

THE UNIVERSITY OF BRITISH COLUMBIA

Topics in AI (CPSC 532S): **Multimodal Learning with Vision, Language and Sound**

Lecture 17: Generative Models [part 3], GANs

Logistics

Project Proposals were due Yesterday

Will try to grade and provide feedback over the weekend

This week:

- Start working on projects
- Start thinking about paper presentations

Variational Autoencoders (VAE)

PixelCNNs define tractable density function, optimize likelihood of training data:

 $p(x) = \prod p(x_i | x_1, ..., x_{i-1})$

$$p(x) = \prod_{i=1}^{n} p(x_i | x_1, \dots, x_{i-1})$$

VAEs define intractable density function with latent variables z (that we need to marginalize):

$$p_{\theta}(x) = \int f$$

cannot optimize directly, derive and optimize lower bound of likelihood instead

PixelCNNs define tractable density function, optimize likelihood of training data:

$p_{\theta}(z)p_{\theta}(x|z)dz$

Putting it all together:

maximizing the likelihood lower bound

$$\underbrace{\mathbf{E}_{z}\left[\log p_{\theta}(x^{(i)} \mid z)\right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))}_{\mathcal{L}(x^{(i)}, \theta, \phi)}$$

Lets look at **computing the bound** (forward pass) for a given mini batch of input data

Putting it all together:

maximizing the likelihood lower bound

$$\underbrace{\mathbf{E}_{z}\left[\log p_{\theta}(x^{(i)} \mid z)\right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))}_{\mathcal{L}(x^{(i)}, \theta, \phi)}$$

Putting it all together:

maximizing the likelihood lower bound

$$\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))$$

$$\mathcal{L}(x^{(i)}, \theta, \phi)$$
Make approximate posterior distribution close to prior

Putting it all together:

maximizing the likelihood lower bound

$$\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))$$

$$\mathcal{L}(x^{(i)}, \theta, \phi)$$
Make approximate posterior distribution close to prior

Putting it all together:

maximizing the likelihood lower bound

$$\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))$$

$$\mathcal{L}(x^{(i)}, \theta, \phi)$$
Make approximate posterior distribution close to prior

Putting it all together:

maximizing the likelihood lower bound

Maximize likelihood of original input being reconstructed

$$\mathbf{E}_{z}\left[\log p_{\theta}(x^{(i)} \mid z)\right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))$$

 $\mathcal{L}(x^{(i)}, \theta, \phi)$

Make approximate posterior distribution close to prior

Putting it all together:

maximizing the likelihood lower bound

Maximize likelihood of original input being reconstructed

$$\mathbf{E}_{z}\left[\log p_{\theta}(x^{(i)} \mid z)\right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))$$

 $\mathcal{L}(x^{(i)}, \theta, \phi)$

Make approximate posterior distribution close to prior

For every minibatch of input data: compute this forward pass, and then backprop!

Use decoder network and sample z from **prior**

Sample z from $z \sim \mathcal{N}(0, I)$

Use decoder network and sample z from **prior**

Data manifold for 2-d z

Diagonal prior on z => independent latent variables

Different dimensions of z encode interpretable factors of variation

Data manifold for 2-d z

Vary z_1

(degree of smile)

(head pose)

Diagonal prior on z => independent latent variables

Different dimensions of z encode interpretable factors of variation

Also good feature representation that can be computed using $q_{\phi}(z|x)!$

Data manifold for 2-d z

Vary z_1

(degree of smile)

(head pose)

32x32 CIFAR-10

Labeled Faces in the Wild

Conditional VAEs

Conditional VAE: Diverse Image Colorization

[Deshpande et al., 2017]

Conditional VAE: Temporal Predictions

(a) Frame 1

(b) Frame 2 (ground truth)

[Xue et al., 2016]

(c) Frame 2 (Sample 1)

(d) Frame 2 (Sample 2)

Variational Autoencoder (VAE)

[He et al., 2018]

Variational Autoencoder (VAE) + LSTM

[He et al., 2018]

VAE + LSTM with Structured Latent Space

Results: Chair CAD dataset

(a) Partial control.

[He et al., 2018]

(b) Full control.

Ablation

_

	Bound	Static	-C		+C	
	Dound		-S	+S	-S	
Intra-E ↓	1.98	40.33	17.64	7.79	14.81	
Inter-E ↑	1.39	0.42	0.73	1.35	1.02	
I-Score ↑	4.01	1.28	1.83	3.63	2.56	

Quantitative

		Chair CAD [1, 40]		
	Bound	Deep Rot. [40]	VideoVAE (our	
		\bigcirc		
Intra-E	↓ 1.98	14.68	5.50	
Inter-E	↑ 1.39	1.34	1.37	
I-Score	† 4.01	3.39	3.94	

Results: Weizmann Human Action dataset [He et al., 2018]

generate

Weizmann Human Action [2]

	Bound	MoCoGAN [32]	VideoV	AE (ou
		\bigcirc	\bigcirc	\bigcirc
Intra-E	↓ 0.63	23.58	9.53	9.44
Inter-E	↑ 4.49	2.91	4.37	4.37
I-Score	↑ 89.12	13.87	69.55	70.1 0

Results: MIT Flickr

[He et al., 2018]

	YFCC [31] — MIT Flickr [34]			
	Bound	VGAN [34]	VideoV	AE (ours)
		\bigcirc	0	
Intra-E	↓ 30.34	46.96	44.03	38.20
Inter-E	↑ 0.693	0.692	0.691	0.692
I-Score	↑ 1.87	1.58	1.62	1.81

Variational Autoencoders

Probabilistic spin to traditional autoencoders = allows generating data Defines an intractable density = derive and optimize a (variational) lower bound

Pros:

- Principled approach to generative models
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:

- Maximizes lower bound of likelihood: okay, but not as good evaluation as PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANs)

Active area of research:

- More flexible approximations, e.g. richer approximate posterior instead of diagonal Gaussian
- Incorporating structure in latent variables (our submission to CVPR)

PixelCNNs define tractable density function, optimize likelihood of training data: $p(x) = \prod$ i=1

VAEs define intractable density function with latent variables z (that we need to marginalize):

$$p_{\theta}(x) = \int p_{\theta}(z) p_{\theta}(x|z) dz$$

cannot optimize directly, derive and optimize lower bound of likelihood instead

What if we give up on explicitly modeling density, and just want to sample?

$$\left[p(x_i | x_1, ..., x_{i-1}) \right]$$

PixelCNNs define tractable density function, optimize likelihood of training data: $p(x) = \prod$ i=1

VAEs define intractable density function with latent variables z (that we need to marginalize):

$$p_{\theta}(x) = \int p_{\theta}(z) p_{\theta}(x|z) dz$$

cannot optimize directly, derive and optimize lower bound of likelihood instead

What if we give up on explicitly modeling density, and just want to sample?

GANs: don't work with any explicit density function

$$\left[p(x_i | x_1, ..., x_{i-1}) \right]$$

Generative Adversarial Networks (GANs)

Problem: Want to sample from complex, high-dimensional training distribution. There is no direct way to do this!

[Goodfellow et al., 2014]

Problem: Want to sample from complex, high-dimensional training distribution. There is no direct way to do this!

Solution: Sample from a simple distributions, e.g., random noise. Learn transformation to the training distribution

Goodfellow et al., 2014

Problem: Want to sample from complex, high-dimensional training distribution. There is no direct way to do this!

Solution: Sample from a simple distributions, e.g., random noise. Learn transformation to the training distribution

Question: What can we use to represent complex transformation function?

Goodfellow et al., 2014]

Problem: Want to sample from complex, high-dimensional training distribution. There is no direct way to do this!

Solution: Sample from a simple distributions, e.g., random noise. Learn transformation to the training distribution

Question: What can we use to represent complex transformation function?

Goodfellow et al., 2014]

Output: Sample from training distribution

Input: Random noise

Generator network: try to fool the discriminator by generating real-looking images **Discriminator** network: try to distinguish between real and fake images

[Goodfellow et al., 2014]

Generator network: try to fool the discriminator by generating real-looking images **Discriminator** network: try to distinguish between real and fake images

Goodfellow et al., 2014]

Real Images (from training set)

Generator network: try to fool the discriminator by generating real-looking images **Discriminator** network: try to distinguish between real and fake images

https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

Generator network: try to fool the discriminator by generating real-looking images **Discriminator** network: try to distinguish between real and fake images

https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

Generator network: try to fool the discriminator by generating real-looking images **Discriminator** network: try to distinguish between real and fake images

Train jointly in **minimax** game Discriminator outputs likelihood in (0,1) of real image Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log \underline{D_{\theta_d}(x)} + \mathbb{E}_{z \sim p(z)} \log(1 - \underline{D_{\theta_d}(G_{\theta_g}(z))}) \right]$$

$$\text{Discriminator output} \quad \text{Discriminator output} \quad \text{or real data x} \quad \text{denerated fake data G}$$

- **Discriminator** (θ_d) wants to maximize objective such that D(x) is close to 1 (real) and D(G(z)) is close to 0 (fake)
- into thinking generated G(z) is real)

Goodfellow et al., 2014]

or generated fake data G(z)

- **Generator** (θ_{α}) wants to minimize objective such that D(G(z)) is close to 1 (discriminator is fooled

Generator network: try to fool the discriminator by generating real-looking images **Discriminator** network: try to distinguish between real and fake images

Train jointly in **minimax game** Discriminator outputs likelihood in (0,1) of real image Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log \underline{D_{\theta_d}(x)} + \mathbb{E}_{z \sim p(z)} \log(1 - \underline{D_{\theta_d}(G_{\theta_g}(z))}) \right]$$

Discriminator output Discriminator output for real data of the real

for real data x

The **Nash equilibrium** of this particular game is achieved when:

$$p_{data}(x) = p_{gen}(G_{\theta_g}(z)), \quad \forall x$$

or generated fake data G(z)

$$D_{\theta_d}(x) = 0.5, \quad \forall x$$

Minimax objective function: $\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$

Alternate between:

1. Gradient **ascent** on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_z \right]$$

2. Gradient **descent** on generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

[Goodfellow et al., 2014]

$\sum_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$

)))

experiments.

for number of training iterations do for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$. • Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution
- $p_{\text{data}}(\boldsymbol{x}).$
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Discriminator updates

Generator updates

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our

• Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.

Minimax objective function: $\min_{\theta_{g}} \max_{\theta_{d}} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_{d}}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_{d}}(G_{\theta_{g}}(z))) \right]$

Alternate between:

1. Gradient **ascent** on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_z \right]$$

2. Gradient **descent** on generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

In practice, optimizing this generator objective does not work well!

[Goodfellow et al., 2014]

$\sim_{p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$

)))

Minimax objective function: $\min_{\theta_{q}} \max_{\theta_{d}} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_{d}}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_{d}}(G_{\theta_{g}}(z))) \right]$

Alternate between:

1. Gradient **ascent** on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

2. Gradient **descent** on generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

In practice, optimizing this generator objective does not work well!

Goodfellow et al., 2014]

Gradient signal

)))

where sample is already good $\log(1 - D(G(z)))$ When sample is likely fake, want to learn from it to improve generator. But gradient in this region 0.0 0.2 0.4 0.6 0.8 1.0 is relatively flat! D(G(z))

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

dominated by region

Minimax objective function: $\min_{\theta_{g}} \max_{\theta_{d}} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_{d}}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_{d}}(G_{\theta_{g}}(z))) \right]$

Alternate between:

1. Gradient **ascent** on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z} \right]$$

2. Instead, gradient **ascent** on generator, different objective

$$\max_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(D_{\theta_d}(G_{\theta_g}(z)))$$

Instead of minimizing likelihood of discriminator being correct, now maximize likelihood of discriminator being wrong.

Same objective of fooling discriminator, but now higher gradient signal for bad samples => works much better! Standard in practice.

Goodfellow et al., 2014

 $\sim_{p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$

Sampling GANs

Year of the **GAN**

Better training and generation

(a) Church outdoor.

(b) Dining room.

(d) Conference room.

(c) Kitchen. LSGAN. Mao et al. 2017.

BEGAN. Bertholet et al. 2017.

Source->Target domain transfer

Input

Output

horse \rightarrow zebra

 $zebra \rightarrow horse$

apple \rightarrow orange

CycleGAN. Zhu et al. 2017.

→ summer Yosemite

[→] winter Yosemite

Text -> Image Synthesis

this small bird has a pink breast and crown, and black almost all black with a red primaries and secondaries.

this magnificent fellow is crest, and white cheek patch.

Reed et al. 2017.

Many GAN applications

Pix2pix. Isola 2017. Many examples at https://phillipi.github.io/pix2pix/

Year of the GAN

- GAN Generative Adversarial Networks
- 3D-GAN Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Median
- acGAN Face Aging With Conditional Generative Adversarial Networks
- AC-GAN Conditional Image Synthesis With Auxiliary Classifier GANs
- AdaGAN AdaGAN: Boosting Generative Models
- AEGAN Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets
- AffGAN Amortised MAP Inference for Image Super-resolution
- AL-CGAN Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts
- ALI Adversarially Learned Inference
- AM-GAN Generative Adversarial Nets with Labeled Data by Activation Maximization
- AnoGAN Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker
- ArtGAN ArtGAN: Artwork Synthesis with Conditional Categorial GANs
- b-GAN b-GAN: Unified Framework of Generative Adversarial Networks
- Bayesian GAN Deep and Hierarchical Implicit Models
- BEGAN BEGAN: Boundary Equilibrium Generative Adversarial Networks
- BiGAN Adversarial Feature Learning
- BS-GAN Boundary-Seeking Generative Adversarial Networks
- CGAN Conditional Generative Adversarial Nets
- CaloGAN CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calo with Generative Adversarial Networks
- CCGAN Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
- CatGAN Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks
- CoGAN Coupled Generative Adversarial Networks

odeling	 Context-RNN-GAN - Contextual RNN-GANs for Abstract Reasoning Diagram Generation
	 C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training
	CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets
	CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
	 CycleGAN - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
	DTN - Unsupervised Cross-Domain Image Generation
	DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
	 DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
	 DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
	 DualGAN - DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
	EBGAN - Energy-based Generative Adversarial Network
	 f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
Discovery	 FF-GAN - Towards Large-Pose Face Frontalization in the Wild
	GAWWN - Learning What and Where to Draw
	 GeneGAN - GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
	Geometric GAN - Geometric GAN
	 GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking
	GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending
	 IAN - Neural Photo Editing with Introspective Adversarial Networks
	 iGAN - Generative Visual Manipulation on the Natural Image Manifold
	 IcGAN - Invertible Conditional GANs for image editing
	 ID-CGAN - Image De-raining Using a Conditional Generative Adversarial Network
alorimeters	 Improved GAN - Improved Techniques for Training GANs
	InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversaria
to a star	LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
WORKS	Synthesis

LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

I Nets

Generated Samples

Deep Convolutional GANs (DCGANs)

Generator Architecture

Radford et al., 2016]

Key ideas:

- Replace FC hidden layers with Convolutions
 - Generator: Fractional-Strided convolutions
- Use Batch Normalization after each layer

Inside Generator

- Use ReLU for hidden layers
- Use Tanh for the output layer

GANs with Convolutional Architectures

[Radford et al., 2016]

GANs with Convolutional Architectures

Interpolating between points in latent space

[Radford et al., 2016]

Smiling woman

Samples from the model

Neutral womai Neutral man

Radford et al., 2016]

Neutral womai

Average z vectors, do arithmetic

Radford et al., 2016]

Neutral man

Neutral man Neutral womai

Average z vectors, do arithmetic

Radford et al., 2016]

Smiling man

Samples from the model

[Radford et al., 2016]

Glasses Man No Glasses Man No Glasses Woman

Glasses Man

Samples from the model

Radford et al., 2016]

No Glasses Man No Glasses Woman

Glasses Man

Samples from the model

[Radford et al., 2016]

No Glasses Man No Glasses Woman

Radford et al, **ICLR 2016**

Conditional GAN: Text-to-Image Synthesis

Positive Example: Real Image, Right Text

Figure 2 in the original paper.

Negative Examples: Real Image, Wrong Text Fake Image, Right Text

[Reed et al., ICML 2016]

