
Lecture 17: Generative Models [part 3], GANs

Topics in AI (CPSC 532S): 
Multimodal Learning with Vision, Language and Sound



Logistics

Project Proposals were due Yesterday  
— Will try to grade and provide feedback over the weekend  

This week: 
— Start working on projects  
— Start thinking about paper presentations



Variational Autoencoders 
(VAE)



So far …

PixelCNNs define tractable density function, optimize likelihood of training data:
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So far …

PixelCNNs define tractable density function, optimize likelihood of training data:

VAEs define intractable density function with latent variables z (that we need to 
marginalize):

cannot optimize directly, derive and optimize lower bound of likelihood instead
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Input Data

Putting it all together: 
maximizing the likelihood lower 
bound

Lets look at computing the bound (forward pass) 
for a given mini batch of input data

Variational Autoencoder: Learning
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Encoder network

Input Data

Putting it all together: 
maximizing the likelihood lower 
bound

Variational Autoencoder: Learning
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Encoder network

Input Data

Putting it all together: 
maximizing the likelihood lower 
bound

Make approximate 
posterior distribution 

close to prior

Variational Autoencoder: Learning
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Encoder network

Sample z from

Input Data

Putting it all together: 
maximizing the likelihood lower 
bound

Make approximate 
posterior distribution 

close to prior

Variational Autoencoder: Learning
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Encoder network

Decoder network

Sample z from

Input Data

Putting it all together: 
maximizing the likelihood lower 
bound

Make approximate 
posterior distribution 

close to prior

Variational Autoencoder: Learning
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Encoder network

Decoder network

Sample z from

Sample x|z from

Input Data

Putting it all together: 
maximizing the likelihood lower 
bound

Maximize likelihood of 
original input being 

reconstructed

Make approximate 
posterior distribution 

close to prior

Variational Autoencoder: Learning
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Encoder network

Decoder network

Sample z from

Sample x|z from

Input Data

Putting it all together: 
maximizing the likelihood lower 
bound

Maximize likelihood of 
original input being 

reconstructed

For every minibatch of input data: compute this forward pass, and then backprop!

Make approximate 
posterior distribution 

close to prior

Variational Autoencoder: Learning
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Decoder network

Sample z from

Sample x|z from

Variational Autoencoder: Generating Data
Use decoder network and sample z from prior

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Decoder network

Sample z from

Sample x|z from

Variational Autoencoder: Generating Data
Use decoder network and sample z from prior Data manifold for 2-d z

Vary z1

Vary z2
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Variational Autoencoder: Generating Data
Data manifold for 2-d z

Vary z1 

(degree of smile)

Vary z2 

(head pose)

Diagonal prior on z => 
independent latent variables 

Different dimensions of z encode 
interpretable factors of variation
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Variational Autoencoder: Generating Data
Data manifold for 2-d z

Vary z1 

(degree of smile)

Vary z2 

(head pose)

Diagonal prior on z => 
independent latent variables 

Different dimensions of z encode 
interpretable factors of variation

Also good feature representation that can 
be computed using qɸ(z|x)! 
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Variational Autoencoder: Generating Data

32x32 CIFAR-10
Labeled Faces in the Wild

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Conditional VAEs



Conditional VAE: Diverse Image Colorization 

[ Deshpande et al., 2017 ]



Conditional VAE: Temporal Predictions [ Xue et al., 2016 ]



Variational Autoencoder (VAE)

Latent Space 

[ He et al., 2018 ]



Variational Autoencoder (VAE) + LSTM

Latent Space 

[ He et al., 2018 ]



VAE + LSTM with Structured Latent Space

Initial  
Approximate  

Posterior

Conditional  
Approximate  

Posterior

Dynamic 
Approximate  

Posterior
Prior

Controlled 
Appearance

Residual 
Appearance

[ He et al., 2018 ]



Results: Chair CAD dataset

Ablation

Quantitative

[ He et al., 2018 ]



Results: Weizmann Human Action dataset [ He et al., 2018 ]



Results: MIT Flickr [ He et al., 2018 ]



Variational Autoencoders

Probabilistic spin to traditional autoencoders => allows generating data 
Defines an intractable density => derive and optimize a (variational) lower bound 

Pros: 
- Principled approach to generative models 
- Allows inference of q(z|x), can be useful feature representation for other tasks 

Cons: 
- Maximizes lower bound of likelihood: okay, but not as good evaluation as PixelRNN/PixelCNN 
- Samples blurrier and lower quality compared to state-of-the-art (GANs) 

Active area of research: 
- More flexible approximations, e.g. richer approximate posterior instead of diagonal Gaussian 
- Incorporating structure in latent variables (our submission to CVPR)



So far …
PixelCNNs define tractable density function, optimize likelihood of training data:

VAEs define intractable density function with latent variables z (that we need to 
marginalize):

cannot optimize directly, derive and optimize lower bound of likelihood instead
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What if we give up on explicitly modeling density, and just want to sample?



So far …
PixelCNNs define tractable density function, optimize likelihood of training data:

VAEs define intractable density function with latent variables z (that we need to 
marginalize):

cannot optimize directly, derive and optimize lower bound of likelihood instead
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What if we give up on explicitly modeling density, and just want to sample?

GANs: don’t work with any explicit density function



Generative Adversarial 
Networks (GANs)



Generative Adversarial Networks

Problem: Want to sample from complex, high-dimensional 
training distribution. There is no direct way to do this!  

[ Goodfellow et al., 2014 ]
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Generative Adversarial Networks

Problem: Want to sample from complex, high-dimensional 
training distribution. There is no direct way to do this!  

Solution: Sample from a simple distributions, e.g., random 
noise. Learn transformation to the training distribution 

[ Goodfellow et al., 2014 ]
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Generative Adversarial Networks

Problem: Want to sample from complex, high-dimensional 
training distribution. There is no direct way to do this!  

Solution: Sample from a simple distributions, e.g., random 
noise. Learn transformation to the training distribution 

Question: What can we use to represent complex 
transformation function? 

[ Goodfellow et al., 2014 ]
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Generative Adversarial Networks

Problem: Want to sample from complex, high-dimensional 
training distribution. There is no direct way to do this!  

Solution: Sample from a simple distributions, e.g., random 
noise. Learn transformation to the training distribution 

Question: What can we use to represent complex 
transformation function? 

[ Goodfellow et al., 2014 ]

zInput: Random noise 

Generator Network

Output: Sample from 
training distribution  
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Training GANs: Two-player Game [ Goodfellow et al., 2014 ]

Generator network: try to fool the discriminator by generating real-looking images 
Discriminator network: try to distinguish between real and fake images 
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Training GANs: Two-player Game [ Goodfellow et al., 2014 ]

Generator network: try to fool the discriminator by generating real-looking images 
Discriminator network: try to distinguish between real and fake images 

zRandom noise

Generator Network

Discriminator Network

Fake Images 
(from generator)

Real Images 
(from training set)

Real or Fake
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Generator network: try to fool the discriminator by generating real-looking images 
Discriminator network: try to distinguish between real and fake images 

Training GANs: Two-player Game

https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016



Training GANs: Two-player Game
Generator network: try to fool the discriminator by generating real-looking images 
Discriminator network: try to distinguish between real and fake images 

https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016



Training GANs: Two-player Game [ Goodfellow et al., 2014 ]

Generator network: try to fool the discriminator by generating real-looking images 
Discriminator network: try to distinguish between real and fake images 

Train jointly in minimax game 
Minimax objective function:

Discriminator output 
for real data x

Discriminator output for 
generated fake data G(z) 

Discriminator outputs likelihood in (0,1) of real image 

- Discriminator (θd) wants to maximize objective such that D(x) is close to 1 (real) and D(G(z)) is 

close to 0 (fake) 
- Generator (θg) wants to minimize objective such that D(G(z)) is close to 1 (discriminator is fooled 

into thinking generated G(z) is real)
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Generator network: try to fool the discriminator by generating real-looking images 
Discriminator network: try to distinguish between real and fake images 

Train jointly in minimax game 
Minimax objective function:

Discriminator output 
for real data x

Discriminator output for 
generated fake data G(z) 

Discriminator outputs likelihood in (0,1) of real image 

The  Nash equilibrium of this particular game is achieved when:
pdata(x) = pgen(G✓g (z)), 8x

D✓d(x) = 0.5, 8x
pdata(x) = pgen(G✓g (z)), 8x

D✓d(x) = 0.5, 8x

Training GANs: Two-player Game



Training GANs: Two-player Game [ Goodfellow et al., 2014 ]
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Minimax objective function:

Alternate between: 
1. Gradient ascent on discriminator 

2. Gradient descent on generator



Training GANs: Two-player Game [ Goodfellow et al., 2014 ]



Training GANs: Two-player Game [ Goodfellow et al., 2014 ]
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Minimax objective function:

Alternate between: 
1. Gradient ascent on discriminator 

2. Gradient descent on generator

In practice, optimizing this generator 
objective does not work well!



Training GANs: Two-player Game [ Goodfellow et al., 2014 ]
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Minimax objective function:

Alternate between: 
1. Gradient ascent on discriminator 

2. Gradient descent on generator

In practice, optimizing this generator 
objective does not work well!

When sample is likely 
fake, want to learn 
from it to improve 
generator. But 
gradient in this region 
is relatively flat!

Gradient signal 
dominated by region 
where sample is 
already good



Training GANs: Two-player Game [ Goodfellow et al., 2014 ]
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Minimax objective function:

Alternate between: 
1. Gradient ascent on discriminator 

2. Instead, gradient ascent on generator, different objective

Instead of minimizing likelihood of discriminator being 
correct, now maximize likelihood of discriminator 
being wrong. 


Same objective of fooling discriminator, but now 
higher gradient signal for bad samples => works 
much better! Standard in practice.



Sampling GANs

zRandom noise

Generator Network
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Year of the GAN
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Year of the GAN
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Generative Adversarial Nets

Generated Samples



Deep Convolutional GANs (DCGANs) [ Radford et al., 2016 ]



GANs with Convolutional Architectures [ Radford et al., 2016 ]
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Interpolating between points in latent space

GANs with Convolutional Architectures [ Radford et al., 2016 ]
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GANs: Interpretable Vector Math [ Radford et al., 2016 ]

Smiling woman Neutral woman Neutral man

Samples 
from the 
model
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GANs: Interpretable Vector Math [ Radford et al., 2016 ]

Smiling woman Neutral woman Neutral man

Samples 
from the 
model

Average z  
vectors, do 
arithmetic
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GANs: Interpretable Vector Math [ Radford et al., 2016 ]

Smiling woman Neutral woman Neutral man

Smiling manSamples 
from the 
model

Average z  
vectors, do 
arithmetic
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Glasses Man No Glasses Man No Glasses Woman

Samples 
from the 
model

GANs: Interpretable Vector Math [ Radford et al., 2016 ]
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Glasses Man No Glasses Man No Glasses Woman

Samples 
from the 
model

Average z  
vectors, do 
arithmetic

GANs: Interpretable Vector Math [ Radford et al., 2016 ]
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Glasses Man No Glasses Man No Glasses Woman

Woman with GlassesSamples 
from the 
model

Average z  
vectors, do 
arithmetic

GANs: Interpretable Vector Math [ Radford et al., 2016 ]
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Conditional GAN: Text-to-Image Synthesis 

[ Reed et al., ICML 2016 ]


