THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 20: Deep Reinforcement Learning (cont)

How does RL work"?

observation f“‘ o W ‘.‘—‘- 2 ; /)' action > At e ach St ep t the 3 gent
TS & & » Executes action ay
» Receives observation oy

» Recelves scalar reward r;

» [he environment:

» Recelves action ar
» Emits observation o;41
» Emits scalar reward ryq

* slide from David Silver

Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Markov Decision Processes

— Mathematical formulation of the RL problem
Defined by:

S : set of possible states

A : set of possible actions

R . distribution of reward given (state, action) pair

P : transition probability i.e. distribution over next state given (state, action) pair
7 : discount factor

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Markov Decision Processes

At times step t=0, environment samples initial state
For time t=0 until done:

Agent selects action

Environment samples the reward

Environment samples the next state

Agent receives reward and next state

Markov Decision Processes

— Mathematical formulation of the RL problem
Defined by:

S : set of possible states

A : set of possible actions

R . distribution of reward given (state, action) pair

P : transition probability i.e. distribution over next state given (state, action) pair
7 : discount factor

— Life is trajectory: ...S:, At, Rer1, Sev1, Aer1, Revo, Seao, ...

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Markov Decision Processes

— Mathematical formulation of the RL problem
Defined by:

S : set of possible states

A : set of possible actions

R . distribution of reward given (state, action) pair

P : transition probability i.e. distribution over next state given (state, action) pair
7 : discount factor

— Life is trajectory: ...S:, At, Rer1, Sev1, Aer1, Revo, Seao, ...

— Markov property: Current state completely characterizes the state of the
worlo

p(r,s'|s,a) = Prob|Rt11 =r,5t11 =5 | St =5,Ar = a

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Components of the RL Agent

Policy

— How does the agent behave”

Value Function
— How good is each state and/or action pair?

Model

— Agent’s representation of the environment

* slide from Dhruv Batra

Policy

— The policy Is how the agent acts

— Formally, map from states to actions:

Deterministic policy: a = 7(s)
Stochastic policy: m(als) = P[A; = a|S5; = 5]

* slide from Dhruv Batra

Policy
— The policy Is how the agent acts =9
— Formally, map from states to actions: A > 2
_ - : B > 1
Deterministic policy: a = 7(s)

Stochastic policy: m(als) = P[A; = a|S5; = 5]

* slide from Dhruv Batra

The Optimal Policy

What is a good policy”

* slide from Dhruv Batra

The Optimal Policy

What is a good policy”

Maximizes current reward”? Sum of all future rewards??

* slide from Dhruv Batra

The Optimal Policy

What is a good policy”
Maximizes current reward? Sum of all future rewards”?

Discounted future rewards!

* slide from Dhruv Batra

The Optimal Policy

What is a good policy”

Maximizes current reward”? Sum of all future rewards??

Discounted future rewards!

Formally: 7" = argmaxE [Z 'Yt"'tlﬂ':l

t>0

with Sp p(SO)a Ay ~ W("St)ast

1 7 p("sts at)

* slide from Dhruv Batra

Components of the RL Agent

V Policy

— How does the agent behave”

Value Function
— How good is each state and/or action pair?

Model

— Agent’s representation of the environment

* slide from Dhruv Batra

Value Function

A value function Is a prediction of future rewarad

“State Value Function” or simply “Value Function”
— How good is a state?
— Am | screwed”? Am | winning this game?

“Action Value Function” or Q-function
— How good is a state action-pair?
— Should | do this now?

* slide from Dhruv Batra

Value Function and Q-value Function

Following a policy produces sample trajectories (or paths) sg, ag, ro, S1, a1, 1, ...

— The value function (how good is the state) at state s, is the expected
cumulative reward from state s (and following the policy thereafter):

VT(s) = |:Z'7 r¢|S0 = 8 7T:|

t>0

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Value Function and Q-value Function

Following a policy produces sample trajectories (or paths) sg, ag, ro, S1, a1, 1, ...

