Topics in AI (CPSC 532S):
Multimodal Learning with Vision, Language and Sound

Lecture 18: Deep Reinforcement Learning
Types of **Learning**

Supervised training
- Learning from the teacher
- Training data includes desired output

Unsupervised training
- Training data does not include desired output

Reinforcement learning
- Learning to act under evaluative feedback (rewards)
What is **Reinforcement Learning**

Agent-oriented learning — learning by interacting with an environment to achieve a goal
- More realistic and ambitious than other kinds of machine learning

Learning **by trial and error**, with only delayed evaluative feedback (reward)
- The kind of machine learning most like natural learning
- Learning that can tell for itself when it is right or wrong

slide from David Silver
Example: Hajime Kimura’s RL Robot

Before

After

* slide from Rich Sutton
Example: Hajime Kimura’s RL Robot

* slide from Rich Sutton
Example: Hajime Kimura’s RL Robot

Before

After

* slide from Rich Sutton
Human Objectives

“I think it is just the product of a few principles that will be considered very simple in hindsight, so simple that even kids will be able to understand and build intelligent, continually learning, more and more general problem solvers.”

High Level Objectives: Maximize Happiness, Don’t Die

What would be an emergent behavior would evolve if we have these high level objectives?

Jurgen Schmidhuber
Challenges of RL

- Evaluative feedback (reward)
- Sequentiality, delayed consequences
- Need for trial and error, to explore as well as exploit
- Non-stationarity
- The fleeting nature of time and online data

* slide from Rich Sutton
How does **RL** work?

- At each step t the agent:
 - Executes action a_t
 - Receives observation o_t
 - Receives scalar reward r_t

- The environment:
 - Receives action a_t
 - Emits observation o_{t+1}
 - Emits scalar reward r_{t+1}

* slide from David Silver
Objective: Make the robot move forward

State: Angle and position of the joints

Action: Torques applied on joints

Reward: 1 at each time step upright + forward movement

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs213n Stanford
Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at each time step

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Go Game (AlphaGo)

Objective: Win the game!

State: Position of all pieces

Action: Where to put the next piece down

Reward: 1 if win at the end of the game, 0 otherwise

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford