

THE UNIVERSITY OF BRITISH COLUMBIA

Topics in AI (CPSC 532S): **Multimodal Learning with Vision, Language and Sound**

Lecture 19: Graph Neural Networks (cont)

Traditional Neural Networks

IM **G**ENET

Speech data

Natural language processing (NLP)

. . .

Deep neural nets that exploit:

- translation equivariance (weight sharing)
- hierarchical compositionality

Grid games

Graph Neural Networks (GNNs)

Main Idea: Pass massages between pairs of nodes and agglomerate

Alternative Interpretation: Pass massages between nodes to refine node (and possibly edge) representations

Graph Neural Networks (GNNs)

Main Idea: Pass massages between pairs of nodes and agglomerate

Alternative Interpretation: Pass massages between nodes to refine node (and possibly edge) representations

Notation: $\mathcal{G} = (\mathbf{A}, \mathbf{X})$

Single CNN layer with 3x3 filter:

 \mathbf{b}

Single CNN layer with 3x3 filter:

- \mathbf{h}_i
- $\mathbf{h}_i \in \mathbb{R}^F$ are (hidden layer) activations of a pixel/node

Single CNN layer with 3x3 filter:

 $\mathbf{h}_i \in \mathbb{R}^F$ are (hidden layer) activations of a pixel/node

Single CNN layer with 3x3 filter:

Full update:

 $\mathbf{h}_{A}^{(l+1)}$

 $\mathbf{h}_i \in \mathbb{R}^F$ are (hidden layer) activations of a pixel/node

$$\sigma \left(\mathbf{W}_{0}^{(l)} \mathbf{h}_{0}^{(l)} + \mathbf{W}_{1}^{(l)} \mathbf{h}_{1}^{(l)} + \dots + \mathbf{W}_{8}^{(l)} \mathbf{h}_{8}^{(l)} \right)$$

Consider this undirected graph:

Consider this undirected graph:

Calculate update for node in red:

Calculate update for node in red:

Update rule: $\mathbf{h}_{i}^{(l+1)} = \sigma \left(\mathbf{h}_{i}^{(l)} \mathbf{W}_{0}^{(l)} + \sum_{j \in \mathcal{N}_{i}} \frac{1}{c_{ij}} \mathbf{h}_{j}^{(l)} \mathbf{W}_{1}^{(l)} \right)$

Scalability: subsample messages [Hamilton et al., NIPS 2017]

 \mathcal{N}_i : neighbor indices

 c_{ij} : norm. constant (fixed/trainable)

Calculate update for node in red:

Update rule: $\mathbf{h}_{i}^{(l+1)} = \sigma \left(\mathbf{h}_{i}^{(l)} \mathbf{W}_{0}^{(l)} + \sum_{j \in \mathcal{N}_{i}} \frac{1}{c_{ij}} \mathbf{h}_{j}^{(l)} \mathbf{W}_{1}^{(l)} \right)$

Scalability: subsample messages [Hamilton et al., NIPS 2017]

Desirable properties:

- Weight sharing over all locations
- Invariance to permutations
- Linear complexity O(E)
- Applicable both in transductive and inductive settings

 \mathcal{N}_i : neighbor indices

 c_{ij} : norm. constant (fixed/trainable)

GNNs with Edge Embeddings Battaglia et al. (NIPS 2016), Gilmer et al. (ICML 2017), Kipf et al. (ICML 2018)

$$\mathbf{x}_{(i,j)}^{l}])$$

GNNs with Edge Embeddings Battaglia et al. (NIPS 2016), Gilmer et al. (ICML 2017), Kipf et al. (ICML 2018)

:	MLP	
)		
	-1	
L	f_v^{ι}	

Pros:

- Supports edge features
- More expressive than GCN
- As general as it gets (?)
- Supports sparse matrix ops

$$(i,j)]) \ \mathbf{x}_{(i,j)}^{l}, \mathbf{x}_{j}])$$

GNNs with **Edge** Embeddings Battaglia et al. (NIPS 2016), Gilmer et al. (ICML 2017), Kipf et al. (ICML 2018)

:	MLP	
_		-

 f_v^l

Pros:

- Supports edge features
- More expressive than GCN
- As general as it gets (?)
- Supports sparse matrix ops

Cons:

- Need to store intermediate edge-based activations
- Difficult to implement • with subsampling
- In practice limited to small graphs

[Figure from Veličković et al. (ICLR 2018)]

$$\vec{h}'_i = \sigma \left(\frac{1}{K} \sum_{k=1}^K \sum_{j \in \mathcal{N}_i} \alpha^k_{ij} \mathbf{W}^k \vec{h}_j \right)$$

[Figure from Veličković et al. (ICLR 2018)]

$$\vec{h}_{i}' = \sigma \left(\frac{1}{K} \sum_{k=1}^{K} \sum_{j \in \mathcal{N}_{i}} \alpha_{ij}^{k} \mathbf{W}^{k} \vec{h}_{j} \right) \qquad \alpha_{ij} = \frac{\exp \left(\text{LeakyReLU} \left(\vec{\mathbf{a}}^{T} [\mathbf{W} \vec{h}_{i} \| \mathbf{W} \vec{h}_{j}] \right) \right)}{\sum_{k \in \mathcal{N}_{i}} \exp \left(\text{LeakyReLU} \left(\vec{\mathbf{a}}^{T} [\mathbf{W} \vec{h}_{i} \| \mathbf{W} \vec{h}_{k}] \right) \right)}$$

[Figure from Veličković et al. (ICLR 2018)]

$$\vec{h}_{i}' = \sigma \left(\frac{1}{K} \sum_{k=1}^{K} \sum_{j \in \mathcal{N}_{i}} \alpha_{ij}^{k} \mathbf{W}^{k} \vec{h}_{j} \right) \qquad \alpha_{ij} = \frac{\exp \left(\text{LeakyReLU} \left(\vec{\mathbf{a}}^{T} [\mathbf{W} \vec{h}_{i} \| \mathbf{W} \vec{h}_{j}] \right) \right)}{\sum_{k \in \mathcal{N}_{i}} \exp \left(\text{LeakyReLU} \left(\vec{\mathbf{a}}^{T} [\mathbf{W} \vec{h}_{i} \| \mathbf{W} \vec{h}_{k}] \right) \right)}$$

Pros:

- No need to store intermediate edge-based activation vectors (when using dot-product attn.)
- Slower than GCNs but faster than GNNs with edge embeddings

[Figure from Veličković et al. (ICLR 2018)]

$$\vec{h}_{i}' = \sigma \left(\frac{1}{K} \sum_{k=1}^{K} \sum_{j \in \mathcal{N}_{i}} \alpha_{ij}^{k} \mathbf{W}^{k} \vec{h}_{j} \right) \qquad \alpha_{ij} = \frac{\exp \left(\text{LeakyReLU} \left(\vec{\mathbf{a}}^{T} [\mathbf{W} \vec{h}_{i} \| \mathbf{W} \vec{h}_{j}] \right) \right)}{\sum_{k \in \mathcal{N}_{i}} \exp \left(\text{LeakyReLU} \left(\vec{\mathbf{a}}^{T} [\mathbf{W} \vec{h}_{i} \| \mathbf{W} \vec{h}_{k}] \right) \right)}$$

Pros:

- No need to store intermediate edge-based activation vectors (when using dot-product attn.)
- Slower than GCNs but faster than GNNs with edge embeddings

Cons:

- (Most likely) less expressive than GNNs with edge embeddings
- Can be more difficult to optimize

A Brief History of Graph Neural Nets

(slide inspired by Alexander Gaunt's talk on GNNs)

How do we use GNN / GCN for real problems?

Input: Feature matrix $\mathbf{X} \in \mathbb{R}^{N imes E}$, preprocessed adjacency matrix $\hat{\mathbf{A}}$

 $\mathbf{H}^{(l+1)} = \sigma \left(\hat{\mathbf{A}} \mathbf{H}^{(l)} \mathbf{W}^{(l)} \right)$

Input: Feature matrix $\mathbf{X} \in \mathbb{R}^{N imes E}$, preprocessed adjacency matrix $\hat{\mathbf{A}}$

 $\mathbf{H}^{(l+1)} = \sigma \left(\hat{\mathbf{A}} \mathbf{H}^{(l)} \mathbf{W}^{(l)} \right)$

Node classification:

 $\operatorname{softmax}(\mathbf{z_n})$

e.g. Kipf & Welling (ICLR 2017)

 $\mathbf{H}^{(l+1)} = \sigma \left(\hat{\mathbf{A}} \mathbf{H}^{(l)} \mathbf{W}^{(l)} \right)$

Setting:

Some nodes are labeled (black circle) All other nodes are unlabeled

Task:

Predict node label of unlabeled nodes

Setting:

Some nodes are labeled (black circle) All other nodes are unlabeled

Task:

Predict node label of unlabeled nodes

Evaluate loss on labeled nodes only:

$$\mathcal{L} = -\sum_{l \in \mathcal{Y}_L} \sum_{f=1}^F Y_{lf} \ln Z_{lf}$$

- \mathcal{Y}_L set of labeled node indices
- \mathbf{Y} label matrix
- Z GCN output (after softmax)

Graph Neural Nets (GNNs) are strict Generalizations of Traditional Neural Nets

(CNNs / RNNs can be implemented using GNNs / GCNs, but this is inefficient)

G³raphGround: Graph-based Language Grounding

Mohit Bajaj

Lanjun Wang

Leonid Sigal

Image Grounding: Beyond Object Detection

Given the **image** and one or more **natural language phrases**, locate regions that correspond to those phrases.

A man wearing a black-jacket has a smile on his face.

Image Grounding: Beyond Object Detection

Given the image and one or more natural language phrases, locate regions that correspond to those phrases.

Fundamental task for image / video understanding - Helps improve performance on other tasks (e.g., image captioning, VQA)

A man wearing a black-jacket has a smile on his face.

Experiments

Datasets

- **Referit Game**: Unambiguous single phrases

Evaluation

Ratio of correctly grounded phrases to the total phrases

- Flickr30K Entities: (mostly noun) Phrases parsed from image captions

Qualitative Results: Flickr30K

(a) A man wearing a black-jacket has a smile on his face.

(b) **People** are walking on the street , with **bikes** parked up to the left of the picture.

(e) Two women in colorful clothing are dancing inside a circle of other women.

(f) Lady wearing white shirt with blue umbrella in the rain.

A woman in a yellow shirt is (c) walking down the sidewalk.

(d) A young boy is walking on wooden path in the middle of trees.

Young girl with curly hair is (g) drinking out of a plastic cup.

(h) The bearded man keeps his blue Bic pen in hand while he plays the guitar.

Quantitative Results

Flickr30k Entities:

Method	Accuracy
SMPL [27]	42.08
NonlinearSP [26]	43.89
GroundeR [23]	47.81
MCB [7]	48.69
RtP [21]	50.89
Similarity Network [25]	51.05
IGOP [34]	53.97
SPC+PPC [20]	55.49
SS+QRN (VGGdet) [4]	55.99
CITE [19]	59.27
SeqGROUND	61.60
CITE [19] (finetuned)	61.89
QRC Net [4] (finetuned)	65.14
G³RAPHGROUND++	66.67

Quantitative Results

Flickr30k Entities:

Method	Accuracy
SMPL [27]	42.08
NonlinearSP [26]	43.89
GroundeR [23]	47.81
MCB [7]	48.69
RtP [21]	50.89
Similarity Network [25]	51.05
IGOP [34]	53.97
SPC+PPC [20]	55.49
SS+QRN (VGGdet) [4]	55.99
CITE [19]	59.27
SeqGROUND	61.60
CITE [19] (finetuned)	61.89
QRC Net [4] (finetuned)	65.14
G³RAPHGROUND++	66.67

Quantitative Results

Flickr30k Entities:

Method	Accuracy
SMPL [27]	42.08
NonlinearSP [26]	43.89
GroundeR [23]	47.81
MCB [7]	48.69
RtP [21]	50.89
Similarity Network [25]	51.05
IGOP [34]	53.97
SPC+PPC [20]	55.49
SS+QRN (VGGdet) [4]	55.99
CITE [19]	59.27
SeqGROUND	61.60
CITE [19] (finetuned)	61.89
QRC Net [4] (finetuned)	65.14
G³RAPHGROUND++	66.67

ReferIt Game:

Method	Accuracy
SCRC [9]	17.93
MCB + Reg + Spatial [3]	26.54
GroundeR + Spatial [23]	26.93
Similarity Network + Spatial [25]	31.26
CGRE [17]	31.85
MNN + Reg + Spatial [3]	32.21
EB+QRN (VGGcls-SPAT) [4]	32.21
CITE [19]	34.13
IGOP [34]	34.70
QRC Net [4] (finetuned)	44.07
G ³ raphGround++	44.91

Ablation

Method

GG - VisualG - Fusi GG - VisualG GG - FusionG GG - PhraseG GG - ImageConte GG - ImageConte GG - PhraseConte

G³RAPHGROUND

++	66.67	44.91
(GG)	63.65	41.79
ext	62.73	<i>n.a</i> .
ext	62.32	40.92
;	60.41	38.65
	60.82	38.12
	59.13	36.54
	62.23	38.82
ionG	56.32	32.89
	Flickr30k	ReferIt

Ablation

Method

GG - VisualG - Fusi GG - VisualG GG - FusionG GG - PhraseG GG - ImageConte GG - ImageConte GG - PhraseConte

G³RAPHGROUND

++	66.67	44.91	
(GG)	63.65	41.79	\leftarrow
ext	62.73	<i>n.a</i> .	
ext	62.32	40.92	
;	60.41	38.65	
	60.82	38.12	
	59.13	36.54	←
	62.23	38.82	
ionG	56.32	32.89	
	Flickr30k	ReferIt	

Visualizing Graph Attention

<u>A young boy</u> is looking at <u>a man</u> (a) painted in <u>all gold</u>.

<u>A brown dog</u> jumps high on a (c) field of grass.

(b) <u>A man</u> is checking <u>his blue sneakers</u> next to <u>two men</u> having a conversation.

(d) <u>A woman</u> stands in a field near <u>a car</u> and looks through binoculars.

THE UNIVERSITY OF BRITISH COLUMBIA

Energy-Based Learning for Scene Graph Generation

Mohammed Suhail

+ + +

A graph based data structure for semantically representing image content

Lamp post

Scene Graph Generation Pipeline

KERN Architecture

Graph RCNN

Visualizations

Conclusions

Deep learning on graphs works and is very effective! _____

- Exciting area: lots of new applications and extensions (hard to keep up)

Car exiting

Visual range

Relational reasoning

Multi-Agent RL

Open problems:

- Theory
- Scalable, stable generative models
- Learning on large, evolving data
- Multi-modal and cross-model learning (e.g., sequence2graph)

GCN for recommendation on 16 <u>billion</u> edge graph!

