THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 4: Introduction to Computer Vision



Course Logistics

— Assignment 1 was due 11:59pm today
— Assignment 2 will be out today (on CNNs) and is due Thursday next week

(note, it will take computation time)



Computer vs. human vision
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Computer Vision

Computer vision studies the tools and theories that enable the design of
machines that can extract useful information from imagery data
(images and videos) toward the goal of interpreting the world

*curtesy of Peter Meer




Vision is Amazing reat of Natural Intelligence

~ 55% of cerebral cortex in humans (13 billion neurons) are devoted to vision

more human brain devoted to vision than anything else




Challenges: Viewpoint invariance

*slide credit Fei-Fel, Fergus & Torralba



Challenges: Lighting

“Image credit J. Koenderink



Challenges: Scale

*slide credit Fei-Fel, Fergus & Torralba



Challenges: Deformation

*Image credit Peter Meer



Challenges: Occlusions

Rene Magritte 1965
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Challenges: Background clutter

Kilmeny Niland 1995




Challenges: Local ambiguity and context

“Image credit Fergus & Torralba



Challenges: Local ambiguity and context

“Image credit Fergus & Torralba



Challenges: Motion

*Image credit Peter Meer



Challenges: Object inter-class variation

*slide credit Fei-Fel, Fergus & Torralba



Human Vvision
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* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Computer vision ... the beginning ...

Blocks World. first thesis In
computer vision, 1963

Larry Roberts

“the perception of solid objects is a process which can be based on
the properties of three-dimensional transformations and the
laws of nature”

(a) Original picture (b) Differentiated picture (c) Feature points selected



Computer vision ... the beginning ...

L™ ¢ Blocks World. first thesis In
‘\ computer vision, 1963

4

Larry Roberts

“the perception of solid objects is a process which can be based on
the properties of three-dimensional transformations and the
laws of nature”

(b)
Figure 1. (a) A line drawing provides information only about the x, y coordinates of points lying
along the object contours. (b) The human visual system is usually able to reconstruct an object in
three dimensions given only a single 2D projection (c) Any planar line-drawing is geometrically
consistent with infinitely many 3D structures.

| Since & Adelson, 1993 |



Computer vision

Blocks World
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Static Equilibrium: Forces and torques acting
on a block should cancel each other out.

Support Force Constraint: Supporting
object should have enough strength to
provide contact reactionary forces

Volumetric Constraints: All objects in
the world must have finite volume &
cannot penetrate each other

| Gupta, Efros & Hebert, 2010 |



Computer vision ... the beginning ...

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

Artificial Intelligence Group July 7, 1966
Vision Memo. No. 100,

THE SUMMER VISION PROJECT

Seymour Papert

The summer vision project is an attempt to use our summer workers

effectively in the construction of a significant part of a visual system.

The particular task was chosen par:%y because it can be segmented into
gsub-problems which will allow individuals to work independently and yet
participate in the construction of a system complex enough to be a real

landmark in the development of “pattern recognitiom!l.

In 1966, Marvin Minsky at MIT
asked his undergraduate
student Gerald Jay Sussman
to “spend the summer linking
a camera to a computer and
getting the computer to
describe what it saw”

| Szeliski 2009, Computer Vision |



David Marr, 19/70s

Copyrighted Material
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* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



David Marr, 1970s
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The Sobel operator applied to that image

*content from V. Ordonex



David Marr, 1970s

2 2-D _sl<_ejch 3-D model

—

Input image Edge image

—

-\._

Q

Primal

Sketch

2 V2-D 3-D Model
Sketch Representation

Zero crossings, Local surface 3-D models

blobs, edges,
bars, ends,

orientation and hierarchically

Perceived . — .
discontinuities organized in

in depth and in terms of surface

surface and volumetric
orientation primitives

Intensities . .
virtual lines,

groups, curves
boundaries

| Stages of Visual Representation, David Marr | * slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Segmentation - GraphCuts

[ Shi & Malik, 2000 ]



David Marr, 1970s
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Part-based Models

Generalized Cylinders
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| Brooks & Binford, 1979 |
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Pictorial Structures

| MOUTH

| Fischler & Elschlager, 1973 |



Part-based Models

Monty Python’s Ministry of Silly Walks
[ Sigal et al. 2004]