— The value function (how good is the state) at state s, is the expected
cumulative reward from state s (and following the policy thereafter):

VT(s) = |:Z'7 r¢|S0 = 8 7T:|

— The Q-value function (how good is a state-action pair) at state s and action a,
s the expected cumulative reward from taking action a in state s (and following
the policy thereafter);

t>0

Q" (s,a) =E |:Z 'yt'rtlso = 8,a9 = Q, 7r:|

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Components of the RL Agent

V Policy

— How does the agent behave?

\/ Value Function

— How good is each state and/or action pair?

Model

— Agent’s representation of the environment

* slide from Dhruv Batra

Model

Model predicts what the world will do next

observation action

O, a;

reward ry

* glide from David Silver

Model

Model predicts what the world will do next

observation

O,

:; \ "... . e 4
' X N Sy o '
\ . ‘)~ =
J n \ - S ol
N ' | < - = !
] - 3 " \}
] { N =
'-:\:;-.4.-._::—-— ;2_"< /’ \’.(
S—
reward I ry

* glide from David Silver

Components of the RL Agent

V Policy

— How does the agent behave?

\/ Value Function

— How good is each state and/or action pair?

\/ Model

— Agent’s representation of the environment

* slide from Dhruv Batra

Maze =xample

Start

Reward: -1 per time-step
Actions: N, E, S, W
States: Agent’s location

Goal

* slide from David Silver

Maze =xample: Policy

Start

<

¢ <« Arrows represent a policy W(S) for
-— ¢ each state S

Goal

* slide from David Silver

Maze =xample:

Start

-16

14

-15

-16

-24

-23

-13

-17

-18

-22

-12

-19

-20

-21

Value

11

-12

-22

-10

Goal

Numbers represent value Vi (S) of

each state S

* slide from David Silver

Maze Example: Model

Grid layout represents transition model

Start | -1 -1 -1 -1
1 -1 1 | |
Numbers represent the immediate
! reward for each state (same for all
1| - states)
-1 | -1 | Goal

* slide from David Silver

Components of the RL Agent

Policy

— How does the agent behave”

Value Function
— How good is each state and/or action pair?

Model

— Agent’s representation of the environment

* slide from Dhruv Batra

Approaches to RL: lTaxonomy

Model-free RL

Value-based RL

— Estimate the optimal action-value function @*(s, a)

— No policy (implicit)

Policy-based RL

— Search directly for the optima policy 7*
— No value function

Model-based RL

— Builld a model of the world

— Plan (e.g., by look-ahead) using model

* slide from Dhruv Batra

Approaches to RL: [axonomy

Model-free RL

Value-based RL

— Estimate the optimal action-value function @*(s, a)

— No policy (implicit) Actor-critic BRL
— Value function
Policy-based RL — Policy function

— Search directly for the optima policy 7*
— No value function

Model-based RL

— Builld a model of the world

— Plan (e.qg., by look-ahead) using model

* slide from Dhruv Batra

Deep RL

Value-based RL

— Use neural nets to represent Q function Q(s, a;0)

/ \

Q(s,a:0%) ~ Q*(s, a)

/ \

Policy-based RL

— Use neural nets to represent the policy 7o

Model-based RL

— Use neural nets to represent and learn the model

* slide from Dhruv Batra

Approaches to RL

Value-based RL

— Estimate the optimal action-value function Q*(s, a)

— No policy (implicit)

* slide from Dhruv Batra

Optimal Value Function

Optimal Q-function is the maximum achievable value

QR*(s,a) = max Q" (s,a) = Q™ (s, a)

* glide from David Silver

Optimal Value Function

Optimal Q-function is the maximum achievable value
Q*(s,a) = max Q™ (s,a) = Q™ (s, a)
Once we have Iit, we can act optimally

7" (s) = argmax Q(s, a)
ad

* glide from David Silver

Optimal Value Function

Optimal Q-function is the maximum achievable value
Q*(s,a) = max Q™ (s,a) = Q™ (s, a)
Once we have Iit, we can act optimally

m(s) = argmax Q" (s, a)
ad

Optimal value maximizes over all future decisions

2
Q*(s,a) = rep1 + 7y max reeio + 7" max reez + ...
dt+1 dt42

= 11 T 7Y mMax Q*(St—i—l: 3t+1)
dt+1

* glide from David Silver

Optimal Value Function

Optimal Q-function is the maximum achievable value
Q*(s,a) = max Q™ (s,a) = Q™ (s, a)
Once we have Iit, we can act optimally

m(s) = argmax Q" (s, a)
ad

Optimal value maximizes over all future decisions

2
Q*(s,a) = rep1 + 7y max reeio + 7" max reez + ...

di+1 dt42

= 41 T Tai< Q*(St—i—l: 3t+1)
t+

Formally, Q" satisfied Bellman Equations

R*(s,a) =Ey [r+7 max R*(s',a") | s, a

* glide from David Silver

Solving for the Optimal Policy

Value iteration algorithm: Use Bellman equation as an iterative update

Q’i-l-l(saa’) =L 'r—l—fyma}.in(s',a')\s,a
i a _

Q; will converge to Q* as i -> infinity

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Solving for the Optimal Policy

Value iteration algorithm: Use Bellman equation as an iterative update

Qi—l-l(saa) =K T—I—’YII]&}.XQ?;(S,,(L,)‘S,G,

Q; will converge to Q* as i -> infinity

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Solving for the Optimal Policy

Value iteration algorithm: Use Bellman equation as an iterative update

Q’H-l(saa) =K T—I—’Ym?}'XQi(S,aa',)‘Saa

Q; will converge to Q* as i -> infinity

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.qQ.
game pixels, computationally infeasible to compute for entire state space!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Solving for the Optimal Policy

Value iteration algorithm: Use Bellman equation as an iterative update

Qi—l-l(saa) =K ’T’—I-’YmE}.XQi(S,,CL,)‘S,a,

Q; will converge to Q* as | -> infinity

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.qQ.
game pixels, computationally infeasible to compute for entire state space!

Solution: use a function approximator to estimate Q(s,a). E.g. a neural network!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Q-Networks

Q(s,a,w) =~ Q*(s, a)

Q(s,a,w) Q(s,ay,w) --- Qs,a.,,w)

T

* glide from David Silver

Case StUdy P‘aylng Atari Games | Mnih et al., 2013; Nature 2015]

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Q-Network Architecture [Mnih et al., 2013; Nature 2015

Q(s,a;60): neural network
with weights 6

FC-4 (Q-values)
FC-256

1] —

Current state s;: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Q-Network Architecture [Mnih et al., 2013; Nature 2015

Q(s,a;60): neural network
with weights 6

FC-4 (Q-values)
FC-256

T - L G o ey AN

1“- <— |nput: state s;

Current state s;: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Q-Network Architecture [Mnih et al., 2013; Nature 2015

Q(s,a;60): neural network
with weights 6

FC-4 (Q-values)
FC-256

<«— familiar conv
and fc layers

1] —

Current state s;: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Q-Network Architecture

Q(s,a;60): neural network
with weights 6

FC-4 (Q-values)

| Mnih et al., 2013; Nature 2015 |

<«<— [ast FC layer has 4-d

FC-256

output (if 4 actions),

Jll-

corresponding to Q(st, a1),
Q(st, az), Q(st, as), Q(st,a4)

Current state s;: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Q-Network Architecture

Q(s,a;60): neural network
with weights 6

FC-4 (Q-values)

| Mnih et al., 2013; Nature 2015 |

<«<— [ast FC layer has 4-d

FC-256

output (if 4 actions),

a § =3 — 8]

corresponding to Q(st, a1),
Q(st, az), Q(st, as), Q(st,a4)

Number of actions between 4-18

depending on Atari game

Current state s;: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Q-Network Architecture

Q(s,a;60): neural network
with weights 6

FC-4 (Q-values)

| Mnih et al., 2013; Nature 2015 |

<«<— [ast FC layer has 4-d

FC-256

output (if 4 actions),

A single feedforward pass to compute

QQ-values for all actions from the current
state => efficient!

R F =3 _—— | [|
'-

corresponding to Q(st, a1),
Q(st, az), Q(st, as), Q(st,a4)

Number of actions between 4-18

depending on Atari game

Current state s;: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Q-Network Learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

Q" (s,a) = E[r + ymaxQ*(s',a’) | s,a

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Q-Network Learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

Q" (s,a) = E[r + ymaxQ*(s',a’) | s,a

Forward Pass:

Loss function: Li(ei) = [(y@ — Q(S, a, 97;)2}

where y; = Elr +ymax Q*(s,a’) | s,a
a

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Q-Network Learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

Q" (s,a) = E[r + ymaxQ*(s',a’) | s,a
Forward Pass:

Loss function: Li(ez’) = [(y@ — Q(S, a, 92’)2}

n|

where y; = Elr +ymax Q*(s,a’) | s,a
a

Backward Pass:

Gradient update (with respect to Q-function parameters 0):

Vo.Li(0;) =E o+ ymax Q(s',a’;0;_1) — Q(s,a;0;))Ve,Q(s, a; 97;)-

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Q-Network Learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

Q" (s,a) = E[r + ymaxQ*(s',a’) | s,a
Forward Pass:

| o . 9 teratively try to make the Q-value
Loss function: Li(‘gi) = 1L [(yz o Q(Sa a, 92’) } close to the target value (y)) it
e/ . should have, if Q-function
——") - *
where Y; = J[T Y mz}x Q (S , () ‘ S, corresponds to optimal Q* (and
a optimal policy 1*)

Backward Pass:

Gradient update (with respect to Q-function parameters 0):

A

Vo,Li(6;) = E|r + ymax Q(s',a’;0;-1) — Q(s,a;0;)) Ve, Q(s, a; 0;)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Training the Q-Network: Experience Replay

Learning from batches of consecutive samples is problematic.

— Samples are correlated => inefficient learning

— Current Q-network parameters determines next training samples (e.g. if maximizing
action is to move left, training samples will be dominated by samples from left-hand size)
=> can lead to bad feedback loops

Address these problems using experience replay
— Continually update a replay memory table of transitions (s, ay, fi, Sti1) @S game
(experience) episodes are played
— Train Q-network on random minibatches of transitions from the replay memory, instead
of consecutive samples

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Experience Replay

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Experience Replay

To remove correlations, build data-set from agent's own experience

s1,a1, 2, S
52,42, I3, 53 — S, a4, r‘.Sl

53.d3.14. 54

St,dt, 't+1,St+1 —> | St,dt, Nt4+1, St+-1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Putting it together: Deep Q-learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,7do
With probability € select a random action a,
otherwise select a; = max, Q*(d(s;),a;0)
Execute action a; in emulator and observe reward r; and image z;.
Set 8,41 = 84, @y, Ty4+1 and preprocess @y1 = P(S¢+1)
Store transition (¢y, @y, 7y, ¢y41) in D
Sample random minibatch of transitions (¢;,a;,7;,¢;41) from D

o for terminal ¢,
& r;i +ymaxy Q(¢j+1,a’;0) for non-terminal ¢, ;
Perform a gradient descent step on (y; — Q(¢;, a;; #))* according to equation 3

end for
end for

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Putting it together: Deep Q-learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,7do
With probability € select a random action a,
otherwise select a; = max, Q*(d(s;),a;0)
Execute action a; in emulator and observe reward r; and image z;.
Set 8411 = 8¢, Gy, Ty+1 and preprocess @1 = P(S¢41)
Store transition (¢y, @y, 7y, ¢y41) in D
Sample random minibatch of transitions (¢;,a;,7;,¢;41) from D

e d T for terminal ¢,
Ji r;i +ymaxy Q(¢j+1,a’;0) for non-terminal ¢, ;
Perform a gradient descent step on (y; — Q(¢;, a;; #))* according to equation 3

end for
end for

Initialize replay memory, Q-network

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Putting it together: Deep Q-learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,7do
With probability € select a random action a,
otherwise select a; = max, Q*(d(s;),a;0)
Execute action a; in emulator and observe reward r; and image z;.
Set 8,41 = 84, @y, Ty4+1 and preprocess @y1 = P(S¢+1)
Store transition (¢y, @y, 7y, ¢y41) in D
Sample random minibatch of transitions (¢;,a;,7;,¢;41) from D

o for terminal ¢,
& r;i +ymaxy Q(¢j+1,a’;0) for non-terminal ¢, ;
Perform a gradient descent step on (y; — Q(¢;, a;; #))* according to equation 3

end for
end for

Play M episodes (full games)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Putting it together: Deep Q-learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights

Initialize state (start geme screen

for episode = 1, M do pixes) at beggining of each episode
Initialise sequence s; = {z; } and preprocessed sequenced ¢, = ¢(s)
fort =1,7 do

With probability € select a random action a,

otherwise select a; = max, Q*(d(s;),a;0)

Execute action a; in emulator and observe reward r; and image z;.
Set 8411 = 8¢, Gy, Ty+1 and preprocess @1 = P(S¢41)

Store transition (¢y, @y, 7y, ¢y41) in D

Sample random minibatch of transitions (¢;,a;,7;,¢;41) from D

e d T for terminal ¢,
Ji r;i +ymaxy Q(¢j+1,a’;0) for non-terminal ¢, ;
Perform a gradient descent step on (y; — Q(¢;, a;; #))* according to equation 3

end for
end for

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Putting it together: Deep Q-learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)

fort =1,7 do -
With probability € select a random action a, -or each timestep [of the game

otherwise select a; = max, Q*(¢(s;),a;0) (I 1S Max steps but can return early)
Execute action a; in emulator and observe reward r; and image z;.

Set 8,41 = 84, @y, Ty4+1 and preprocess @y1 = P(S¢+1)

Store transition (¢y, @y, 7y, ¢y41) in D

Sample random minibatch of transitions (¢;,a;,7;,¢;41) from D

o for terminal ¢,
& r;i +ymaxy Q(¢j+1,a’;0) for non-terminal ¢, ;
Perform a gradient descent step on (y; — Q(¢;, a;; #))* according to equation 3

end for
end for

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Putting it together: Deep Q-learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort =1,7 do - "
SR i o nliil i sraniihonns sl VVIJ[lh small probabllity take random
otherwise select a; = max, Q*(é(s;),a;0) action (explore)
Execute action a; in emulator and observe reward r; and image z;.
Set 8,41 = 84, @y, Ty4+1 and preprocess @y1 = P(S¢+1)
Store transition (¢y, @y, 7y, ¢y41) in D
Sample random minibatch of transitions (¢;,a;,7;,¢;41) from D

o for terminal ¢,
& r;i +ymaxy Q(¢j+1,a’;0) for non-terminal ¢, ;
Perform a gradient descent step on (y; — Q(¢;, a;; #))* according to equation 3

end for
end for

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Putting it together: Deep Q-learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)

fort=1,7do - -
S bkl v aaliit i el o Otherwise select greedy action from

otherwise select a; = max, Q*(¢(s;), a; 6) current policy (implicit in Q function)
Execute action a; in emulator and observe reward r; and image z;.

Set 8,41 = 84, @y, Ty4+1 and preprocess @y1 = P(S¢+1)

Store transition (¢y, @y, 7y, ¢y41) in D

Sample random minibatch of transitions (¢;,a;,7;,¢;41) from D

o for terminal ¢,
& r;i +ymaxy Q(¢j+1,a’;0) for non-terminal ¢, ;
Perform a gradient descent step on (y; — Q(¢;, a;; #))* according to equation 3

end for
end for

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Putting it together: Deep Q-learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)

fort=1,7do -
S St nalliich et s Take action and observe the reward

otherwise select a; = max, Q*(¢(s;),a;0) and next state

Execute action a; in emulator and observe reward r; and image x; ;
Set 8y+1 = 8¢, a4, Ty41 and preprocess @pi1 = O(S¢41)

Store transition (¢y, @y, 7y, ¢y41) in D

Sample random minibatch of transitions (¢;,a;,7;,¢;41) from D

e d T for terminal ¢,
Ji r;i +ymaxy Q(¢j+1,a’;0) for non-terminal ¢, ;
Perform a gradient descent step on (y; — Q(¢;, a;; #))* according to equation 3

end for
end for

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Putting it together: Deep Q-learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,7do
With probability e select a random actiona, Store transition replay in memory
otherwise select a; = max, Q*(d(s;),a;0)
Execute action a; in emulator and observe reward r; and image z;.
Set 8;+1 = 84, @y, Ty+1 and preprocess ¢y1 = P(S¢+1)
Store transition (¢y, as, 74, $¢+1) in D
Sample random minibatch of transitions (¢;,a;,7;,¢;41) from D

o for terminal ¢,
& r;i +ymaxy Q(¢j+1,a’;0) for non-terminal ¢, ;
Perform a gradient descent step on (y; — Q(¢;, a;; #))* according to equation 3

end for
end for

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Putting it together: Deep Q-learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity NV
Initialize action-value function () with random weights

for episode = 1, M do

Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)

fort=1,7do

With probability € select a random action a,

Sample a random mini-batch from

otherwise select a; = max, Q*(4(s,),a;§) '€Play memory and perform a gradient
Execute action a; in emulator and observe reward r; and image z;. ; descent step

Set 8441 = 8¢, a4, Ty

1 and preprocess ¢y+1 = ¢(S¢+1)

Store transition (¢;, @, 7, ¢411) in D
Sample random minibatch of transitions (¢;,a;, 7, ¢;+1) from D

Sety; = { "3

for terminal ¢, 4,

J
ri +ymaxy Q(¢js1,a’;0) for non-terminal ¢, ;

Perform a gradient descent step on (y; — Q(¢;, a;; #))* according to equation 3

end for
end for

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Example: Atari Playing

Starting out - 10 minutes of training

The algorithm tries to hit the hall hack, hut
itis yet too clumsy to manage.

Example: Atari Playing

Starting out - 10 minutes of training

The algorithm tries to hit the hall hack, hut
itis yet too clumsy to manage.

Deep RL

Value-based RL

— Use neural nets to represent Q function Q(s, a; 0,

Q(s,a;0%) = Q" (s, a)

* slide from Dhruv Batra

Policy-based RL

— Use neural nets to represent the policy 7o

* slide from Dhruv Batra

Policy Gradients

Formally, let’s define a class of parameterized policies:

For each policy, define its value:

J(O) =E Zytnhrg

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Policy Gradients

Formally, let’s define a class of parameterized policies:

For each policy, define its value:

J(0) =E Yirs|me

We want to find the optimal policy 6* = arg max J(0)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Policy Gradients

Formally, let’s define a class of parameterized policies:

For each policy, define its value:

J(O) =E Zytrtkrg

We want to find the optimal policy 8™ = arg max J(0)

How can we do this?

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Policy Gradients

Formally, let’s define a class of parameterized policies:

For each policy, define its value:

JO) =E [> y'r|ms

We want to find the optimal policy 8* = arg max J(6)

How can we do this?

Gradient ascent on policy parameters!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

REINFORCE algorithm

EXpected reward:

J(0) = br ~op(730) r(7)]
= /r('r)p('r;G)d'r

Where (1) is the reward of a trajectory 7 = (Sg, @g, T0, S1, - - -)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

REINFORCE algorithm

EXpected reward:

J(0) = L ~op(730) (7))
— /r('r)p('r;G)d'r
Where r(z) is the reward of a trajectory 7 = (sg, @g, 79, S1, - - -)

Now let's ditferentiate this: v4.7(6) = / r(17)Vep(T;0)dT

Intractable! Expectation of gradient is

oroblematic when p depends on 6

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

REINFORCE algorithm

EXpected reward:

J(0) = L ~op(730) (7))
— /r('r)p('r;H)d'r
Where r(z) is the reward of a trajectory 7 = (sg, @g, 79, S1, - - -)

Now let's ditferentiate this: v4.7(6) = / r(17)Vep(T;0)dT

However, we can use a Nice rcK: v p(7; §) = p(r; 6) V"f’('rg;)@) = p(1;60)Vglog p(T;6)
p(T;
f we inject this back;
VoJ(0) = / (r(7)Vglog p(7;0)) p(T;0)dT Can estimate with Monte Carlo

sampling

= Ernp(r:0) r(7)Vglogp(T;0)]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Intuition

Gradient estimator:
VeJ(0) =~ Z r(7)Vglog mg(a|st)

t>0

Interpretation:
- If r(7) Is high, push up the probabilities of the actions seen
- If r(7) 1s low, push down the probabilities of the actions seen

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Intuition

Gradient estimator:
VeJ(0) =~ Z r(7)Vglog mg(a|st)

t>0

Interpretation:
- If r(7) Is high, push up the probabilities of the actions seen
- If r(7) 1s low, push down the probabilities of the actions seen

Might seem simplistic to say that it a trajectory Is good then all its actions
were good. But In expectation, it averages out!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Intuition

DOWN DOWN DOWN UP

® @ @ @ \WIN
® r——0— @ LOSE
P "DOWN’. DOWN». UP »® | OSE
‘ -® UP " UP ~® WIN

* slide from Dhruv Batra

Intuition

Gradient estimator:
VeJ(0) =~ Z r(7)Velogmg(as|st)

t>0

Interpretation:
- If r(7) Is high, push up the probabilities of the actions seen
- If r(7) 1s low, push down the probabilities of the actions seen

Might seem simplistic to say that it a trajectory Is good then all its actions
were good. But In expectation, it averages out!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

REINFORCE in Action: Recurrent Attention Model (REM)

Objective: Image Classification

Take a sequence of “glimpses” selectively focusing on 3"

regions of the iImage, to predict class
man perception and eye movements

— Inspiration from
— Saves computa

hu
10

nal resources => scala

— Able to ignore ¢

ut

er / irrelevant parts of

Ollity
image

glimpse

| Mnih et al., 2014]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

REINFORCE in Action: Recurrent Attention Model (REM)

Objective: Image Classification

Take a sequence of “glimpses” selectively focusing on 3"

regions of the image, to predict class
— Inspiration from human perception and eye movements
— Saves computational resources => scalability
— Able to ignore clutter / irrelevant parts of image

glimpse

State: Glimpses seen so far
Action: (x,y) coordinates (center of glimpse) of where to look next in image

Reward: 1 at the final timestep If iImage correctly classified, O otherwise

| Mnih et al., 2014]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

REINFORCE in Action: Recurrent Attention Model (REM)

Objective: Image Classification

Take a sequence of “glimpses” selectively focusing on 3"

regions of the image, to predict class
— Inspiration from human perception and eye movements
— Saves computational resources => scalability
— Able to ignore clutter / irrelevant parts of image

glimpse

State: Glimpses seen so far
Action: (x,y) coordinates (center of glimpse) of where to look next in image
Reward: 1 at the final timestep If iImage correctly classified, O otherwise

Glimpsing is a non-differentiable operation => learn policy for how to take glimpse actions using REINFORCE
Given state of glimpses seen so far, use RNN to model the state and output next action

| Mnih et al., 2014]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

REINFORCE in Action: Recurrent Attention Model (REM)

Input image

| Mnih et al., 2014]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

REINFORCE in Action: Recurrent Attention Model (REM)

Input image

| Mnih et al., 2014]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

REINFORCE in Action: Recurrent Attention Model (REM)

(X1, Y1) (X2, Y2) (X3, Va)

@

Input image

| Mnih et al., 2014]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

REINFORCE in Action: Recurrent Attention Model (REM)

(X1, Y1) (X2, Y2) (X3, Y3) (X4, Ya) (X5, Ys)

©—> Softmax
A '
Input image

4 - T

| Mnih et al., 2014]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

REINFORCE in Action: Recurrent Attention Model (REM)

3 -
> Q-

Has also been used in many other tasks including fine-grained image
recognition, iImage captioning, and visual question-answering!

| Mnih et al., 2014]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

REINFORCE in Action: Recurrent Attention Model (REM)

3 -
> Q-

Has also been used in many other tasks including fine-grained image
recognition, iImage captioning, and visual question-answering!

| Mnih et al., 2014]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

REINFORCE in Action: Recurrent Attention Model (REM)

3 -
> Q-

Has also been used in many other tasks including fine-grained image
recognition, iImage captioning, and visual question-answering!

| Mnih et al., 2014]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

REINFORCE in Action: Recurrent Attention Model (REM)

3 -
> Q-

Has also been used in many other tasks including fine-grained image
recognition, iImage captioning, and visual question-answering!

| Mnih et al., 2014]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

| earning to Reason

Layout policy (RNN)

How many other things are of the
same size as the green matte ball?

Question encoder (RNN)

v

Layout prediction
(reverse Polish notation)

Question features

How many other things are of the

>‘ find() ‘

> same size as the green matte ball?

» How many other things are of the

»‘ relocate() ‘

>‘ count() |

same size as the green matte ball?

Question attentions

>

o

Network builder

o
-
*
-
*
-
A
-
-
-
A
-
-
‘0
lllll

Modulo
network

m Image encoder (CNN)

e green matte ball ?
) Image features

[Hu et al., 2017]

| earning to Reason

Module name Att-inputs | Features | Output | Implementation details

find (none) Lviss Tixt att Qout = conva (convi(Tyis) © Wkirt)

relocate a Tyisy Ttat att Qout = convz (convy(Zyis) ©@ Wisum(a © Tyis) © WaZiazt)
and ai,as (none) att Qout = minimum(ai,as2)

or ai, a (none) att Qout = Maximum(ai, az)

filter a Tvisy Tiat att Qout = and(a, £ind|Tyis, Tix¢)()), i.e. reusing £ind and and
exist, count] a (none) ans y = W' vec(a)

describe a Tvis, Lizt ans y =W (Wesum(a ® Tvis) © Wikizt)

eqg.count, more, less] ai, a2 (none) ans Y = W{rvec(al) -t WgTvec(az)

compare ai, as Lviss Lixt ans y = Wi (Wasum(ai ® Zyis) © Wasum(az © Zvis) © Wiiat)

| Hu et al., 2017]

| earning to Reason

indw]‘j—!'-IIIIIII11!1!111111_
find[1] |- -
0 I 8 mlaameimm 1 10 U s el IEIOCBte[Z]- . 5
find[0] | " HIERRE filteri3] - -
et | = - - -
relocate[1) mmpare[‘”1111111.11111111111111
count{2] |- . x TR TR T U T T ¥ o X v & @ o
L=l I Y NN U NN —— | A 5 29 22
' °£=%>se-c’°snxss‘é.g & 2 =€
2 > & W 9 @ B ¢ T @ ¥ @ c @4 = O e @ c 8 &
g 22 2 r § £ E N £ § £ 3 £ L B
g % £ - ® B E o 4 £
yes ’
" :
..---’
]
]
]
]
]
'
L
L
)
L
........... ’ ‘

How many other
things are of the

same size as the
green matte ball?

Does the blue cylinder have
the same material as the big

block on the right side of the
red metallic thing?

[Hu et al., 2017]

Summary

Policy gradients: very general but suffer from high variance so requires a
lot of samples. Challenge: sample-efficiency

Q-learning: does not always work but when it works, usually more sample-
efficient. Challenge: exploration

Guarantees:
— Policy Gradients: Converges to a local minima of J(8), often good enough!
— Q-learning: Zero guarantees since you are approximating Bellman equation with a

complicated function approximator

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

