
Lecture 3: Introduction to Deep Learning (continued)

Topics in AI (CPSC 532S): 
Multimodal Learning with Vision, Language and Sound



Course Logistics

- Assignment 1 … any questions? 



- Introduced the basic building block of Neural Networks (MLP/FC) layer 

- How do we stack these layers up to make a Deep NN 

- Basic NN operations (implemented using computational graph)

Short Review …
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Short Review …

Note: output layer often does not contain activation, or has “activation” function of a  
different form, to account for the specific output we want to produce.
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- Introduced the basic building block of Neural Networks (MLP/FC) layer 

- How do we stack these layers up to make a Deep NN 

- Basic NN operations (implemented using computational graph)

Short Review …

Prediction / Inference

Function evaluation
(a.k.a. ForwardProp)

Parameter Learnings
(Stochastic) Gradient Descent (needs derivatives)

- Numerical differentiation (not accurate) 

- Symbolic differential (intractable) 

- AutoDiff Forward (computationally expensive) 

- AutoDiff Backward / BackProp

- Different activation functions and saturation problem



Activation Function: Sigmoid

a(x) = sigmoid(x) =
1

1 + e

�x

a

0(x) = sigmoid(x) (1� sigmoid(x))

Sigmoid Activation

Pros:  
- Squishes everything in the range [0,1] 
- Can be interpreted as “probability” 
- Has well defined gradient everywhere

Cons:  
- Saturated neurons “kill” the gradients 
- Non-zero centered  
- Could be expensive to compute

* slide adopted from Li, Karpathy, Johnson’s CS231n at Stanford
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Activation Function: Tanh

Tanh Activation

* slide adopted from Li, Karpathy, Johnson’s CS231n at Stanford

a(x) = tanh(x) = 2 · sigmoid(2x)� 1

a(x) = tanh(x) =
2

1 + e

�2x
� 1

a(x) = tanh(x) = 2 · sigmoid(2x)� 1

a(x) = tanh(x) =
2

1 + e

�2x
� 1

Pros:  
- Squishes everything in the range [-1,1] 
- Centered around zero 
- Has well defined gradient everywhere

Cons:  
- Saturated neurons “kill” the gradients 
- Could be expensive to compute



Activation Function: Rectified Linear Unit (ReLU)

ReLU Activation

* slide adopted from Li, Karpathy, Johnson’s CS231n at Stanford

Pros:  
- Does not saturate (for x > 0) 
- Computationally very efficient 
- Converges faster in practice (e.g. 6 times faster)

Cons:  
- Not zero centered

a(x) = max(0, x)

a

0(x) =

(
1 if x � 0

0 if x < 0

a(x) = max(0, x)

a

0(x) =

(
1 if x � 0

0 if x < 0
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Activation Function: Rectified Linear Unit (ReLU)

ReLU Activation

* slide adopted from Li, Karpathy, Johnson’s CS231n at Stanford
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1 if x � 0

0 if x < 0

a(x) = max(0, x)

a

0(x) =

(
1 if x � 0

0 if x < 0

Question: What do ReLU layers accomplish?  

Answer: Locally linear tiling, function is locally linear 
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10%-20% of neurons end up being “dead” in most strained networks



Activation Function: Rectified Linear Unit (ReLU)

ReLU Activation

a(x) = max(0, x)

a

0(x) =

(
1 if x � 0

0 if x < 0

a(x) = max(0, x)

a

0(x) =

(
1 if x � 0

0 if x < 0

Input Layer

Hidden Layer 1

Hidden Layer 2

Output Layer
w1

w2

w3

ReLU sparcifies activations and derivatives

Trick: initialize bias for neurons with ReLU activation to small positive value (0.01)



Initialization

Many tricks for initializations exist. I will not really cover this.  

