
Lecture 19: Graph Neural Networks (cont)

Topics in AI (CPSC 532S): 
Multimodal Learning with Vision, Language and Sound



Traditional Neural Networks 

* slide from Thomas Kipf, University of Amsterdam



Graph Neural Networks (GNNs)

Main Idea: Pass massages between pairs of nodes and agglomerate 

Alternative Interpretation: Pass massages between nodes to refine node 
(and possibly edge) representations

* slide from Thomas Kipf, University of Amsterdam
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Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016) 
Graph Convolutional Networks (GCNs)
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GNNs with Edge Embeddings
Battaglia et al. (NIPS 2016), Gilmer et al. (ICML 2017), Kipf et al. (ICML 2018) 
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A Brief History of Graph Neural Nets

* slide from Thomas Kipf, University of Amsterdam



How do we use GNN / GCN for real 
problems? 



Classification and Link Prediction with GNNs / GCNs
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Semi-supervised Classification on Graphs

* slide from Thomas Kipf, University of Amsterdam



Semi-supervised Classification on Graphs

* slide from Thomas Kipf, University of Amsterdam



Semi-supervised Classification on Graphs

* slide from Thomas Kipf, University of Amsterdam



Semi-supervised Classification on Graphs
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Graph Neural Nets (GNNs) are strict 
Generalizations of Traditional Neural Nets  

(CNNs / RNNs can be implemented using GNNs / GCNs, but this is inefficient) 



G3raphGround: Graph-based  
Language Grounding

1

Leonid SigalMohit Bajaj Lanjun Wang



Image Grounding: Beyond Object Detection  

Given the image and one or more natural language phrases, locate regions 
that correspond to those phrases. 



Image Grounding: Beyond Object Detection  

Given the image and one or more natural language phrases, locate regions 
that correspond to those phrases. 

Fundamental task for image / video understanding  
— Helps improve performance on other tasks (e.g., image captioning, VQA)



Proposed Architecture



Proposed Architecture



Proposed Architecture



Proposed Architecture



Proposed Architecture



Proposed Architecture



Proposed Architecture



Proposed Architecture



Experiments

Datasets 

— Flickr30K Entities: (mostly noun) Phrases parsed from image captions 
— ReferIt Game: Unambiguous single phrases  

Evaluation  
— Ratio of correctly grounded phrases to the total phrases



Qualitative Results: Flickr30K



Quantitative Results 
Flickr30k Entities:
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Quantitative Results 
Flickr30k Entities: ReferIt Game:



Ablation



Ablation



Visualizing Graph Attention



Energy-Based Learning for 
Scene Graph Generation

Mohammed Suhail

+ + +



Scene Graphs:
A graph based data structure for semantically representing image content
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Scene Graph Generation 
Pipeline
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KERN Architecture



Graph RCNN



OBJECT DETECTOR

person

beach

surfboard

EXTRACTION

LABEL

PREDICTION

STATE INITIALIZATION

CONTEXT

ENCODING

SCENE GRAPH

beach surfboard

person

sta
nding 

on
holding

FEATURE
EMBEDDING

LABEL
EMBEDDING

FEATURE
LOSS 

COMPUTATION

beach

surfboard

person

standing 
on

holding

Cross 
Entropy 

Loss

Structure information  
is lost



OBJECT DETECTOR

person

beach

surfboard

EXTRACTION

LABEL

PREDICTION

STATE INITIALIZATION

CONTEXT

ENCODING

SCENE GRAPH

beach surfboard

person

sta
nding 

on
holding

FEATURE
EMBEDDING

LABEL

EMBEDDING
FEATURE

FEATURE

EMBEDDING

IMAGE GRAPH

beach surfboard

person

sta
nding 

on
holding

EGNN GNN

EDGED GATED 
POOLING GATED POOLING

MLP

ENERGY VALUE



Visualizations
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Conclusions
— Deep learning on graphs works and is very effective! 

— Exciting area: lots of new applications and extensions (hard to keep up) 

Open problems: 
— Theory 

— Scalable, stable generative models 

— Learning on large, evolving data 

— Multi-modal and cross-model learning (e.g., sequence2graph) * slide from Thomas Kipf, University of Amsterdam


