

THE UNIVERSITY OF BRITISH COLUMBIA

Topics in AI (CPSC 532S): **Multimodal Learning with Vision, Language and Sound**

Lecture 16: Generative Models [part 2]

Logistics

Project Proposals due Monday 11:59pm - They are graded for completeness / development of the proposal - They are **not** graded for quality of the idea

projects

I will hold additional office hours for feedback on Friday ... tentatively 4:30-5:30pm

I will provide feedback on the proposals, but don't wait for it to work on the

PixelRNN and PixelCNN

PixeIRNN

Explicit Density model

Use chain rule to decompose likelihood of an image x into product of (many) 1-d distributions

then maximize likelihood of training data

[van der Oord et al., 2016]

$$p(x_i | x_1, ..., x_{i-1})$$

$$f$$
Probability of i'th pixel value given all previous pixels

PixeIRNN

Explicit Density model

Use chain rule to decompose likelihood of an image x into product of (many) 1-d distributions

then maximize likelihood of training data

[van der Oord et al., 2016]

$$p(x_i|x_1,...,x_{i-1})$$

Probability of i'th pixel value given all previous pixels

> Complex distribution over pixel values, so lets model using neural network

Optional subtitle

PixeIRNN

Explicit Density model

Use chain rule to decompose likelihood of an image x into product of (many) 1-d distributions

then maximize likelihood of training data

[van der Oord et al., 2016]

$$p(x_i|x_1,...,x_{i-1})$$

Probability of i'th pixel value given all previous pixels

Complex distribution over pixel values, so lets model using neural network

Also requires defining ordering of "previous pixels"

Generate image pixels starting from the corner

Dependency on previous pixels model using an RNN (LSTM)

[van der Oord et al., 2016]

PixeIRNN

Generate image pixels starting from the corner

Dependency on previous pixels model using an RNN (LSTM)

[van der Oord et al., 2016]

Generate image pixels starting from the corner

Dependency on previous pixels model using an RNN (LSTM)

[van der Oord et al., 2016]

[van der Oord et al., 2016]

Generate image pixels starting from the corner

Dependency on previous pixels model using an RNN (LSTM)

[van der Oord et al., 2016]

PixeIRNN

Generate image pixels starting from the corner

Dependency on previous pixels model using an RNN (LSTM)

Problem: sequential generation is slow

[van der Oord et al., 2016]

PixelCNN

Still generate image pixels starting from the corner

Dependency on previous pixels now modeled using a CNN over context region

[van der Oord et al., 2016]

PixelCNN

Still generate image pixels starting from the corner

Dependency on previous pixels now modeled using a CNN over context region

Training: maximize likelihood of training images

$$p(x) = \prod_{i=1}^{n} p(x_i | x_1, \dots, x_{i-1})$$

[van der Oord et al., 2016]

Softmax loss at each pixel

PixeICNN

Still generate image pixels starting from the corner

Dependency on previous pixels now modeled using a CNN over context region

Training: maximize likelihood of training images

$$p(x) = \prod_{i=1}^{n} p(x_i | x_1, \dots, x_{i-1})$$

[van der Oord et al., 2016]

Generation is still slow (sequential), but learning is faster

Generated Samples

32x32 CIFAR-10

[van der Oord et al., 2016]

32x32 ImageNet

PixelRNN and PixelCNN

Pros:

- Can explicitly compute likelihood p(x)
- Explicit likelihood of training data gives good evaluation metric
- Good samples

Con:

— Sequential generation => slow

Improving PixelCNN performance

- Gated convolutional layers
- Short-cut connections
- Discretized logistic loss
- Multi-scale
- Training tricks
- Etc...