You will partly see why soon … 



Conditions needed to prove NN is a universal approximator: Activation 
function needs to be well defined

lim
x!1

a(x) = A

lim
x!�1

a(x) = B

A 6= B

Recall:

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html


Conditions needed to prove NN is a universal approximator: Activation 
function needs to be well defined

lim
x!1

a(x) = A

lim
x!�1

a(x) = B

A 6= B

Recall:

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

Fun Exercise: Try to prove that network with ReLU is still a universal 
approximator (not too difficult if you think about it visually) 

http://neuralnetworksanddeeplearning.com/chap4.html


Activation Function: Leaky / Parametrized ReLU

Leaky / Parametrized ReLU Activation

* slide adopted from Li, Karpathy, Johnson’s CS231n at Stanford

Pros:  
- Does not saturate 
- Computationally very efficient 
- Converges faster in practice (e.g. 6x)

a(x) =

(
x if x � 0

↵x if x < 0

Leaky: alpha is fixed to a small value (e.g., 0.01)

Parametrized: alpha is optimized as part of the 
network (BackProp through)



Computational Graph: 1-layer with PReLU
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Activation Functions: Review 
a(x) = sigmoid(x) =

1

1 + e

�x
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0(x) = sigmoid(x) (1� sigmoid(x))

Sigmoid

Tanh
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Leaky / Parametrized ReLU

a(x) =
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x if x � 0

↵x if x < 0
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Activation Functions: Review 



* slide adopted from Li, Karpathy, Johnson’s CS231n at Stanford

Activation Functions: Review 

Good “default” choice



Regularization: L2 or L1 on the weights 

L2 Regularization: Learn a more (dense) distributed representation 

L1 Regularization: Learn a sparse representation (few non-zero wight elements)

R(W) = ||W||2 =
X

i

X

j

W2
i,j

R(W) = ||W||1 =
X

i

X

j

|Wi,j |
(others regularizers are also possible)
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W1 · x = W2 · x

RL2(W1) = 1
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W1 · xT = W2 · xT

RL2(W1) = 1
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RL1(W1) = 1
RL1(W2) = 1

two networks will have identical output
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RL1(W2) = 1

L2 Regularizer: 

L1 Regularizer: 



Computational Graph: 1-layer with PReLU + Regularizer
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Remember … Initialization

Many tricks for initializations exist. I will not really cover this. 



Regularization: Batch Normalization

[ Ioffe and Szegedy, NIPS 2015 ]

Normalize each mini-batch (using Batch Normalization layer) by 
subtracting empirically computed mean and dividing by variance for every 
dimension -> samples are approximately unit Gaussian

Benefit:

Improves learning (better gradients, 
higher learning rate)

x̄

(k) =
x

(k) � E[x(k)]p
Var[x(k)]



Regularization: Batch Normalization

[ Ioffe and Szegedy, NIPS 2015 ]

Normalize each mini-batch (using Batch Normalization layer) by 
subtracting empirically computed mean and dividing by variance for every 
dimension -> samples are approximately unit Gaussian

Benefit:

Improves learning (better gradients, 
higher learning rate)

x̄

(k) =
x

(k) � E[x(k)]p
Var[x(k)]

Why?



Activation Function: Sigmoid

a(x) = sigmoid(x) =
1
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Sigmoid Activation

Cons:  
- Saturated neurons “kill” the gradients 
- Non-zero centered  
- Could be expensive to compute
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* slide adopted from Li, Karpathy, Johnson’s CS231n at Stanford



Regularization: Batch Normalization

[ Ioffe and Szegedy, NIPS 2015 ]

Normalize each mini-batch (using Batch Normalization layer) by 
subtracting empirically computed mean and dividing by variance for every 
dimension -> samples are approximately unit Gaussian

Benefit:

Improves learning (better gradients, 
higher learning rate)

x̄

(k) =
x

(k) � E[x(k)]p
Var[x(k)]

Typically inserted before activation layer



Activation Function: Sigmoid vs. Tanh

Tanh Activation

* slide adopted from Li, Karpathy, Johnson’s CS231n at Stanford

a(x) = tanh(x) = 2 · sigmoid(2x)� 1

a(x) = tanh(x) =
2

1 + e

�2x
� 1

a(x) = tanh(x) = 2 · sigmoid(2x)� 1

a(x) = tanh(x) =
2

1 + e

�2x
� 1

Pros:  
- Squishes everything in the range [-1,1] 
- Centered around zero 
- Has well defined gradient everywhere