Part-based Models

Monty Python’s Ministry of Silly Walks
[ Sigal et al. 2004]



David Marr, 1970s
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Face Detection 1999-2000

[ Viola & Jones, 2001 |

——

Image is public

domain



Feature-based Vision

Image is CC BY-SA 2.0

| David Lowe, 1999 |



SIFT |dea

Image content Is transformed into local feature coordinates that are invariant
to translation, rotation, scale and imaging parameters

| David Lowe, 1999 ]



SIFT Discriptor
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Massive 3D Reconstructions

| Agarwal, Furukawa, Snavely, Curless, Seitz, Szeliski, 2010 |



Massive 3D Reconstructions

| Agarwal, Furukawa, Snavely, Curless, Seitz, Szeliski, 2010 |



Bag-of-Words

*slide credit Li Fel-Fel
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Bag-of-Visual-\Words

*slide credit Li Fei-Fel



Beyond Bag of Features
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| Lazebnik, Schmid, Ponce, 2006 |



Deformable Part Models

Detection Root Filter Part Filters Deformations

| Felzenswalb, McAllester, Ramanan, 2009 |



Deformable Part Models

| Felzenswalb, McAllester, Ramanan, 2009 |
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PASCAL Visual Object Challenge (VOC)

Image is CC BY-SA 3.0

Pascal VOC 2007
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Effectiveness of Data

| Hays, Efros, ACM Siggraph 2007 | | Hays, Efros, CVPR 2008 |
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AlexNet on ImageNet

dense dense
12 dense

Model Top-1 | Top-5
= 256 Sparse coding [2] | 47.1% | 28.2%

1000

pocling 4006 4096 SIFT + FVs [24] | 45.7% | 25.7%

23\ || 37 ocine — CNN 37.5% | 17.0%
2 * image from CV-Tricks.com

224

ImageNet Classification with Deep Convolutional
Neural Networks

Model Top-1 (val) | Top-S (val) | Top-S (test)
Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton SI FT 4 F VS [ 7 ] w— — 26 2 %

University of Toronto University of Toronto University of Toronto

kriz@cs.utoronto.ca 1ilya@cs.utoronto.ca hinton@cs.utoronto.ca l CNN 40.7% 18.2% —

5 CNNs 38.1% 16.4% 16.4%
*

We trained a large, deep convolutional neural network to classify the 1.2 million 1 CNN 39 .0% 1 6 '6 %

high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-

fefent classes. On tl%e test data, wég achieved top-1 and top-5 error rates of 37.5% 7 CNNS o 36 .7 % l 5 .4% 15 03 %
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout”
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry.

— S | Krizhevsky, Sutskever, Hinton, NIPS 2012 ]

Abstract



http://CV-Tricks.com

Success of Deep Learning
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Final thougnt ...

— Model based, compositional, primitives, inverse graphics
— Hand-crafted features for given invariances & matching
— Hand-crafted features with learned statistical models on top

— Joint learning of features and statistical models for recognition
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CapsuleNET . S

Going back to inverse graphics

32..

e W, = (8 X 16]

| Sabour, Frosst, Hinton, NIPS 2017 ]

person 0.88
reddish orange color 0.78
light brown color S— 0.78
starlet 0.66
entertainer 0.66
female 0.60
woman 0.59
young lady (heroine) 0.59

*Image credit medium.com



http://medium.com

CapsuleNET . S

Going back to inverse graphics

........

32..

e W, = (8 X 16]

| Sabour, Frosst, Hinton, NIPS 2017 ]

person 0.88 person 0.90
reddish orange color 0.78 light brown color 0.84
light brown color —— 0.78 starlet — 0.77
starlet 0.66 entertainer — 0.77
entertainer 0.66 female 0.65
female 0.60 woman 0.64
woman 0.59 young lady (heroine) 0.64
young lady (heroine) 0.59 reddish orange color 0.64

newsreader —— 0.50

*Image credit medium.com
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CapsuleNET

Going back to inverse graphics
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*Image credit medium.com
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Neural Modular Networks

couch

CNN

| Andreas, Rohrbach, Darrell, Klein, CVPR 2016 |



