THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 16: Generative Models [part 2]



Logistics

Project Proposals due Monday 11:59pm
— They are graded for completeness / development of the proposal

— [hey are not graded for quality of the Idea

| will provide feedback on the proposals, but don’t wait for it to work on the
orojects

| will hold additional office hours for feedback on Friday ... tentatively
4:30-5:30pm



PixelRNN and PixelCNN



PixelRN N [ van der Oord et al., 2016 ]

Explicit Density model

Use chain rule to decompose likelihood of an image x into product of (many)
1-d distributions

Likelihood of Probability of i'th pixel value
mage x given all previous pixels

then maximize likelihood of training data

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelRN N [ van der Oord et al., 2016 ]

Explicit Density model

Use chain rule to decompose likelihood of an image x into product of (many)
1-d distributions

b=
Likelihood of Probability of i'th pixel value
mage x given all previous pixels

Complex distribution over pixel values,

so lets model using neural network

then maximize likelihood of training data

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Optional subtitle



PixelRNN [ van der Oord et al., 2016 ]

Explicit Density model

Use chain rule to decompose likelihood of an image x into product of (many)
1-d distributions

T

p(z) = | | pl@ile, .. ziz1)
T =1

Likelihood of Probability of i'th pixel value
mage x given all previous pixels

Complex distribution over pixel values,

L T . so lets model using neural network
then maximize likelihood of training data .

Also requires defining ordering of
“previous pixels”

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelRN N [ van der Oord et al., 2016 ]

Generate image pixels starting
from the corner

Dependency on previous pixels
model using an RNN (LSTM)

o O O O @
o O O O O
o O O 0O O
o O O O O
o O O O O

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford
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model using an RNN (LSTM) o O O O O
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PixelRN N [ van der Oord et al., 2016 ]

Generate image pixels starting
from the corner

Dependency on previous pixels
model using an RNN (LSTM)

o O

o O O

o O O O
o O O O O
o O O O O

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Pixel=RNN

£z n2

A
[ van der Oord et al., 2016 |

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelRN N [ van der Oord et al., 2016 ]

Generate image pixels starting
from the corner

Dependency on previous pixels
model using an RNN (LSTM)

O @

o O

o O O

o O 0O O
o O O O O

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelRN N [ van der Oord et al., 2016 ]

Generate image pixels starting
from the corner

model using an RNN (LSTM)

o O O O O

Dependency on previous pixels g
O

o O O
o O O O

O
O
Problem: sequential generation is slow

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelCN N [ van der Oord et al., 2016 ]

Still generate image pixels
starting from the corner

e

0 T 255

Dependency on previous pixels
now modeled using a CNN over

context region /

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelCN N [ van der Oord et al., 2016 ]

Still generate image pixels

starting from the corner
Softmax |loss at each pixel

e

0 ? 255

Dependency on previous pixels
now modeled using a CNN over

context region /

/
/
/

Training: maximize likelihood of
training images

Hp (xi|T1,y ..y Ti—1)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelCN N [ van der Oord et al., 2016 ]

Still generate image pixels
starting from the corner

Dependency on previous pixels
now modeled using a CNN over

context region / / / /

Training: maximize likelihood of
training images

H (3|21, ey Ti1) Generation is still slow (sequential),

but learning is faster

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Generated Samp‘es [ van der Oord et al., 2016 ]
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* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelRNN and Pixel CNN

Pros: Improving PixelCNN performance
— Can explicitly compute likelihood p(x) — Gated convolutional layers
— Explicit likelihood of training data gives good — Short-cut connections
evaluation metric — Discretized logistic loss
— Good samples — Multi-scale
— Training tricks
— Etc...
Con:

— Sequential generation => slow

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Multi-scale PixelRNN [ van der Oord et al., 2016 |

Take sub-sampled pixels as
additional input pixels

Can capture better global
iInformation (more visually
coherent)

H H B

* slide from Hsiao-Ching Chang, Ameya Patil, Anand Bhattad



Multi-scale PixelRNN [ van der Oord et al., 2016 |

* slide from Hsiao-Ching Chang, Ameya Patil, Anand Bhattad



Conditional Image Generation [ van der Oord et al., 2016

Similar to PixelRNN/CNN but conditioned on a high-level image description
vector h

p(x) = p(T1, 22, ..., Tp2)

