THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 17: Generative Models [part 3], GANs



Logistics

Project Proposals were due Yesterday

— Wil try to grade and provide feedback over the weekenad

This week:
— Start working on projects

— Start thinking about paper presentations



Variational Autoencoders
(VAE)



So far ...

Pixel CNNs define tractable density function, optimize likelihood of training data:

n

p(z) = Hp(a:z-\asl, ooy Ti—1)

=1
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So far ...

Pixel CNNs define tractable density function, optimize likelihood of training data:

n

p(z) = Hp(a:i\a:l, ooy Ti—1)

1=1

VAES define intractable density function with latent variables z (that we need to
marginalize):

po(z) = [ po(2Ipa(alz)dz

cannot optimize directly, derive and optimize lower bound of likelihood instead

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

B, |logpo(2" | 2)| — Dicsas(= | 2) || pa(2))
g —
£(2,6,0)

Lets look at computing the bound (forward pass)
for a given mini batch of input data

Input Data €T
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Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

B, |logpo(2" | 2)| — Dicsas(= | 2) || pa(2))
g —
£(2,6,0)

M2\ 2.
Encoder network | z|z
qe(2|T) \/
Input Data €T
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Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

B, |logpo(2" | 2)| — Dicsas(= | 2) || pa(2))
g —
£(2,0,0)

Make approximate

posterior distribution

close to prior / \

/“LZ‘SU zzlm

Encoder network

qs(2|z)
Input Data L
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Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

B, |logpo(2" | 2)| — Dicsas(= | 2) || pa(2))
g —
£(2,0,0)

Z
Sample z from z|x ~ N(/Lz|a;, 2z|a:)

Make approximate

posterior distribution

close to prior / \

M| 2.
Encoder network | z|
qe(2|T) \/
Input Data L
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Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

x|z

E. [logpo(+) | 2)| ~ Dicrlas(z | 2)[| po(2)) Ha|z 2
. ————— Decoder network
L(z,0,¢) Do (:z:|z) \/
<

Make approximate

Sample z from z|x ~ N(uz|m Zz|:c)

posterior distribution

close to prior / \

M| 2.
Encoder network | z|z
qe(2|T) \/
Input Data L
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Variational Autoencoder: Learning

Putting it all together:

maximizing the likelihood lower Maximize likelinood of T
5OUNG original input being
reconstructed Sample x|z from x|z ~ N (ux| s Zx| )
B. [logpo(a) | 9)] ~ Dic(as(=] ) 1o(2) Halz Y|z
_ Decoder network
L(z,0, )
po(z|2)
yA

Make approximate Sample z from z\a: ~ N(/Lz|a;, Zzl:c)

posterior distribution

close to prior / \

M| 2.
Encoder network | z|
qe(2|T) \/
Input Data L
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Variational Autoencoder: Learning

Putting it all together:

maximizing the likelihood lower Maximize likelinood of T
5OUNG original input being
reconstructed Sample x|z from x|z ~ N (ux| s Zx| )
B. [logpo(a) | 9)] ~ Dic(as(=] ) 1o(2) Halz Y|z
_ Decoder network
L(z,0, )
po(z|2)
yA

Make approximate Sample z from z\a: ~ N(/Lz|a;, Zzl:c)

posterior distribution

close to prior / \

M| 2.
Encoder network | z|
qe(2|T) \/
Input Data L

For every minibatch of input data: compute this forward pass, and then backprop!
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Variational Autoencoder: Generating Data

Use decoder network and sample z from prior

Sample x|z from x|z ~ N(ux|z, z:,;|z)

A

L

/

M|z

Decoder network

po(z|2)

™~

z:z:]z

~_

VA

Sample z from z ~ N (0, I)
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Data

[gle

Use decoder network and sample z from prior

Generat

Variational Autoencoder

Data manifold for 2-d z
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Sample x|z from x|z ~ N (g, 2

Decoder network
pe(z|2)
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Vary z;
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Sample z from z ~ N (0, I)

Vary zo
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Variational Autoencoder: Generating Data

Data manifold for 2-d z

Diagonal prior on z => ;_:!:!_‘_:; A agh A
‘mmwxnw77
;';3, t"qq-;s .'

asx rbesfesfofesfe

-

iIndependent latent variables

Different dimensions of z encode

iNnterpretable factors of variation
Vary z;

(degree of smile)

AAAAERAS
S
SRR
BEEEEBBBBE

EEEEEEEE S S

D
Vary Zo

(head pose)
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Variational Autoencoder: Generating Data

Data manifold for 2-d z

Diagonal prior on z => ;_:!:!_‘_:; A agh A
i S S
PPy 4
;;:;w v v“v*‘:;v R

asx feoferfesfeofesfs
%

iIndependent latent variables

Different dimensions of z encode

iNnterpretable factors of variation
Vary z;

AAAAAAAAS
BEEELLLLE

353
SEEEEEEEREE
e EEE

D
Vary Zo

(degree of smile)

Also good feature representation that can
be computed using ge(z|x)!

(head pose)
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Variational Autoencoder: Generating Data

L abeled Faces in the Wild
32x32 CIFAR-10
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Conditional VAEs

Image

Attributes




Color Image
(C)

Grey Image
(G)

MDN

Step 1

'

Training Procedure

Color Image
(C)

Step 2

Gr Image
(G)

Conditional VAE: Diverse Image Colorization

Testing Procedure

MDN

5
» 5>

Sa

mpling

Diverse
Colorizations

| Deshpande et al., 2017 ]



Conditional VAE: Temporal Predictions [ Xue et al., 2016 ]

‘-
‘.~

(a) Frame 1 (b) Frame 2 (c) Frame 2 (d) Frame 2
(ground truth) (Sample 1) (Sample 2)




Variational Autoencoder (VAE) [He et al., 2018]

_____ f____J
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Variational Autoencoder (VAE) + LSTM [He etal., 2018]




VAE + LSTM with Structured Latent Space  (Heetal, 2018]
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Results: Chair CAD dataset

@ Rotation

@ Identity @ Tilt

fix I

generate

ﬂﬂﬂﬂﬂﬂﬂ
Ml
LLIGICREREAER
“ NIRRT

(a) Partial control.

@ Rotation

@ |dentity @ Tilt

fix | generate

[ OOCOEEE
b LiLdLILIEIR4ES
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L1 IR
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(b) Full control.

| He et al., 2018 |

Ablation

—C +C
-5 45 =-S5 +S5

Intra-E | 1.98 40.33 17.64 7.79 14.81 3.50
Inter-E T 1.39 042 0.73 1.35 1.02 1.37
I-Score T 4.01 128 1.83 3.63 2.56 3.94

Bound Static

Quantitative

Chair CAD [1, 40]
Bound Deep Rot. [40] VideoVAE (ours)

O O
Intra-E | 1.98 14.68 5.50
Inter-E 1T 1.39 1.34 1.37

I-Score 1T 4.01 3.39 3.94




Results: \WVeizmann Human Action dataset [Heetal, 2018]

@ ldentity =& | A | @ Action = @ walking | running | skipping | jumping jack |  side step

generate
| - - | .l . o X 3 4 l_."' I . a1
/

BRI R R A0 % o o ol ol B
o ¢ o o & & ¢ & & ¢ ¢ ¢ & o o
A A A A A A A A A A A A A A A

- - | : - | ' ".' |
| |
N ] o ] ] il O Bl

Weizmann Human Action [2]
Bound MoCoGAN [32] VideoVAE (ours)

O O @
Intra-E | 0.63 23.58 0.53 9.44
Inter-E 1T 4.49 2.91 4.37 4.37

[-Score 1 89.12 13.87 69.55 70.10




Results: MIT Flickr [ He et al., 2018 ]

- ——
E
- )

YFCC [31] — MIT Flickr [34]
Bound VGAN [34] VideoVAE (ours)

O O @
Intra-E | 30.34 46.96 44.03  38.20
Inter-E 1 0.693 0.692 0.691 0.692

I-Score 1 1.87 1.58 1.62 1.81




Variational Autoencoders

Probabillistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:

- Principled approach to generative models
- Allows inference of g(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANS)

Active area of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal Gaussian
- Incorporating structure in latent variables (our submission to CVPR)




So far ...

Pixel CNNs define tractable density function, optimize likelihood of training data:
n
p(z) = Hp(a:z-|a:1, veey Ti—1)
i=1

VAES define intractable density function with latent variables z (that we need to
marginalize):

po(z) = / po(2)po(z]2)dz

cannot optimize directly, derive and optimize lower bound of likelihood instead

What if we give up on explicitly modeling density, and just want to sample”?
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So far ...

Pixel CNNs define tractable density function, optimize likelihood of training data:
n
p(z) = Hp(a:z-|a:1, veey Ti—1)
i=1

VAES define intractable density function with latent variables z (that we need to
marginalize):

po(z) = / po(2)po(z]2)dz

cannot optimize directly, derive and optimize lower bound of likelihood instead

What if we give up on explicitly modeling density, and just want to sample”?

GANS: don’t work with any explicit density function

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



(Generative Adversarial
Networks (GANS)



Generative Adversarial Networks [ Goodfellow et al., 2014 ]

Problem: \Want to sample from complex, high-dimensional
training distribution. There is no direct way to do this!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Generative Adversarial Networks [ Goodfellow et al., 2014 ]

Problem: \Want to sample from complex, high-dimensional
training distribution. There is no direct way to do this!

Solution: Sample from a simple distributions, e.g., random
noise. Learn transformation to the training distribution
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Generative Adversarial Networks [ Goodfellow et al., 2014 ]

Problem: \Want to sample from complex, high-dimensional
training distribution. There is no direct way to do this!

Solution: Sample from a simple distributions, e.g., random
noise. Learn transformation to the training distribution

Question: \What can we use to represent complex
transformation function®
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Generative Adversarial Networks [ Goodfellow et al., 2014 ]

Problem: \Want to sample from complex, high-dimensional
training distribution. There is no direct way to do this!

Solution: Sample from a simple distributions, e.g., random
noise. Learn transformation to the training distribution

Question: \What can we use to represent complex
transformation function®

Input: Random noise

Output: Sample from
training distribution

1

Generator Network

A

Z

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Training GANs: Two-player Game [ Goodfellow et al., 2014]

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Training GANs: Two-player Game [ Goodfellow et al., 2014]

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

t

Discriminator Network

’ Real Images
A :’ (from training set)

Generator Network

t

Random noise Z

Fake Images
(from generator)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Training GANs: Two-player Game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Realworld ——
images

Real
I O ~
ISCcriminacor =" " brd
9 . 7
0
S O Fake
E
_§ O -~ Generator —  Sample v
® 1O
@ 48 —— Backprop error to
9 update discriminator
weights

https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016



Training GANs: Two-player Game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real

Discriminator - ‘ ——>
/ o
Generator ——= Sample

Backprop error to
update generator
weights

@)
SSO]

Latent random variable
OO0

https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016



Training GANs: Two-player Game [ Goodfellow et al., 2014]

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Irain jointly In minimax game
Minimax objective function: Discriminator outputs likelihood in (0,1) of real image

min max | Egnp,,,, 108 Do, (2) + Eznp(z) log(1 — Do, (Go, (2)))

99 9d " —— .
Discriminator output Discriminator output for
for real data x generated fake data G(z)

- Discriminator (84 wants to maximize objective such that D(x) is close to 1 (real) and D(G(2)) is

close to O (fake)
- Generator (6, wants to minimize objective such that D(G(z)) is close to 1 (discriminator is fooled

into thinking generated G(z) is real)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Training GANs: Two-player Game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly In minimax game
Minimax objective function: Discriminator outputs likelihood in (0,1) of real image

min max 4ZSL'NJPazata, log D9d (:I:) T 4:A"a"vp(z) log(]‘ - Ded (GM)_

6, 64 L P
Discriminator output Discriminator output for
for real data x generated fake data G(z)

The Nash equilibrium of this particular game is achieved when:

Pdata() = Dgen(Go, (2)), YV Dy, (x) =0.5, Vx



Training GANs: Two-player Game [ Goodfellow et al., 2014]

Minimax objective function:

min max [ znpaata 108 Doy (2) + Eznp(z) log(1 — Do, (G, (Z)))]
g d

Alternate between:
1. Gradient ascent on discriminator

mMax | Bonpiei, 108 Do, (2) + Eonp(z) l0g(1 — D, (Go, (2)))

2. Gradient descent on generator

H;in L ~op(2) log(1 — Da, (GGQ (2)))

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Training GANs: Two-player Game [ Goodfellow et al., 2014]

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.

for number of training
for k steps do

e Sample minibatch of m noise samples {21, ..., z("™)} from noise prior p,(2).
e Sample minibatch of m examples {x1),... (™} from data generating distribution

iterations do

Discriminator

pdata( )
updates e Update the discriminator by ascending its stochastic gradient:

Vo, L3 [1og D (2) + 108 (1- D (c (=9)))].

1=1
end for
e Sample minibatch of m noise samples {z'*/, ..., 2\" } from noise prior p,
Generator e Update the generator by descending its stochastic gradient:

updates

o, 2tos (120 (6(=))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum 1n our experiments.




Training GANs: Two-player Game [ Goodfellow et al., 2014]

Minimax objective function:

min max [ o~ paata 108 Do, (T) + Earp(z) log(1 — Do, (G, (Z)))]
g d

Alternate between:
1. Gradient ascent on discriminator

T%%X _ U ~paata 108 Do, (T) + Ezp(z) log(1 — De, (Go, (Z)))

2. Gradient descent on generator

r%in *:z,\,p(z) log(1 — D, (GGQ (2)))

In practice, optimizing this generator

objective does not work welll
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Training GANs: Two-player Game [ Goodfellow et al., 2014]

Minimax objective function:

min max [ L rnpaata 108 Do, () + Eznp(z) 10g(1 — Do, (G, (Z)))]
g d

Alternate between:
1. Gradient ascent on discriminator

Gradient signal
dominated by region
where sample Is
already go\od

min K log(l — Dy, (Gg (2 z | | — w00
o, o P?) 8 (Go, (2)) When sample is likely |

I%%X _ U ~paata 108 Doy (2) + Europ(z) log(1 — Dy, (G, (z)))

2. Gradient descent on generator

fake, want to learn

from it to improve //' |
In practice, optimizing this generator generator. But | |
objective does not work well gradient inthis region [\l

S relatively flat!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Training GANs: Two-player Game [ Goodfellow et al., 2014]

Minimax objective function:

min max [ znpaata 108 Doy (2) + Eznp(z) log(1 — Do, (G, (Z)))]
g d

Alternate between:
1. Gradient ascent on discriminator

mMax | Bonpiei, 108 Do, (2) + Eonp(z) l0g(1 — D, (Go, (2)))

2. Instead, gradient ascent on generator, different objective

— log(l1 —D(G(2))) |

II]GZZ,X 4JZNp(Z) log(ng (G99 (Z)))

Instead of minimizing likelihood of discriminator being o
correct, now maximize likelihood of discriminator N j
being wrong. _

D(G(=2))

—  —logD(G(2))

Same objective of fooling discriminator, but now
higher gradient signal for bad samples => works
much better! Standard in practice.
* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Sampling GANs

t

Generator Network

t

Random noise Z

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Year of the GAN

Text -> Image Synthesis

this small bird has a pink this magnificent fellow is

Better training and generation Source->Target domain transfer ueast ARd.eown,and ilack almost il iackwith Azed

primaries and secondaries. crest, and white cheek patch.
! - Output

[nput Input Output

.

Many GAN applications

0 /]

(c) Kitchen. (d) Conference room.

LSGAN. Mao et al. 2017.

1 - winter Yosemite

CycleGAN. Zhu et al. 2017.

Pix2pix. Isola 2017. May emples at
https://phillipi.github.io/pix2pix/

BEGAN. Bertholet et al. 2017.

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Year of the GAN

GAN - Generative Adversarial Networks

3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
acGAN - Face Aging With Conditional Generative Adversarial Networks

AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs

AdaGAN - AdaGAN: Boosting Generative Models

AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets

AffGAN - Amortised MAP Inference for Image Super-resolution

AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts

ALl - Adversarially Learned Inference

AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization

AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs

b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks

Bayesian GAN - Deep and Hierarchical Implicit Models

BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks

BiGAN - Adversarial Feature Learning

BS-GAN - Boundary-Seeking Generative Adversarial Networks

CGAN - Conditional Generative Adversarial Nets

CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters

with Generative Adversarial Networks

CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks

CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks
CoGAN - Coupled Generative Adversarial Networks

Context-RNN-GAN - Contextual RNN-GANs for Abstract Reasoning Diagram Generation
C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training

* CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets

CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training

CycleGAN - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
DTN - Unsupervised Cross-Domain Image Generation

DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
DualGAN - DualGAN: Unsupervised Dual Learning for Image-to-Image Translation

EBGAN - Energy-based Generative Adversarial Network

f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
FF-GAN - Towards Large-Pose Face Frontalization in the Wild

GAWWN - Learning What and Where to Draw

GeneGAN - GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
Geometric GAN - Geometric GAN

GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking

GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending

IAN - Neural Photo Editing with Introspective Adversarial Networks

iGAN - Generative Visual Manipulation on the Natural Image Manifold

IcGAN - Invertible Conditional GANs for image editing

ID-CGAN - Image De-raining Using a Conditional Generative Adversarial Network

Improved GAN - Improved Techniques for Training GANs

InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets

LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
Synthesis

LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Generative Adversarial Nets

Generated Samples




Deep Convolutional GANs (DCGANS) [ Radford et al., 2016

Key ideas:

* Replace FC hidden layers with
Convolutions

* Generator: Fractional-Strided

convolutions
128 Q§§§§§s

e Use Batch Normalization after
each layer

Generator Architecture

512
|

4 8 —_|

100z || ==

ne

I“\
a1% .
\
|

|

o
I
1

oo//

 Inside Generator

 Use RelU for hidden layers
* Use Tanh for the output layer

Stride 2 16

Project and reshape

CONV 1

CONV 2




GANSs with Convolutional Architectures [ Radford et al., 2016 ]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



GANSs with Convolutional Architectures [ Radford et al., 2016 |

Interpolating between points in latent space

HFJ £ el

‘K

, r .
-xulh ) &,ua% cr-
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GANSs: Interpretable Vector Math [ Radford et al., 2016

Smiling woman  Neutral womar  Neutral man

Samples
from the
model

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



GANSs: Interpretable Vector Math [ Radford et al., 2016

Smiling woman  Neutral womar  Neutral man

Samples
from the
model

- Average z
vectors, do - — +
arithmetic ~
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GANSs: Interpretable Vector Math [ Radford et al., 2016
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GANSs: Interpretable Vector Math [ Radford et al., 2016
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GANSs: Interpretable Vector Math [ Radford et al., 2016 ]
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Conditional GAN: Text-to-Image Synthesis

T'his flower has small, round violet This flower has small, round violet
petals with a dark purple center petals with a dark purple center
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Discriminator Network

Figure 2 in the original paper.

Generator Network

Positive Example: Negative Examples:
Real Image, Right Text Real Image, Wrong Text
Fake Image, Right Text

Reed et al., ICML 2016 |