Multi-scale PixelRNN

Take sub-sampled pixels as additional input pixels

Can capture better global information (more visually coherent)

[van der Oord et al., 2016]

Multi-scale PixelRNN

[van der Oord et al., 2016]

Conditional Image Generation

vector **h**

 $p(\mathbf{x}) = p(x_1, x_2, \dots, x_{n^2})$ $p(\mathbf{x}|\mathbf{h}) = p(x_1, x_2, ..., x_{n^2}|\mathbf{h})$ [van der Oord et al., 2016]

Similar to PixelRNN/CNN but conditioned on a high-level image description

Conditional Image Generation

African elephant

[van der Oord et al., 2016]

Sandbar

Attention RNN: Structured Spatial Attention Mechanism

Siddhesh Khandelwal

val Leonid Sigal

Motivation

Attention is widely used in vision: helps identify relevant regions of the image

Q: What color is a hydrant?

A: It is red

Novel autoregressive attention mechanism that can encode structural dependencies among attention values

- Inspired by diagonal Bi-LSTM architecture from PixelRNN
- Spatial attention values are generated sequentially
- Image is traversed diagonally from top-left to bottom-right

Each attention value depends on

- Local image context
- Previously generated attention values

Novel autoregressive attention mechanism that can encode structural dependencies among attention values

- Inspired by diagonal Bi-LSTM architecture from PixelRNN
- Spatial attention values are generated sequentially
- Image is traversed diagonally from top-left to bottom-right

Each attention value depends on

– Local image context

Previously generated attention values

Each attention value depends on

- Local image context
- Previously generated attention values

Attention Mask

Each attention value depends on

- Local image context
- Previously generated attention values

Attention Mask

Each attention value depends on

- Local image context
- Previously generated attention values

Attention Mask

Each attention value depends on

- Local image context
- Previously generated attention values

Attention Mask

Each attention value depends on

- Local image context
- Previously generated attention values

Attention Mask

Each attention value depends on

- Local image context
- Previously generated attention values

Experiments: Visual Digit Prediction

Task: Given an image, predict a digit number specified by a query color

	SAN	¬ CTX	CTX	ARNN
ectness	0.1258	0.2017	0.2835	0.3729

Variational Autoencoders (VAE)

PixelCNNs define tractable density function, optimize likelihood of training data:

 $p(x) = \prod p(x_i | x_1, ..., x_{i-1})$

$$p(x) = \prod_{i=1}^{n} p(x_i | x_1, \dots, x_{i-1})$$

VAEs define intractable density function with latent variables z (that we need to marginalize):

$$p_{\theta}(x) = \int f$$

cannot optimize directly, derive and optimize lower bound of likelihood instead

PixelCNNs define tractable density function, optimize likelihood of training data:

$p_{\theta}(z)p_{\theta}(x|z)dz$

Unsupervised approach for learning a lower-dimensional feature representation from unlabeled training data

Originally: Linear + nonlinearity (sigmoid) **Later:** Deep, fully-connected **Later:** ReLU CNN

Unsupervised approach for learning a lower-dimensional feature representation from unlabeled training data

Originally: Linear + nonlinearity (sigmoid) **Later:** Deep, fully-connected **Later:** ReLU CNN

Unsupervised approach for learning a lower-dimensional feature representation from unlabeled training data

Originally: Linear + nonlinearity (sigmoid) **Later:** Deep, fully-connected **Later:** ReLU CNN

Train such that features can reconstruct original data best they can

Input data

best they can

Reconstructed data

Encoder: 4-layer conv Decoder: 4-layer upconv

Input data

Encoder: 4-layer conv Decoder: 4-layer upconv

Input data

Encoder: 4-layer conv Decoder: 4-layer upconv

Input data

Probabilistic spin on autoencoder - will let us sample from the model to generate Assume training data is generated from underlying unobserved (latent)

representation z

[Kingma and Welling, 2014]

Probabilistic spin on autoencoder - will let us sample from the model to generate Assume training data is generated from underlying unobserved (latent)

representation z

[Kingma and Welling, 2014]

Intuition: *x* is an image, *z* is latent factors used to generate x (e.g., attributes, orientation, etc.)

We want to estimate the true parameters θ^* of this generative model

[Kingma and Welling, 2014]

We want to estimate the true parameters θ^* of this generative model

[Kingma and Welling, 2014]

How do we **represent** this model?

We want to estimate the true parameters θ^* of this generative model

[Kingma and Welling, 2014]

How do we **represent** this model?

Choose prior p(z) to be simple, e.g., Gaussian Reasonable for latent attributes, e.g., pose, amount of smile

We want to estimate the true parameters θ^* of this generative model

[Kingma and Welling, 2014]

How do we **represent** this model?

Choose prior p(z) to be simple, e.g., Gaussian Reasonable for latent attributes, e.g., pose, amount of smile

Conditional $p(\mathbf{x}|\mathbf{z})$ is complex (generates image) Represent with Neural Network

We want to estimate the true parameters θ^* of this generative model

[Kingma and Welling, 2014]

How do we **train** this model?

We want to estimate the true parameters θ^* of this generative model

[Kingma and Welling, 2014]

How do we **train** this model?

Remember the strategy from earlier — learn model parameters to maximize likelihood of training data $p_{ heta}(x) = \int p_{ heta}(z) p_{ heta}(x|z) dz$

(now with latent z that we need to marginalize)

We want to estimate the true parameters θ^* of this generative model

[Kingma and Welling, 2014]

How do we **train** this model?

Remember the strategy from earlier — learn model parameters to maximize likelihood of training data $p_{ heta}(x) = \int p_{ heta}(z) p_{ heta}(x|z) dz$

(now with latent z that we need to marginalize)

What is the problem with this?

We want to estimate the true parameters θ^* of this generative model

[Kingma and Welling, 2014]

How do we **train** this model?

Remember the strategy from earlier — learn model parameters to maximize likelihood of training data $p_{ heta}(x) = \int p_{ heta}(z) p_{ heta}(x|z) dz$

(now with latent z that we need to marginalize)

Intractable !

Data likelihood: $p_{\theta}(x) = \int p_{\theta}(z) p_{\theta}(x|z) dz$

[Kingma and Welling, 2014]

[Kingma and Welling, 2014]

[Kingma and Welling, 2014]

Decoder Neural Network

0 0

[Kingma and Welling, 2014]

Decoder Neural Network

Posterior density is also intractable: $p_{\theta}(z|x) = p_{\theta}(x|z)p_{\theta}(z)/p_{\theta}(x)$

[Kingma and Welling, 2014]

Decoder Neural Network

[Kingma and Welling, 2014]

Decoder Neural Network

Posterior density is also intractable: $p_{\theta}(z|x) = p_{\theta}(x|z)p_{\theta}(z)/p_{\theta}(x)$

Posterior density is also intractable: p

Solution: In addition to decoder network modeling $p_{\theta}(x|z)$, define additional encoder network $q_{\Phi}(z|x)$ that approximates $p_{\theta}(z|x)$ - Will see that this allows us to derive a lower bound on the data likelihood that is tractable, which we can optimize

[Kingma and Welling, 2014]

Decoder Neural Network

$$p_{ heta}(x|z)dz$$

$$p_{\theta}(z|x) = p_{\theta}(x|z)p_{\theta}(z)/p_{\theta}(x)$$

networks are probabilistic (they model distributions)

[Kingma and Welling, 2014]

Since we are modeling probabilistic generation of data, encoder and decoder

Since we are modeling probabilistic generation of data, encoder and decoder networks are probabilistic (they model distributions)

[Kingma and Welling, 2014]

Since we are modeling probabilistic generation of data, encoder and decoder networks are probabilistic (they model distributions)

[Kingma and Welling, 2014]

Derivation of lower bound of the data likelihood

Now equipped with **encoder** and **decoder** networks, let's see (log) data likelihood:

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)})\right] \quad (p_{\theta})$$

Taking expectation with respect to z (using encoder network) will come in handy later

[Kingma and Welling, 2014]

 $(x^{(i)})$ Does not depend on z)

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let's see (log) data likelihood:

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \qquad (p_{\theta})$$
$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \qquad (Ba)$$

[Kingma and Welling, 2014]

 $(x^{(i)})$ Does not depend on z)

ayes' Rule)

Derivation of lower bound of the data likelihood

Now equipped with **encoder** and **decoder** networks, let's see (log) data likelihood:

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)})\right] \quad (p_{\theta})$$
$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})}\right] \quad (Ba)$$
$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x)}{q_{\phi}(z \mid x)}\right]$$

[Kingma and Welling, 2014]

 $(x^{(i)})$ Does not depend on z)

ayes' Rule)

 $\left[\frac{c^{(i)}}{c^{(i)}}\right]$ (Multiply by constant)

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let's see (log) data likelihood: $(x^{(i)})$ Does not depend on z)

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)})\right] \quad (p_{\theta}(x^{(i)}) = \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})}\right] \quad (Bay)$$
$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})}\right] = \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z)\right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})}\right] = \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z)\right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})}\right] = \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z)\right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})}\right] = \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z)\right] = \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})}\right] = \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}$$

[Kingma and Welling, 2014]

yes' Rule)

(Multiply by constant) $\frac{p_{\theta}(z \mid x^{(i)})}{p_{\theta}(z)} + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] \quad \text{(Logarithms)}$

Derivation of lower bound of the data likelihood

Now equipped with **encoder** and **decoder** networks, let's see (log) data likelihood: $(x^{(i)})$ Does not depend on z)

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)})\right] \quad (p_{\theta}(x^{(i)}) = \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})}\right] \quad (Bay)$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} = \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z)\right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}}{q_{\phi}(z \mid x^{(i)})}\right] = \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z)\right] - D_{KL}(q_{\phi}(z \mid z))$$

Expectation with respect to z (using encoder network) leads to nice KL terms

[Kingma and Welling, 2014]

yes' Rule)

 $\left[\frac{i}{i}\right]$ (Multiply by constant) $\frac{b(z \mid x^{(i)})}{p_{\theta}(z)} + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] \quad \text{(Logarithms)}$ $|x^{(i)}|| p_{\theta}(z)) + D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid |p_{\theta}(z \mid x^{(i)}))|$

Derivation of lower bound of the data likelihood

Now equipped with **encoder** and **decoder** networks, let's see (log) data likelihood: $(x^{(i)})$ Does not depend on z)

$$\begin{split} \log p_{\theta}(x^{(i)}) &= \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] & (p_{\theta}(z)) \\ &= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] & (Bay) \\ &= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right] \\ &= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] \\ &= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)})) \right] \end{split}$$

Decoder network gives $p_A(x|z)$, can compute estimate of this term through sampling. (Sampling differentiable through **reparam. trick**, see paper.)

[Kingma and Welling, 2014]

yes' Rule)

 $\left|\frac{r^{(i)}}{r^{(i)}}\right|$ (Multiply by constant) $\frac{\phi(z \mid x^{(i)})}{p_{\theta}(z)} + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] \quad \text{(Logarithms)}$ $|x^{(i)}|| p_{\theta}(z)) + D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid |p_{\theta}(z \mid x^{(i)}))|$ p_A(z x) intractable (saw earlier), can't This KL term (between Gaussians) for encoder and z prior) has nice compute this KL term :(closed-form solution! But we know KL divergence always ≥ 0 .

Derivation of lower bound of the data likelihood

Now equipped with **encoder** and **decoder** networks, let's see (log) data likelihood:

$$\begin{split} \log p_{\theta}(x^{(i)}) &= \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z) \\ &= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Bayes' Rule}) \\ &= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right] \quad (\text{Multiply by constant}) \\ &= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Logarithms}) \\ &= \underbrace{\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) || p_{\theta}(z))}_{\mathcal{L}(x^{(i)}, \theta, \phi)} + D_{KL}(q_{\phi}(z \mid x^{(i)}) || p_{\theta}(z \mid x^{(i)})) \end{split}$$

Tractable lower bound which we can take gradient of and optimize! ($p\theta(x|z)$ differentiable, KL term differentiable) [Kingma and Welling, 2014]

Variational Autoencoder

Derivation of lower bound of the data likelihood

Now equipped with **encoder** and **decoder** networks, let's see (log) data likelihood:

Variational lower bound ("**ELBO**")

[Kingma and Welling, 2014]

$$\theta^*, \phi^* = \arg \max_{\theta, \phi} \sum_{i=1}^N \mathcal{L}(x^{(i)}, \theta, \phi)$$

Variational Autoencoder

Derivation of lower bound of the data likelihood

Now equipped with **encoder** and **decoder** networks, let's see (log) data likelihood:

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Bayes' Rule})$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right] \quad (\text{Multiply by constant})$$

$$= \mathbf{Reconstruct} \qquad \text{Make approximate posterior}$$

$$= \underbrace{\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid p_{\theta}(z))}_{\mathcal{L}(x^{(i)}, \theta, \phi)} + D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid p_{\theta}(z \mid x^{(i)}))}_{N}$$

$$= \underbrace{\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid p_{\theta}(z))}_{\mathcal{L}(x^{(i)}, \theta, \phi)} + D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid p_{\theta}(z \mid x^{(i)}))}_{N}$$

$$= \underbrace{\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid p_{\theta}(z))}_{\mathcal{L}(x^{(i)}, \theta, \phi)} + D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid p_{\theta}(z \mid x^{(i)}))}_{N}$$

$$= \underbrace{\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid p_{\theta}(z))}_{\mathcal{L}(x^{(i)}, \theta, \phi)} + D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid p_{\theta}(z \mid x^{(i)}))}_{N}$$

Variational lower bound ("**ELBO**")

[Kingma and Welling, 2014]

$$\theta^*, \phi^* = \arg \max_{\theta, \phi} \sum_{i=1}^N \mathcal{L}(x^{(i)}, \theta, \phi)$$

Putting it all together:

maximizing the likelihood lower bound

$$\underbrace{\mathbf{E}_{z}\left[\log p_{\theta}(x^{(i)} \mid z)\right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))}_{\mathcal{L}(x^{(i)}, \theta, \phi)}$$

Lets look at **computing the bound** (forward pass) for a given mini batch of input data

Putting it all together:

maximizing the likelihood lower bound

$$\underbrace{\mathbf{E}_{z}\left[\log p_{\theta}(x^{(i)} \mid z)\right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))}_{\mathcal{L}(x^{(i)}, \theta, \phi)}$$

Putting it all together:

maximizing the likelihood lower bound

$$\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))$$

$$\mathcal{L}(x^{(i)}, \theta, \phi)$$
Make approximate posterior distribution close to prior

Putting it all together:

maximizing the likelihood lower bound

$$\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))$$

$$\mathcal{L}(x^{(i)}, \theta, \phi)$$
Make approximate posterior distribution close to prior

Putting it all together:

maximizing the likelihood lower bound

$$\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))$$

$$\mathcal{L}(x^{(i)}, \theta, \phi)$$
Make approximate posterior distribution close to prior

Putting it all together:

maximizing the likelihood lower bound

Maximize likelihood of original input being reconstructed

$$\mathbf{E}_{z}\left[\log p_{\theta}(x^{(i)} \mid z)\right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))$$

 $\mathcal{L}(x^{(i)}, \theta, \phi)$

Make approximate posterior distribution close to prior

Putting it all together:

maximizing the likelihood lower bound

Maximize likelihood of original input being reconstructed

$$\mathbf{E}_{z}\left[\log p_{\theta}(x^{(i)} \mid z)\right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))$$

 $\mathcal{L}(x^{(i)}, \theta, \phi)$

Make approximate posterior distribution close to prior

For every minibatch of input data: compute this forward pass, and then backprop!

what can happen without regularisation

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

what we want to obtain with regularisation

Use decoder network and sample z from **prior**

Sample z from $z \sim \mathcal{N}(0, I)$

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Use decoder network and sample z from **prior**

Data manifold for 2-d z

Diagonal prior on z => independent latent variables

Different dimensions of z encode interpretable factors of variation

Data manifold for 2-d z

Vary z_1

(degree of smile)

(head pose)

Diagonal prior on z => independent latent variables

Different dimensions of z encode interpretable factors of variation

Also good feature representation that can be computed using $q_{\phi}(z|x)!$

Data manifold for 2-d z

Vary z_1

(degree of smile)

(head pose)

32x32 CIFAR-10

Labeled Faces in the Wild