!

p(x/h) = p(x1, 29, ..., z,2|h)

* slide from Hsiao-Ching Chang, Ameya Patil, Anand Bhattad



Conditional Image Generation [ van der Oord et al., 2016

Sandbar

* slide from Hsiao-Ching Chang, Ameya Patil, Anand Bhattad



Attention RNN: Structured
Spatial Attention Mechanism

Siddhesh Khandelwal eonid Sigal

UBC

4
q




Motivation

Attention is widely used in vision: helps identity relevant regions of the image

Image Encoder

—
r1 0O coe coo
17

CNN

tion En r
Questio code Answer Decoder

s i s
v v oy

[t IS red

LSTM LSTM

LSTM g LSTM g LSTM L gLSTM g
Q: What color is a hydrant? 4 4 4 4 4 4

What color IS a hydrant

A: It Is red



AttentionRNN: Structured Spatial Attention

O O O:0 O
O O O O O
Novel autoregressive attention mechanism ;
that can encode structural dependencies O 0O O O O
among attention values Q- O O
— Inspired by diagonal Bi-LSTM architecture from PixelRNN OO OO
— Spatial attention values are generated sequentially O O O ® O

— Image Is traversed diagonally from top-left to bottom-right



AttentionRNN: Structured Spatial Attention

Each attention value depends on N W

— Local image context () = ) )
imag X TSSO A

— Previously generated attention values A = 5 : 5;0 OO O

Novel autoregressive attention mechanism ;

that can encode structural dependencies O 0O O O O

among attention values O 00 O O

— Inspired by diagonal Bi-LSTM architecture from PixelRNN A O 0 0« A O

— Spatial attention values are generated sequentially O O ® O O

— Image Is traversed diagonally from top-left to bottom-right



AttentionRNN: Structured Spatial Attention

Fach attention value depends on

— Local image context

— Previously generated attention values

[ k x k }
convolution

Image



AttentionRNN: Structured Spatial Attention

Fach attention value depends on

— Local image context

— Previously generated attention values

[ k x k }
convolution Y,

%

Image Attention Mask



AttentionRNN: Structured Spatial Attention

Fach attention value depends on

— Local image context

— Previously generated attention values

[ k x k }
convolution o

7

Image Attention Mask



AttentionRNN: Structured Spatial Attention

Fach attention value depends on

— Local image context

— Previously generated attention values

[ k x k }
convolution %

4

Image Attention Mask



AttentionRNN: Structured Spatial Attention

Fach attention value depends on

— Local image context

— Previously generated attention values

[ k x k }
convolution

Image Attention Mask



AttentionRNN: Structured Spatial Attention

Fach attention value depends on

— Local image context

— Previously generated attention values

k x k } LSTM with
convolution 2x1 kernel
O\
L
-

Image Attention Mask



AttentionRNN: Structured Spatial Attention

Fach attention value depends on

— Local image context

— Previously generated attention values

k x k } LSTM with
convolution 2x1 kernel
O\
L
......... : a2

Image Attention Mask



Experiments: Visual Digit Prediction

Task: Given an image, predict a digit number specified by a query color

Inputs
and
Outputs

Attention 1

Attention 2

Attention 3

Attention 4

CTX

Query: Yellko'\:r
CNN+CTX: 0

CNN+ARNN: 9||&

SAN

- CTX

CTX

ARNN

Correctness

0.1258

0.2017

0.2835

0.3729




Variational Autoencoders
(VAE)



So far ...

Pixel CNNs define tractable density function, optimize likelihood of training data:

n

p(z) = Hp(a:z-\asl, ooy Ti—1)

=1

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



So far ...

Pixel CNNs define tractable density function, optimize likelihood of training data:

n

p(z) = Hp(a:i\a:l, ooy Ti—1)

1=1

VAES define intractable density function with latent variables z (that we need to
marginalize):

po(z) = [ po(2Ipa(alz)dz

cannot optimize directly, derive and optimize lower bound of likelihood instead

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Autoencoders Reminder ...

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Originally: Linear + nonlinearity (sigmoid)
Later: Deep, fully-connecteo
Later: ReLU CNN

Features <

da_ta

[ Encoder E
RN
Input data b SQN
a7l < [0S

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Autoencoders Reminder ...

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Z gsually smgller than v Originally: Linear + nonlinearity (sigmoid)
(dimensionality reduction) Later: Deep, fully-connected
V\ Later: ReLU CNN
Features A

data

[ Encoder a
Input data b sﬂn
a7l < NI

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Autoencoders Reminder ...

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Z gsually smgller than v Originally: Linear + nonlinearity (sigmoid)
(dimensionality reduction) Later: Deep, fully-connected

¥ Later: ReLU CNN
Want features that capture
meaningful factors of variation

Features A

Inputldata
[ Encoder uiﬁ > .u
A WY
Input data T n sﬂw
el R |

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Autoencoders Reminder ...

Train such that features can reconstruct original data best they can

I:;AH@
e VLRGBS
s < B

Reconstructed A
input data £z
T Decoder
Features <
t data
Encoder o g T
b

Input data

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Autoencoders Reminder ...

Train such that features can reconstruct original data Reconstructed data

best they can E=§‘==
Reconstructed n.sg

i P sl < WS
Decoder 'f
Encoder: 4-layer conv

Decoder: 4- Iayer upconv

Features <
data

Encoder o g T

X

I-Kllﬁ
e MRS
s < B

Input data

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Autoencoders Reminder ...

| 2 |oss function: Reconstructed data

e . I
ENiLal0E
o [ RE el

|z — 2|

—

I-KAIE
e MRS
s < B

Input data

Reconstructed A :
L il < W6
Decoder — 'f
—ncoder: 4-layer conv
Decoder: 4- Iayer upconv
Features <
data
Encoder E
L

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Autoencoders Reminder ...

2 Loss function: Reconstructed data

) i
lo 1 e =T
o e

i~ R el
-H; My

—

Reconstructed
input data

Decoder Encoder: 4-layer conv
Decoder: 4- Iayer upconv
data
Encoder E ..

T
Features <
XL

.@

I
IIQSQE
s < B

Input data

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Autoencoders Reminder ...

Loss function
(e.g., softmax)

/ \

£ Fine-tune Train for final task
encoder (sometimes with small data)
Classifier ointly with
classifier
Features z
oird plane
Encoder . .
Input data T i lﬂ'

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoders [ Kingma and Welling, 2014 |

Probabillistic spin on autoencoder - will let us sample from the model to generate

Assume training data is generated from underlying unobserved (latent)
representation z

Sample from
true conditional £z

po~(z | 2V)

Sample from
true prior yA

po~(2)

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoders [ Kingma and Welling, 2014 |

Probabillistic spin on autoencoder - will let us sample from the model to generate

Assume training data is generated from underlying unobserved (latent)
representation z

Sample from
true conditional £z

| Intuition: x iIs an image, z is latent
po- (z | 2V) factors used to generate x (e.q.,
attributes, orientation, etc.)

Sample from
true prior yA

po~(2)

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoders [ Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

Sample from
true conditional 4

po~(z | 2V)

Sample from
true prior yA

po~(2)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoders [ Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

How do we represent this model?

Sample from
true conditional 4

po~(z | 2V)

Sample from
true prior yA

po~(2)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoders [ Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

How do we represent this model?

Sample from Choose prior p(z) to be simple, e.g., Gaussian
true conditional L , .
Reasonable for latent attributes, e.g., pose, amount of smile

po~(z | 2V)

Sample from
true prior yA

po~(2)

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoders [ Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

How do we represent this model?

Sample from Choose prior p(z) to be simple, e.g., Gaussian
true conditional L , .
Reasonable for latent attributes, e.g., pose, amount of smile

po~(z | 2V)

Decoder

network  Conditional p(x|z) is complex (generates image)

Sample from Represent with Neural Network
true prior yA

po~(2)

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoders

| Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

Sample from
true conditional

po~(z | 2V)

Sample from
true prior

po~(2)

XL

Decoder
Network

<

How do we train this model?