Cons:  
- Saturated neurons “kill” the gradients



 BN layer parameters

Regularization: Batch Normalization

[ Ioffe and Szegedy, NIPS 2015 ]

Normalize each mini-batch (using Batch Normalization layer) by 
subtracting empirically computed mean and dividing by variance for every 
dimension -> samples are approximately unit Gaussian

Benefit:

Improves learning (better gradients, 
higher learning rate, less reliance on 
initialization)

x̄

(k) =
x

(k) � E[x(k)]p
Var[x(k)]

y

(k) = �

(k)
x̄

(k) + �

(k)

In practice, also learn how  
to scale and offset: 

Typically inserted before activation layer



Consider what happens at runtime, when you are only passing a single sample

Regularization: Batch Normalization

 BN layer parameters [ Ioffe and Szegedy, NIPS 2015 ]

x̄

(k) =
x

(k) � E[x(k)]p
Var[x(k)]

y

(k) = �

(k)
x̄

(k) + �

(k)

In practice, also learn how  
to scale and offset: 



Regularization: Dropout 

Standar Neural Network After Applying Dropout

Randomly set some neurons to zero in the forward pass, with probability 
proportional to dropout rate (between 0 to 1)

[ Srivastava et al,  JMLR 2014 ]
* adopted from slides of CS231n at Stanford



Regularization: Dropout 

Standar Neural Network After Applying Dropout

Randomly set some neurons to zero in the forward pass, with probability 
proportional to dropout rate (between 0 to 1)

1. Compute output of the linear/fc layer  

2. Compute a mask with probability proportional to dropout rate  

3. Apply the mask to zero out certain outputs

oi = Wi · x+ bi

mi = rand(1, |oi|) < dropout rate

oi = oi �mi

oi = Wi · x+ bi

mi = rand(1, |oi|) < dropout rate

oi = oi �mi

oi = Wi · x+ bi

mi = rand(1, |oi|) < dropout rate

oi = oi �mi

[ Srivastava et al,  JMLR 2014 ]
* adopted from slides of CS231n at Stanford



Regularization: Dropout 

After Applying Dropout

Randomly set some neurons to zero in the forward pass, with probability 
proportional to dropout rate (between 0 to 1)

Why is this a good idea?

[ Srivastava et al,  JMLR 2014 ]
* adopted from slides of CS231n at Stanford



Regularization: Dropout 

After Applying Dropout

Randomly set some neurons to zero in the forward pass, with probability 
proportional to dropout rate (between 0 to 1)

Why is this a good idea?

Dropout is training an ensemble of models 
that share parameters 

Each binary mask (generated in the forward 
pass) is one model that is trained on 
(approximately) one data point 

[ Srivastava et al,  JMLR 2014 ]
* adopted from slides of CS231n at Stanford



Regularization: Dropout (at test time)

After Applying Dropout

Randomly set some neurons to zero in the forward pass, with probability 
proportional to dropout rate (between 0 to 1)

At test time, integrate out all the models 
in the ensemble

Monte Carlo approximation: many forward 
passes with different masks and average all 
predictions 

[ Srivastava et al,  JMLR 2014 ]
* adopted from slides of CS231n at Stanford



x dropout rate

x dropout rate

x dropout rate

Regularization: Dropout (at test time)

[ Srivastava et al,  JMLR 2014 ]

Randomly set some neurons to zero in the forward pass, with probability 
proportional to dropout rate (between 0 to 1)

Equivalent to forward pass with all connections 
on and scaling of the outputs by dropout rate 

At test time, integrate out all the models 
in the ensemble

Monte Carlo approximation: many forward 
passes with different masks and average all 
predictions 

For derivation see Lecture 6 of CS231n at Stanford
* adopted from slides of CS231n at Stanford



w1 w2

x1 x2

a(h)

Regularization: Dropout (at test time)

Consider a single neuron 



At test time we want to compute expectation over input to activation function 
with respect to exponential number of masks 

w1 w2

x1 x2
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Regularization: Dropout (at test time)

Consider a single neuron 

Em[h] = Em[(W · x)�m]

= E(m1,m2)[w1x1m1 + w2x2m2]

=
1

4
(w1x1 + w2x2) +

1

4
(w1x1)

1

4
(w2x2) +

1

4
(0)

