNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

even deeper network with computational efficiency  

— 22 layers 
— Efficient “Inception” module 
— No FC layers 
— Only 5 million parameters! 
(12x less than AlexNet!) 
— Better performance (@6.7 top 5 error)

[ Szegedy et al., 2014 ]



GoogleLeNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

even deeper network with computational efficiency  

— 22 layers 
— Efficient “Inception” module 
— No FC layers 
— Only 5 million parameters! 
(12x less than AlexNet!) 
— Better performance (@6.7 top 5 error)

[ Szegedy et al., 2014 ]



GoogleLeNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

even deeper network with computational efficiency  

— 22 layers 
— Efficient “Inception” module 
— No FC layers 
— Only 5 million parameters! 
(12x less than AlexNet!) 
— Better performance (@6.7 top 5 error)

[ Szegedy et al., 2014 ]



GoogleLeNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

even deeper network with computational efficiency  

— 22 layers 
— Efficient “Inception” module 
— No FC layers 
— Only 5 million parameters! 
(12x less than AlexNet!) 
— Better performance (@6.7 top 5 error)

[ Szegedy et al., 2014 ]



Optimizing Deep Neural Networks

Consider multi-layer neural network with sigmoid activations and loss C

Source: http://neuralnetworksanddeeplearning.com/chap5.html



Optimizing Deep Neural Networks

Source: http://neuralnetworksanddeeplearning.com/chap5.html



Optimizing Deep Neural Networks

Expression for gradient of bias in Layer 1:

Expression for gradient of bias in Layer 3:

Source: http://neuralnetworksanddeeplearning.com/chap5.html



Optimizing Deep Neural Networks

Expression for gradient of bias in Layer 1:

Expression for gradient of bias in Layer 3:

Source: http://neuralnetworksanddeeplearning.com/chap5.html



Optimizing Deep Neural Networks

Source: http://neuralnetworksanddeeplearning.com/chap5.html

Observations: 
    |weight| < 1 (due to initialization) 
    max of derivative of sigmoid = 1/4 @ 0



Optimizing Deep Neural Networks

Source: http://neuralnetworksanddeeplearning.com/chap5.html

Observations: 
    |weight| < 1 (due to initialization) 
    max of derivative of sigmoid = 1/4 @ 0



Optimizing Deep Neural Networks

Source: http://neuralnetworksanddeeplearning.com/chap5.html

This is called vanishing gradient problem 
— makes deep networks hard to train 
— later layers learn faster than earlier ones



Optimizing Deep Neural Networks

Source: http://neuralnetworksanddeeplearning.com/chap5.html

Exploding gradient problem 
— makes weights large (e.g., 100) 
— make bias such that pre-activation = 0

>1 >1



GoogleLeNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

even deeper network with computational efficiency  

— 22 layers 
— Efficient “Inception” module 
— No FC layers 
— Only 5 million parameters! 
(12x less than AlexNet!) 
— Better performance (@6.7 top 5 error)

[ Szegedy et al., 2014 ]



ILSVRC winner 2012

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



ResNet [ He et al., 2015 ]

even deeper — 152 layers! 
using residual connections

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



ResNet: Motivation [ He et al., 2015 ]

What happens when we continue to stacking deeper layers on a “plain” CNN

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Whats the problem? 



ResNet: Motivation [ He et al., 2015 ]

Hypothesis: deeper models are harder to optimize (optimization problem)

Observation: the deeper model should (conceptually) perform just as well 
(e.g., take shallower model and use identity for all remaining layers)

How do we implement this idea in practice 



ResNet [ He et al., 2015 ]

Solution: use network to fit residual mapping instead of directly trying to fit a 
desired underlying mapping 

H(x) = F(x) + X Use layers to fit residual  
F(x) = H(x) - X instead of H(x) directly

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



ResNet [ He et al., 2015 ]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Full details 
— Stacked residual blocks 

— Every residual block consists of two 3x3 filters 

— Periodically double # of filters and downsample spatially 
using stride of 2  

— Additional convolutional layer in the beginning 

— No FC layers at the end (only FC to output 1000 classes) 

      



ILSVRC winner 2012

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Regularization: Stochastic Depth

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[ Huang et al., ECCV 2016 ]

Effectively “dropout” but for layers

Stochastically with some probability turn off 
some layer (for each batch)

Effectively trains a collection of neural networks 



ResNet: A little theory
One can view a sequence of outputs from residual layers as a Dynamical 
System

[ Cheng et al., ICLR 2018 ]
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One can view a sequence of outputs from residual layers as a Dynamical 
System

[ Cheng et al., ICLR 2018 ]



ResNet: A little theory
One can view a sequence of outputs from residual layers as a Dynamical 
System

What happens if you take more layers and take smaller steps? 

[ Chen et al., NIPS 2018 best paper ]



ResNet: A little theory
One can view a sequence of outputs from residual layers as a Dynamical 
System

What happens if you take more layers and take smaller steps? 

You can actually treat a neural network as an ODE: 

[ Chen et al., NIPS 2018 best paper ]



Comparing Complexity

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford


