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Lecture 19: Graph Neural Networks (cont)



Traditional Neural Networks

I M AG E N ET Speech data

Grid games

Natural language Sentence
pro ceSSi n g (N L P) Predicate / Verb Phrase

Prepositional Phrase

Noun Phrase

A /bun/l’h\rase

Article Noun Verb Preposition Article Noun

| | | | I |
The cat sat on the mat.

Deep neural nets that exploit:

- translation equivariance (weight sharing)
- hierarchical compositionality

* slide from Thomas Kipf, University of Amsterdam



Graph Neural Networks (GNNSs)
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Main ldea: Pass massages between pairs of nodes and agglomerate

Alternative Interpretation: Pass massages between nodes to refine node
(and possibly edge) representations

* slide from Thomas Kipf, University of Amsterdam



Graph Neural Networks (GNNSs)

Notation: G = (A, X)
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Main ldea: Pass massages between pairs of nodes and agglomerate

Alternative Interpretation: Pass massages between nodes to refine node
(and possibly edge) representations

* slide from Thomas Kipf, University of Amsterdam



Recap: Convolutional Neural Networks (CNNs) on Grids

Single CNN layer

with 3x3 filter: h
0

h, ..
O
A

O (B\O h,

* slide from Thomas Kipf, University of Amsterdam



Recap: Convolutional Neural Networks (CNNs) on Grids

Single CNN layer

with 3x3 filter: h
0

h, ..
O
A

O CB\O h,

h; € R" are (hidden layer) activations of a pixel/node

* slide from Thomas Kipf, University of Amsterdam



Recap: Convolutional Neural Networks (CNNs) on Grids

Single CNN layer

with 3x3 filter: h
0

hy ..
O\O'/O Update for a single pixel:
0 6 ~ » Transform messages individually W ;h;

V\O * Add everything up ZZ W;h;
O (g h;

h; € R" are (hidden layer) activations of a pixel/node

* slide from Thomas Kipf, University of Amsterdam



Recap: Convolutional Neural Networks (CNNs) on Grids

Single CNN layer

with 3x3 filter: h
0

hy ..
CKQ'/O Update for a single pixel:
0 6 ~ » Transform messages individually W ;h;

(gv\o * Add everything up ZZ W h;
O h;

h; € R" are (hidden layer) activations of a pixel/node

Full update:
b = o (WEBY + WL 4o+ WOh)

* slide from Thomas Kipf, University of Amsterdam



Graph Convolutional Networks (GCNSs)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this
undirected graph:

O O
O O
O O

* slide from Thomas Kipf, University of Amsterdam



Graph Convolutional Networks (GCNSs)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this Calculate update
undirected graph: for node in red:

O O 0o P
OO OO 0/8\>

* slide from Thomas Kipf, University of Amsterdam



Graph Convolutional Networks (GCNSs)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this Calculate update
undirected graph: for node In red:

O xgP
- O Oo - 0/8\0

Update 1
(I+1) (D xx7 () Z (D) xx7 (D)
rule: hz — 0 hz W() + C_h] Wl
jEN;
Scalability: subsample messages [Hamilton et al., NIPS 2017] M : neighbor indices  C;;: norm. constant

(fixed/trainable)

* slide from Thomas Kipf, University of Amsterdam



Graph Convolutional Networks (GCNSs)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this Calculate update Desirable properties:
undirected graph: for node In red: » Weight sharing over all locations
* |nvariance to permutations

O O ()\A ’/O » Linear complexity O(E)
O 8 » Applicable both in transductive
Q O O/' % and inductive settings

Update 1
(I+1) (D~xx7 (D) Z (D~xx7 (1)
rule: hz — 0 hz W() + C_hj W1
JEN; *J
Scalability: subsample messages [Hamilton et al., NIPS 2017] M : neighbor indices C;4 : norm. constant

(fixed/trainable)

* slide from Thomas Kipf, University of Amsterdam



GNNs with Edge Embeddings

Rattaglia et al. (NIPS 2016), Gilmer et al. (ICML 2017), Kipf et al. (ICML 2018)

( Legend: [: Node embedding [ I'l: Edge embedding = : MLP)

Node-to-edge (v—e€) Edge-to-node (e — )

(

eE—7V . h§+1 — f”tl)([zzé./\/} hl(z,J)7X]])

Formally: wv—e: h!, . = f/([h},h},x; ;)])

* slide from Thomas Kipf, University of Amsterdam



GNNs with Edge Embeddings

Battaglia et al. (NIPS 2016), Gilmer et al. (ICML 2017), Kipf et al. (ICML 2018)

('—egend: I Node embedding [Tl: Edge embedding = : MLP) Pros:

\ » Supports edge features
* More expressive than GCN
* As general as it gets (?)
 — * Supports sparse matrix ops

\ J \ J

Node-to-edge (v—e€) Edge-to-node (e — )

Formally: ov—e: hl-,j) = fé([hﬁ-,hé-,x(z',j)])

1

e—v: hil = le;([zfief\/} hi; 50 %))

* slide from Thomas Kipf, University of Amsterdam



GNNs with Edge Embeddings

Battaglia et al. (NIPS 2016), Gilmer et al. ICML 2017), Kipf et al. ICML 2018)

('—egend: I Node embedding [Tl: Edge embedding = : MLP] Pros:

w * Supports edge features

* More expressive than GCN
/ * As general as it gets (?)
| — « Supports sparse matrix ops
Cons:
g * Need to store intermediate

Node-to-edge (v—e Edge-to-node (e — v T
ge (v=e) J e=0) edge-based activations

» Difficult to implement
Formally: v—e: hy, ;) = fi([hj, h},x( ;)]) with subsampling

1
= |n practice limited to small graphs
: [+1 __ pl l
E—7 . hj — fv([ZiENj h i,j)’xj])

* slide from Thomas Kipf, University of Amsterdam



Graph Neural Networks (GNNs) with Attention

Monti et al. (CVPR 2017), Hoshen (NIPS 2017), Velickovic et al. (ICLR 2018)

@ € v@ concat/avg @
o Vv oy
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[Figure from VeliCkovi¢ et al. (ICLR 2018)]

K
il = o (;( Y% a;«jwkﬁj)

k=1 jeN;

* slide from Thomas Kipf, University of Amsterdam



Graph Neural Networks (GNNs) with Attention

Monti et al. (CVPR 2017), Hoshen (NIPS 2017), Velickovic et al. (ICLR 2018)

€ v@ concat/avg G
@ Ty X
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[Figure from VeliCkovi¢ et al. (ICLR 2018)]

exp (LeakyReLU (5’T 'Wh, ||Wi_£]]))

K
hi=o (}1( S afjwkﬁj) Qij =

— S e €XD (LeakyReLU (aT 'Wh; \\th]))

* slide from Thomas Kipf, University of Amsterdam



Graph Neural Networks (GNNs) with Attention

Monti et al. (CVPR 2017), Hoshen (NIPS 2017), VelickovicC et al. (ICLR 2018)

Pros:
 No need to store intermediate
éﬁ edge-based activation vectors
z (when using dot-product attn.)
P S * Slower than GCNs but faster
o \ ----—+ than GNNs with edge embeddings

Wh; Wh,
[Figure from VeliCkovi¢ et al. (ICLR 2018)]
. 1 K exXp (LeakyReLU (5’T [WEZHWE]]))
h: =0 | — ok WFh, Ojj = 7
K ; jezf\/i / D keN, €XP (LeakyReLU (aT ‘Wh; Hth]) )

* slide from Thomas Kipf, University of Amsterdam



Graph Neural Networks (GNNs) with Attention

Monti et al. (CVPR 2017), Hoshen (NIPS 2017), VelickovicC et al. (ICLR 2018)

Pros:

 No need to store intermediate

éﬁ edge-based activation vectors

z (when using dot-product attn.)
S

concat/ave * Slower than GCNs but faster
. """“”“"’ than GNNs with edge embeddings

cons:

* (Most likely) less expressive than
GNNs with edge embeddings

[Figure from Velickovi¢ et al. (ICLR 2018)] » Can be more difficult to optimize

exp (LeakyReLU (é'T [WEZHWE]])>

K
— ]_ —
h: =0 | — o WFR; Qjj = - -
K ; g;/ I S e €XD (LeakyReLU (aT [WhiHth]))

* slide from Thomas Kipf, University of Amsterdam



A Brief History of Graph Neural Nets

«“Spatial methods” Relation Nets
. e, Sonn a1 SraphSAGE
CVPR 2017 amilton et al.
Original GNN GG-NN ( ) Programs as Graphs NIPS 2017)
. . Allamanis e
= Gorietal. = Li et al. prm— N1~ D S ., o
(2005) (ICLR 2016) Neural VP NRI
Gilmer et al. G ipf et al
(ICML 2017) AT \ '
Velickovié et al. ~M-2018)
(ICLR 2018)
GCN
Kipf & Wellin
(IF())LR 2017)9 “DL on graph explosion”

Other early work:

- Duvenaud et al. (NIPS 2015)

- Dai et al. (ICML 2016)

GSpng?\:N ChebNet ) ~ -Niepert etal. (ICML 2016)
_ >rap — Defferrard et al. Spectral methods - Battaglia et al. (NIPS 2016)
Bruna et al, (NIPS 2016) - Atwood & Towsley (NIPS 2016)
ICLR 2015
( ) - Sukhbaatar et al. (NIPS 2016)

(slide inspired by Alexander Gaunt’s talk on GNNSs)

* slide from Thomas Kipf, University of Amsterdam



How do we use GNN / GCN for real
problems’”



Classification and Link Prediction with GNNs / GCNs

Input: Feature matrix X € R™ *¥ preprocessed adjacency matrix A

Hidden layer Hidden layer
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* slide from Thomas Kipf, University of Amsterdam



Classification and Link Prediction with GNNs / GCNs

Input: Feature matrix X & RN XE preprocessed adjacency matrix A

Hidden layer Hidden layer Node classification:
4 ) 4 )
. . softmax(zy,)
9] o
T/ . T/ . e.g. Kipf & Welling (ICLR 2017)
[ @
Input ® o © o Output
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* slide from Thomas Kipf, University of Amsterdam



Classification and Link Prediction with GNNs / GCNs

Input: Feature matrix X & RN XE preprocessed adjacency matrix A

Hidden layer Hidden layer NOde CIaSSiﬁcation:
4 N\ 4 N\
. . softmax(zy, )
| N T/ e.g. Kipf & Welling (ICLR 2017)
o @}
Input ® o ® o Output B -
” ¢ ’ ’ g S Graph classification:
. o /7 RelU | o /" ReLU X
= R o R e O L e I softmax() . Zp)
o ® o . ® o :
e o) o) T e.g. Duvenaud et al. (NIPS 2015)
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* slide from Thomas Kipf, University of Amsterdam



Classification and Link Prediction with GNNs / GCNs

Input: Feature matrix X & RN XE preprocessed adjacency matrix A

Hidden layer

Hidden layer

.

Z = HWY)

Node classification:

softmax(zy,)
e.g. Kipf & Welling (ICLR 2017)

Graph classification:

—» softmax()_ zp)
e.g. Duvenaud et al. (NIPS 2015)

Link prediction:

_ T .
p(Aij) = o(2z; z;)
Kipf & Welling (NIPS BDL 2016)
“Graph Auto-Encoders”

* slide from Thomas Kipf, University of Amsterdam



Semi-supervised Classification on Graphs

Setting:
Some nodes are labeled (black circle)
All other nodes are unlabeled e o

O O o o
Task: O ° o< \i\g o
Predict node label of unlabeled nodes ® o .0 o :®

» 0 O ¢ O
» O
O o @
® g

* slide from Thomas Kipf, University of Amsterdam



Semi-supervised Classification on Graphs

Setting:

Some nodes are labeled (black circle)
All other nodes are unlabeled o 9®

)

Task: O ° P < °

Predict node label of unlabeled nodes ® o © o —_
-

Evaluate loss on labeled nodes only:

F
E E set of labeled node indices
leyr f=1 Y label matrix

Z, GCN output (after softmax)

* slide from Thomas Kipf, University of Amsterdam



Semi-supervised Classification on Graphs

1.0}

0.5

0.0}

-1.0}

-1.0

0.0

0.5 1.0

* slide from Thomas Kipf, University of Amsterdam



Semi-supervised Classification on Graphs

1.0}
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-1.0

0.0

0.5 1.0

* slide from Thomas Kipf, University of Amsterdam



Graph Neural Nets (GNNSs) are strict
(Generalizations of Traditional Neural Nets

(CNNs / RNNs can be implemented using GNNs / GCNs, but this is inefficient)



GSraphGround: Graph-based
Language Grounding

Mohit Baja Lanjun Wang Leonid Sigal
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Image Grounding: Beyond Object Detection

Given the image and one or more natural language phrases, locate regions
that correspond to those phrases.

@

A man wearing a black-jacket has
a smile on



Image Grounding: Beyond Object Detection

Given the image and one or more natural language phrases, locate regions
that correspond to those phrases.

A man wearing a black-jacket has
a smile on

Fundamental task for image / video understanding

— Helps improve performance on other tasks (e.g., image captioning, VQA)



Proposed Architecture




Proposed Architecture




Proposed Architecture
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Proposed Architecture

_.--| Visual Graph |-~~~

llllllllllllllllllllllllllllllllllllllllll

llllllllllllllllllllllllllllllllllllllllll

. ..:.
A
>
N
Visual Encoder
s B lm. =
-1 o o

RPN

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

M <a girl>

~
7’

<a bag>
SRR SR
<a hat>

A
S
)
<
V
A
(=¥
N
Phrase Encoder
-t
A AR S
Loh 44
Q N S
b,m gha
S S
M\a V V V

| Phrase Graph f--------------------

L.

y carrying a bag 1s standing with g gir/ who 1s wearing a ha

LA bo



Proposed Architecture
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Proposed Architecture
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Proposed Architecture
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Proposed Architecture

' R
' H O
3 ]
" ! o
Loy _ o = )
! _ SE T £ G
Lo " = ‘7
- _ > = 2 > &5 20
oy ! ..m P Q S
o | 2z S S
| " ! [ W A % /w
L | ~ g
L m
y ! e
v | & o
I " — G
- @,
V! =
;o J) |8
| ' wn
| EH-“.
|||||||||||||||||||||||||||||||||||||||||| - )
-
N
e
~
/ \\ > ,/
\ ~a
. N
o wo y
O o \V O
| - A | A "
" Do 80 , ! R IS "
1 1 1 a \I llllllllll L o e e e e A h ]
| = N - . - S _
" " " a z/ " \\ < "
" " " /\ //z " \\ "
= m " 1/1 " \\s !
e 8 £
= o 3
° ! N G
S A 9
1 i L 3 s
> » 3 £
_. q“ \. _. q \DL
zr/ \\\ ,z/ ’ 4L.
III llllllllllllllllllllllllllllllllllllllllll \\\ III llllllllllllllllllllllllllllllllllllllllll \\\ -m
A A S
> > -y -y )
~ W W ~ 5
4]
]
1 >
Edoe Weigh =
. ¢ Weight "
Visual Encoder wm odi omm n Phrase Encoder m
3
1, H ﬁ x
- N o
N o o 3 . M
(g | (ag}
o . A A A A =
mig - e LA 44 4
| 2 S S o0
S ,m 80 M ..m
S S
vV vV vV V 5
=
wn
2
RPN ! S
N
o
e <€ a0
o g g
J W
4s]
— “ C
S 5 Caption S
o O R
—> S Encoder _
_.m <




Experiments

Datasets
— Flickr30K Entities: (mostly noun) Phrases parsed from image captions

— Referlt Game: Unambiguous single phrases

Evaluation

— Ratio of correctly grounded phrases to the total phrases



Qualitative Results: Flickr30K

(@) A man wearing a black-jacket has (b) People are walking on the street | (c) A woman in a vellow shirtis (d) A young boy is
a smile on his face. with bikes parked up to the left of walking down the sidewalk, walking on wooden
the picture. path in the middle
of trees.

(e) Two women in colorful clothing (f) Lady wearing white shirt with (g) Young girl with curly hair is (h) The bearded man
are dancing inside a circle of blue umbrella in the rain. drinking out of a plastic cup. keeps his blue Bic
other women. pen in hand while

he plays the guitar.



Quantitative Results

Flickr30k Entities:
Method Accuracy
SMPL [ /] 42.08
NonlinearSP [ ] 43.89
GroundeR [ ] 47.81
MCB [ /] 48.69
RtP [ 1] 50.89
Similarity Network [ 5] 51.05
IGOP [ ] 53.97
SPC+PPC [ 1] 55.49
SS+QRN (VGGdet) [1] 55.99
CITE [ V] 59.27
SeqGROUND 61.60

CITE [ V] (finetuned) 61.89
QRC Net [] (finetuned) 65.14

G°RAPHGROUND++ 66.67




Quantitative Results

Flickr30k Entities:
Method Accuracy
SMPL [ /] 42.08
NonlinearSP [ ] 43.89
GroundeR [ ] 47.81
MCB [ /] 48.69
RtP [ 1] 50.89
Similarity Network [ 5] 51.05
IGOP [ ] 53.97
SPC+PPC [ 1] 55.49
SS+QRN (VGGdet) [1] 55.99
CITE [ V] 59.27
SeqGROUND 61.60
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Quantitative Results

Flickr30k Entities: Referlt Game:
Method Accuracy
SMPL ["7] 42.08 Method Accuracy
NonlinearSP [ ] 43.89

GroundeR [ ] 47.81 SCRC [V] 17.93
MCB [ 7] 48 69 MCB + Reg + Spatial [ '] 20.54
RtP [ 1] 50.89 GroundeR + Spatial [ ] 26.93
Similarity Network [~ ] 51.05 Similarity Network + Spatial [ ] 31.26
IGOP [ 4] 53.97 CGRE [ ! /] 31.85
SPC+PPC [ ] 55.49 MNN + Reg + Spatial [ ] 32.21
SS+QRN (VGGdet) [] 55.99 EB+QRN (VGGels-SPAT) [ ] 32.21
CITE [ V] 59.27 CITE [V 34.13
SeqGROUND 61.60 IGOP [+ 34.770
CITE [ ! V] (finetuned) 61.89 QRC Net [] (finetuned) 44.07
QRC Net [4] (finetuned)  65.14 G3RAPHGROUND++ 44.91

G°RAPHGROUND++ 66.67




Ablation

Method Flickr30k Referlt

GG - VisualG - FusionG 56.32 32.89
GG - VisualG 62.23 38.82

GG - FusionG 59.13 36.54

GG - PhraseG 60.82 38.12
GGFusionBase 60.41 38.65

GG - ImageContext 62.32 40.92

GG - PhraseContext 62.73 n.d.

G°RAPHGROUND (GG) 63.65 41.79
G°RAPHGROUND++ 66.67 44.91



Ablation

Method Flickr30k Referlt

GG - VisualG - FusionG 56.32 32.89
GG - VisualG 62.23 38.82

GG - FusionG 59.13 36.54

GG - PhraseG 60.82 38.12
GGFusionBase 60.41 38.65

GG - ImageContext 62.32 40.92

GG - PhraseContext 62.73 n.d.

G°RAPHGROUND (GG) 63.65 41.79
G°RAPHGROUND++ 66.67 44.91




Visualizing Graph Attention

(@) A young boy is looking at a man (b) A man is checking his blue sneakers
painted in all gold. next to two men having a
conversation.

(c) A_brown dog jumps high on a (d) A woman stands in a field near a car

field of grass. and looks through binoculars.



THE UNIVERSITY OF BRITISH COLUMBIA

Energy-Based Learning for
Scene Graph Generation

| —— | —

Mohammed Suhall



Scene Graphs:

A graph based data structure for semantically representing image content



Scene Graphs
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Scene Graphs

—l Hat

=) Umbrella

=g Lamp post

=)  Person




Scene Graphs

Hat

Person Umbrella

Lamp post



Scene Graphs
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Scene Graph Generation
Pipeline
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STATE INITIALIZATION SCENE GRAPH
person
CONTEXT
ENCODING
person
surfboard
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FEATURE LABEL surfboard # Entropy
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KERN Architecture

Routing Network

2
O




Graph RCNN

Conv Feature

Relational Proposal Network
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STATE INITIALIZATION SCENE GRAPH
person
CONTEXT
ENCODING
person
surfboard
beach
FEATURE LABEL surfboard # Entropy
OBJECT DETECTOR ~ EMBEDDING EMBEDDING ' standing
LOSS
FEATORE COMPUTATION on
EXTRACTION .
holding
I — person
LABEL
I beach
PREDICTION

Structure information

EI |:| EI surfboard Is lost
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Conclusions

— Deep learning on graphs works and is very effective!

— Exciting area: lots of new applications and extensions (hard to keep up)

Relational reasoning Multi-Agent RL GCN for recommendation on 16 billion edge graph!
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Open problems:

— Theory
— Scalable, stable generative models
— Learning on large, evolving data

— Multi-modal and cross-model learning (e.g., sequence2graph) “ slide from Thomas Kipf, University of Amsterdam