=
1

2
(w1x1 + w2x2)
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Regularization: Dropout (at test time)

Consider a single neuron 
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consider dropout rate of p = 0.5
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Regularization: Dropout (without change in forward pass) 

Standar Neural Network After Applying Dropout

Randomly set some neurons to zero in the forward pass, with probability 
proportional to dropout rate (between 0 to 1)

1. Compute output of the linear/fc layer  

2. Compute a mask with probability proportional to dropout rate  

3. Apply the mask to zero out certain outputs

oi = Wi · x+ bi

mi = rand(1, |oi|) < dropout rate

oi = oi �mi

oi = Wi · x+ bi

mi = rand(1, |oi|) < dropout rate

oi = oi �mi

oi = Wi · x+ bi

mi = rand(1, |oi|) < dropout rate

oi = oi �mi

oi = Wi · x+ bi

mi = rand(1, |oi|) < dropout rate

oi = oi �mi

[ Srivastava et al,  JMLR 2014 ]
* adopted from slides of CS231n at Stanford

/ 



Deep Learning Terminology

• Network structure: number and types of layers, forms of activation functions, 
dimensionality of each layer and connections (defines computational graph)

Google’s “Inception” network



Deep Learning Terminology
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Deep Learning Terminology

• Network structure: number and types of layers, forms of activation functions, 
dimensionality of each layer and connections (defines computational graph) 

• Loss function: objective function being optimized (softmax, cross entropy, etc.) 

• Parameters: trainable parameters of the network,  including weights/biases of 
linear/fc layers, parameters of the activation functions, etc. 
• Hyper-parameters: parameters, including for optimization, that are not optimized 

directly as part of training (e.g., learning rate, batch size, drop-out rate)

Google’s “Inception” network

generally kept fixed, requires some knowledge of the problem and NN to sensibly set 

optimized using SGD or variants 

grid search

requires knowledge of the nature of the problem

deeper = better



Loss Functions …

This is where all the fun is … we will only look a most common ones
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Multivariate Regression 
Input: feature vector Output: output vector x 2 Rn y 2 Rm

Neural Network (input + intermediate hidden layers) f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; � 1  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)

with sigmoid activations:
with Tanh activations:
with ReLU activations:



Multivariate Regression 
Input: feature vector Output: output vector x 2 Rn y 2 Rm

Neural Network (input + intermediate hidden layers)

Neural Network (output): linear layer

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; � 1  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)

with sigmoid activations:
with Tanh activations:
with ReLU activations:

ŷ = g(x;W,b) = Wf(x;⇥) + b : Rk ! Rm



Multivariate Regression 
Input: feature vector Output: output vector x 2 Rn y 2 Rm

Neural Network (input + intermediate hidden layers)

Neural Network (output): linear layer

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; � 1  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)

with sigmoid activations:
with Tanh activations:
with ReLU activations:

Loss: 

ŷ = g(x;W,b) = Wf(x;⇥) + b : Rk ! Rm

L(y, ŷ) = ||y � ŷ||2



Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers) f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

Binary Classification (Bernoulli)
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Neural Network (input + intermediate hidden layers)

Neural Network (output): threshold hidden output (which is a sigmoid)

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

ŷ = 1[f(x;⇥) > 0.5]

Binary Classification (Bernoulli)



Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): threshold hidden output (which is a sigmoid)

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

ŷ = 1[f(x;⇥) > 0.5]

Problem: Not differentiable, probabilistic interpretation maybe desirable 

Binary Classification (Bernoulli)



Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): interpret sigmoid output as probability

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

p(y = 1) = f(x;⇥)

can interpret the score as the log-odds of            (a.k.a. the logits)y = 1

Binary Classification (Bernoulli)
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Neural Network (output): interpret sigmoid output as probability

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:
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p(y = 1) = f(x;⇥)

Loss: similarity between two distributions 

can interpret the score as the log-odds of            (a.k.a. the logits)y = 1

Binary Classification (Bernoulli)



Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): interpret sigmoid output as probability

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

can interpret the score as the log-odds of (a.k.a. the logits)

p(y = 1) = f(x;⇥)

Loss: similarity between two distributions 

We can measure similarity between distribution         and         using 
cross-entropy

H(p, q) = �E
x⇠p

[log q(x)]

For discrete distributions this ends up being: 

H(p, q) = �
X

x

p(x) log q(x)

Binary Classification (Bernoulli)

p(x) q(x)



Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): interpret sigmoid output as probability

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

p(y = 1) = f(x;⇥)

Loss: L(y, ŷ) = �y log[f(x;⇥)]� (1� y) log[1� f(x;⇥)]

can interpret the score as the log-odds of            (a.k.a. the logits)y = 1

Binary Classification (Bernoulli)



Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): interpret sigmoid output as probability

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

p(y = 1) = f(x;⇥)

Loss: L(y, ŷ) =
⇢

�log[1� f(x;⇥)] y = 0
�log[f(x;⇥)] y = 1

can interpret the score as the log-odds of            (a.k.a. the logits)y = 1

Binary Classification (Bernoulli)



Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): interpret sigmoid output as probability

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

Minimizing this loss is the same as maximizing log likelihood of data

p(y = 1) = f(x;⇥)

Loss: L(y, ŷ) =
⇢

�log[1� f(x;⇥)] y = 0
�log[f(x;⇥)] y = 1

Binary Classification (Bernoulli)



Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers) f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

y 2 {0, 1}

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)with ReLU activations:

Binary Classification (Bernoulli)



Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): linear layer with one neuron and sigmoid activation

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

y 2 {0, 1}

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)with ReLU activations:

Binary Classification (Bernoulli)



Input: feature vector Output: muticlass labelx 2 Rn

Multiclass Classification (e.g, ImageNet)
y 2 {0, 1}m

(one-hot encoding)



Input: feature vector Output: muticlass labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Multiclass Classification (e.g, ImageNet)
y 2 {0, 1}m

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)with ReLU activations:

(one-hot encoding)

f(x;⇥) : Rn ! Rm



Input: feature vector Output: muticlass labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Multiclass Classification (e.g, ImageNet)
y 2 {0, 1}m

p(yk = 1) =

exp [f(x;⇥)i]PC
j=1 exp [f(x;⇥)j ]

Neural Network (output): softmax function, where probability of class k is:

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)with ReLU activations:

(one-hot encoding)

f(x;⇥) : Rn ! Rm



Input: feature vector Output: muticlass labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Multiclass Classification (e.g, ImageNet)
y 2 {0, 1}m

p(yk = 1) =

exp [f(x;⇥)i]PC
j=1 exp [f(x;⇥)j ]

Neural Network (output): softmax function, where probability of class k is:

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)with ReLU activations:

(one-hot encoding)

f(x;⇥) : Rn ! Rm

convert score into probability

normalize to sum up to 1 across classes



Input: feature vector Output: muticlass labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Multiclass Classification (e.g, ImageNet)
y 2 {0, 1}m

p(yk = 1) =

exp [f(x;⇥)i]PC
j=1 exp [f(x;⇥)j ]

Neural Network (output): softmax function, where probability of class k is:

L(y, ˆy) = H(y, ˆy) = �
X

i

yi log ˆyi = � log

ˆyi

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)with ReLU activations:

(one-hot encoding)

f(x;⇥) : Rn ! Rm

Loss:



Input: feature vector Output: muticlass labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Multiclass Classification (e.g, ImageNet)
y 2 {0, 1}m

p(yk = 1) =

exp [f(x;⇥)i]PC
j=1 exp [f(x;⇥)j ]

Neural Network (output): softmax function, where probability of class k is:

L(y, ˆy) = H(y, ˆy) = �
X

i

yi log ˆyi = � log

ˆyi

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)with ReLU activations:

Special case for multi-class single label

(one-hot encoding)

f(x;⇥) : Rn ! Rm

Loss:



Monitoring Learning: Visualizing the (training) loss

* slide from Li, Karpathy, Johnson’s CS231n at Stanford



Monitoring Learning: Visualizing the (training) loss

Big gap = overfitting 

Solution: increase regularization

No gap = undercutting

Solution: increase model capacity

Small gap = ideal

* slide from Li, Karpathy, Johnson’s CS231n at Stanford