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoders

| Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

Sample from
true conditional

po~(z | 2V)

Sample from
true prior

po~(2)

XL

Decoder
Network

<

How do we train this model?

Remember the strategy from earlier — learn
Model parameters to maximize likelihood of

training data
po(a) = [ po(2)pa(alz)dz

(now with latent z that we need to marginalize)

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoders [ Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

How do we train this model?

Sample from Remember the strategy from earlier — learn
rue conditional L model parameters to maximize likelihood of
po~(z | V) oo training data
e po(z) = [ pol()po(al2)d:
Sample from
true prior yA (now with latent z that we need to marginalize)
Po-(2) What is the problem with this?

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoders [ Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

How do we train this model?

Sample from Remember the strategy from earlier — learn
true conditional b L .
Model parameters to maximize likelihood of
po-(z | 2() Secoder | training data
Network po(z) = [ po(2)pe(z|z)dz
Sample from
true prior yA (now with latent z that we need to marginalize)

po-(2) —inwractable!

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford




Intractability in Variational Autoencoder [ Kingma and Welling, 2014

Data likelihood:  po(z) = /pg(z)pg(:c\z)dz

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Intractability in Variational Autoencoder [ Kingma and Welling, 2014

Data likelihood:  po(z) = /pg(z)pg(a:\z)dz

@

Simple Gaussian Prior

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Intractability in Variational Autoencoder [ Kingma and Welling, 2014

Decoder Neural Network

@
Data likelihood: pe(z) = /pg(z)pg(a:\z)dz

»

Simple Gaussian Prior

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Intractability in Variational Autoencoder [ Kingma and Welling, 2014

Intractable to compute for every z

Decoder Neural Network

@
Data likelihood:  pe(z) =| [| pe(2)pe(z|2)dz

@

Simple Gaussian Prior

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Intractability in Variational Autoencoder [ Kingma and Welling, 2014

Intractable to compute for every z

Decoder Neural Network

@
Data likelihood:  pe(z) =| [| pe(2)pe(z|2)dz

»

Simple Gaussian Prior

Posterior density Is also intractable: po(2z|z) = po(|2)pe(2)/P0(T)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Intractability in Variational Autoencoder [ Kingma and Welling, 2014

Intractable to compute for every z

Decoder Neural Network

@
Data likelihood:  pe(z) =| [| pe(2)pe(z|2)dz

»

Simple Gaussian Prior

Posterior density Is also intractable: po(z|z) = po(z|2)pe(2) Ipe(T)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Intractability in Variational Autoencoder [ Kingma and Welling, 2014

Intractable to compute for every z

Decoder Neural Network

@
Data likelihood:  pe(z) =| || pe(2)pe(xz|2)dz

@

Simple Gaussian Prior

Posterior density is also intractable: po(z|z) = po(z|2)pe(2) Ipe(T)

Solution: In addition to decoder network modeling pg(x|z), define additional
encoder network gg(zlx) that approximates pg(z|x)

— Wil see that this allows us to derive a lower bound on the data likelihood that is tractable, which we can optimize

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder

A
| Kingma and Welling, 2014 |

Since we are modeling probabillistic generation of data, encoder and decoder
networks are probabillistic (they model distributions)

Mean and (diagonal) covariance of z | x

N\

Hz|z

Encoder Network

4¢(2|z)

(parameters ¢)

z|a:

Mean and (diagonal) covariance of x | z

\

\

M|z

:z:lz

Decoder Network

po(|2)

(parameters )

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder

A
| Kingma and Welling, 2014 |

Since we are modeling probabillistic generation of data, encoder and decoder
networks are probabillistic (they model distributions)

Why*? Mean and (diagonal) covariance of z | x

N\

Hz|z

Encoder Network

4¢(2|z)

(parameters ¢)

z|a:

Mean and (diagonal) covariance of x | z

\

\

M|z

:z:lz

Decoder Network

po(|2)

(parameters )

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder

| Kingma and Welling, 2014 |

Since we are modeling probabillistic generation of data, encoder and decoder
networks are probabillistic (they model distributions)

Sample z from: z|z ~ N (fy)z, X2|z)

/" N\

Hz|z

z|:1:

Encoder Network

4¢(2|z)

(parameters ¢)

Sample x | z from: z|z ~ N (|2, Xz|2)

/N

M|z

Decoder Network

po(|2)

(parameters )

a:lz

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder [ Kingma and Welling, 2014 |

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pp (V) = E. q,(z]z) —logpg(:c(i))— (po (") Does not depend on 2)

——

Taking expectation with respect to z
(using encoder network) will come In
handy later

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder [ Kingma and Welling, 2014 |

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pp (V) = E. q,(zlz) -lng9($(i))- (po(2'?) Does not depend on z)

po(2® | 2)po(z)’
po(z | 2)

(Bayes’ Rule)

= E. |log

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder

Derivation of lower bound of the data likelihood

A
| Kingma and Welling, 2014 |

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pg(z\”) = E

z~qe (2]z(9) log po (x(i))

log

log

po(2® | 2)po(z)’

(po(2'?) Does not depend on z)

. Baves’

po(z |2y | (B
po(z\V) | 2)pe(2) qp(z | )
po(z | W) gp(z | z®)_

Rule)

(Multiply by constant)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder [ Kingma and Welling, 2014 |

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pp (V) = E. g, (a0 -logpg(:c(i))- (po(2'?) Does not depend on z)
po (2 | 2)pe(2)

po(z |zD)
po (2" | 2)po(2) gp(z | 2)

(Bayes’ Rule)

= E. |log

= E. |lo . . Multiply by constant
BT P [20)  gp(z o] Y DY constant)
| — ! (1)) - (1))

= E. |logpy(z'V | 2)| — E, |log 4(z]2") + E. |log 4(7 | @ . ) (Logarithms)
- : _ po(z) - pe(z | 2®)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder

Derivation of lower bound of the data likelihood

| Kingma and Welling, 2014 |

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pg(z\”) = E

= E. |log

= E, |log

= H, -lngg(CL'(i) | 2)

— E, —logpg(az(i) | z)

sy (220 108 Po(z)

po(z® | 2)pa(z)
po(z | 20)

pe(z® | 2)pa(2) ap(2

(po (") Does not depend on 2)

(Bayes’ Rule)

x(i))‘

po(z | xV)  qg(z

—E,

log

()

gy (2 | V)

+ B
po(2)

—

log q¢(z

(Multiply by constant)

MOMN

Pe(z

2(@)

(Logarithms)

— Drr(gs(z | 27) || po(2)) + Drr(gs(2 | ) || po(z | )

——

Expectation with respect to z
(using encoder network) leads to nice KL terms

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



A
| Kingma and Welling, 2014 |

Variational Autoencoder

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pe (') = E (po(2'?) Does not depend on z)

z~qe (2]z(9) log po (x(i))

po(2® | 2)po(z)’

log (Bayes’ Rule)

po(z | (V)

2s(29 | 2)pp(2) ao (2

x(i))‘

. 1o .
O T ez | 2®)

. |log po(z® | 2)

. -logpe(l‘(i) | Z)-

Decoder network gives pg(x|z), can

compute estimate of this term through
sampling. (Sampling differentiable through
reparam. trick, see paper.)

qe (2

— E, |log

x(i))_
gs(z | D)

po(2)

+ E,

This KL term (between Gaussians
for encoder and z prior) has nice
closed-form solution!

log

e (2

(Multiply by constant)

MOMN

Pe(z

2(@)

(Logarithms)

— Drr(gs(z | 27) || po(2)) + Drr(gs(2 | ) || po(z | )

Pp(z|x) intractable (saw earlier), can't

compute this KL term :(

But we know KL divergence always >= 0.
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Variational Autoencoder

Derivation of lower bound of the data likelihood

| Kingma and Welling, 2014 |

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pg(z\”) = E

= E. |log

= E, |log

sy (220 108 Po(z)

po(2z® | 2)po(z)’
po(z | 2)

pa(2 | 2)ps(2) ap(2

(pe (")) Does not depend on 2)

(Bayes’ Rule)

x(i))‘

po(z | xV)  qg(z

= E, -lngg(ZL'(i) | z) —E,

=E, :1ng0(33(i) | Z)-

log

()

gy (2 | V)

(Multiply by constant)

+ E,

po(z)

—_— e —
L(z™,0,9)

Tractable lower bound which we can take gradient of
and optimize! (pB(x|z) differentiable, KL term differentiable)

log

qp(2

MOMN

pe(z

2(@)

(Logarithms)

— Drr(gs(z | 27) || po(2)) + Drr(gs(2 | ) || po(z | )
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Variational Autoencoder [ Kingma and Welling, 2014 |

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pg(z\”) = E

2mogy (2]2 ) —logpg(:c(i))— (po (") Does not depend on 2)

po(2z® | 2)po(z)’
po(z | 2®)
po(z'V | 2)pe(2) qp(z | V)

(Bayes’ Rule)

= E. |log

= E. |lo . . Multiply by constant
T T ez [ 2) gz 2@ ( )
- | - i (4)) i (4))

—E. lngg(ZL'(z) 1 2)| — E, |log 4p(2 | 27 + E. |log 4p(2 | @ . ) (Logarithms)
: : _ po(z) T pe(z | 2W)

=E, |logpe(z™) | 2)| — Drr(gs(2 | 29) || po(2)) + Drcr(gs(z | 27) || po(z | 2)))
D ———————

(2)
| | L i) Training: Maximize lower bound
log po(zV)) > L(x'", 6, ¢) N
Variational lower bound (“ELBO”) 0", 9" = arg r%’%x L(z*,0,0)
=1
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Variational Autoencoder [ Kingma and Welling, 2014 |

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pg(z\”) = E

2mogy (2]2 ) —logpg(a:(i))— (pg(:c(i)) Does not depend on 2)

po (x| 2)pg(z)
po(z | xz))
po (x| 2)pe(2) qp(z | V)
po(z | )  qu(z|2®)

(Bayes’ Rule)

= E. |log

(Multiply by constant)

= E, |log

Reconstruct Make approximate posterior
Input Data close to the prior

= E. [logpa(2? | 2)] — Dir(aaz | #?) | pa(2)) + Drcr(as(z | =) || po(z | =)
e —

(%)
| | L i) Training: Maximize lower bound
log po(zV)) > L(x'", 6, ¢) N
Variational lower bound (“ELBO”) 0", 9" = arg e L(z*,0,0)
=1

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

B, |logpo(2" | 2)| — Dicsas(= | 2) || pa(2))
g —
£(2,6,0)

Lets look at computing the bound (forward pass)
for a given mini batch of input data

Input Data €T

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

B, |logpo(2" | 2)| — Dicsas(= | 2) || pa(2))
g —
£(2,6,0)

M2\ 2.
Encoder network | z|z
qe(2|T) \/
Input Data €T
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Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

B, |logpo(2" | 2)| — Dicsas(= | 2) || pa(2))
g —
£(2,0,0)

Make approximate

posterior distribution

close to prior / \

/“LZ‘SU zzlm

Encoder network

qs(2|z)
Input Data L
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Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

B, |logpo(2" | 2)| — Dicsas(= | 2) || pa(2))
g —
£(2,0,0)

Z
Sample z from z|x ~ N(/Lz|a;, 2z|a:)

Make approximate

posterior distribution

close to prior / \

M| 2.
Encoder network | z|
qe(2|T) \/
Input Data L
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Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

x|z

E. [logpo(+) | 2)| ~ Dicrlas(z | 2)[| po(2)) Ha|z 2
. ————— Decoder network
L(z,0,¢) Do (:z:|z) \/
<

Make approximate

Sample z from z|x ~ N(uz|m Zz|:c)

posterior distribution

close to prior / \

M| 2.
Encoder network | z|z
qe(2|T) \/
Input Data L

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder: Learning

Putting it all together:

maximizing the likelihood lower Maximize likelinood of T
5OUNG original input being
reconstructed Sample x|z from x|z ~ N (ux| s Zx| )
B. [logpo(a) | 9)] ~ Dic(as(=] ) 1o(2) Halz Y|z
_ Decoder network
L(z,0, )
po(z|2)
yA

Make approximate Sample z from z\a: ~ N(/Lz|a;, Zzl:c)

posterior distribution

close to prior / \

M| 2.
Encoder network | z|
qe(2|T) \/
Input Data L
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Variational Autoencoder: Learning

Putting it all together:

maximizing the likelihood lower Maximize likelinood of T
5OUNG original input being
reconstructed Sample x|z from x|z ~ N (ux| s Zx| )
B. [logpo(a) | 9)] ~ Dic(as(=] ) 1o(2) Halz Y|z
_ Decoder network
L(z,0, )
po(z|2)
yA

Make approximate Sample z from z\a: ~ N(/Lz|a;, Zzl:c)

posterior distribution

close to prior / \

M| 2.
Encoder network | z|
qe(2|T) \/
Input Data L

For every minibatch of input data: compute this forward pass, and then backprop!
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Variational Autoencoder: Learning

B [logpo(2” | 2)| — Dicr(as(= | 2”)| po(2))

L(z,0,¢)

what can happen without regularisation x V what we want to obtain with regularisation

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f/3



Variational Autoencoder: Generating Data

Use decoder network and sample z from prior

Sample x|z from x|z ~ N(ux|z, z:,;|z)

A

L

/

M|z

Decoder network

po(z|2)

™~

z:z:]z

~_

VA

Sample z from z ~ N (0, I)
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Variational Autoencoder: Generating Data

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f/3



Data

[gle

Use decoder network and sample z from prior

Generat

Variational Autoencoder

Data manifold for 2-d z

DAY SNANNANAAANNNNNSNNNNNS
QAN iy e LLLLLWNYNNNN~
QUAVAININ L LLLVYYY NN~
QAUAVVDINnin g o o B YVVOVWY W -~~~
QOAVOVUHIHINLN LY 0 W VYOV Y W - - —
QAODHINININMHMEBPBDIIVIY W@ - - —
QOAQOOMHIMMMMNNMBDIOID D W - - —
QOO MHMNMMMON M W®D DD D @ e —
OO0DOMMMM M N0 WD DD D e —
QAN PP 00000000 n o o~ D~~~
RS N N Fa N Nl ol Ll Rl ol o e
S LR LG EGEGE ok kR SR Sl
il dogororrororraTT NN
Sdadadadadogororrorr T IIINNN
SddaddgororrrrrdFTITITRIXINN
A dTTTTTrrrrrrFrr2T22NN
% I g gl e i <l el ool ol ol ol ol O S N NN NN

TN

M|z

T
Sample x|z from x|z ~ N (g, 2

Decoder network
pe(z|2)

xh)
Vary z;

Z.'Jz:\,z

Sample z from z ~ N (0, I)

Vary zo
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Variational Autoencoder: Generating Data

Data manifold for 2-d z

Diagonal prior on z => ;_:!:!_‘_:; A agh A
‘mmwxnw77
;';3, t"qq-;s .'

asx rbesfesfofesfe

-

iIndependent latent variables

Different dimensions of z encode

iNnterpretable factors of variation
Vary z;

(degree of smile)

AAAAERAS
S
SRR
BEEEEBBBBE

EEEEEEEE S S

D
Vary Zo

(head pose)
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Variational Autoencoder: Generating Data

Data manifold for 2-d z

Diagonal prior on z => ;_:!:!_‘_:; A agh A
i S S
PPy 4
;;:;w v v“v*‘:;v R

asx feoferfesfeofesfs
%

iIndependent latent variables

Different dimensions of z encode

iNnterpretable factors of variation
Vary z;

AAAAAAAAS
BEEELLLLE

353
SEEEEEEEREE
e EEE

D
Vary Zo

(degree of smile)

Also good feature representation that can
be computed using ge(z|x)!

(head pose)
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Variational Autoencoder: Generating Data

L abeled Faces in the Wild
32x32 CIFAR-10
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