

THE UNIVERSITY OF BRITISH COLUMBIA

Topics in AI (CPSC 532S): **Multimodal Learning with Vision, Language and Sound**

Lecture 15: Generative Models

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map $x \rightarrow y$

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

This image is CC0 public domain

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Cat

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map $x \rightarrow y$

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

DOG, DOG, CAT

Object Detection

This image is CC0 public domain

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map $x \rightarrow y$

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

GRASS, CAT, TREE, SKY

Semantic Segmentation

This image is CC0 public domain

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map $x \rightarrow y$

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

A cat sitting on a suitcase on the floor

Image Captioning

This image is CC0 public domain

Unsupervised Learning

Data: X Just data, no labels!

Goal: Learn some underlying hidden structure of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

k-means clustering

This image is CC0 public domain

Unsupervised Learning

Data: X Just data, no labels!

Goal: Learn some underlying hidden structure of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

dimensionality reduction

This image is CC0 public domain

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, *etc.*

Figure copyright Ian Goodfellow, 2016. Reproduced with permission.

1-dim density estimation

2-dim density estimation

2-d density images left and right are CC0 public domain

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford

<u>domain</u>

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map $x \rightarrow y$

Examples: Classification, regression, object detection, semantic segmentation, image captioning, *etc.*

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden structure of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, *etc.*

Generative Models

Given training data, generate new samples from the same distribution

Training data ~ $p_{data}(\mathbf{x})$

Generated samples $\sim p_{\text{model}}(\mathbf{x})$

Want to learn $p_{model}(x)$ similar to $p_{data}(x)$

Generative Models

Given training data, generate new samples from the same distribution

Training data ~ $p_{data}(x)$

Want to learn $p_{\text{model}}(\mathbf{x})$ similar to $p_{\text{data}}(\mathbf{x})$

Addresses density estimation, a core problem in unsupervised learning

- **Explicit** density estimation: explicitly define and solve for $p_{model}(x)$
- Implicit density estimation: learn model that can sample from $p_{model}(x)$ w/o explicitly defining it

Generated samples $\sim p_{\text{model}}(\mathbf{x})$

Taxonomy of Generative Models

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford

rks, 201

17

....

Taxonomy of Generative Models

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

017.

Why Generative Models?

- Realistic samples for artwork, super-resolution, colorization, etc.

Why **Generative** Models?

- Realistic samples for artwork, super-resolution, colorization, etc.

- Generative models of time-series data can be used for **simulation**, **predictions** and planning (reinforcement learning applications)
- Training generative models can also enable inference of latent representation that can be useful as general features
- **Dreaming** / hypothesis visualization

PixelRNN and PixelCNN

Explicit Density model

Use chain rule to decompose likelihood of an image x into product of (many) 1-d distributions

then maximize likelihood of training data

[van der Oord et al., 2016]

$$p(x_i | x_1, ..., x_{i-1})$$

$$f$$
Probability of i'th pixel value given all previous pixels

Explicit Density model

Use chain rule to decompose likelihood of an image x into product of (many) 1-d distributions

then maximize likelihood of training data

[van der Oord et al., 2016]

$$p(x_i|x_1,...,x_{i-1})$$

Probability of i'th pixel value given all previous pixels

> Complex distribution over pixel values, so lets model using neural network

Explicit Density model

Use chain rule to decompose likelihood of an image x into product of (many) 1-d distributions

then maximize likelihood of training data

van der Oord et al., 2016

$$p(x_i|x_1,...,x_{i-1})$$

Probability of i'th pixel value given all previous pixels

Complex distribution over pixel values, so lets model using neural network

Also requires defining ordering of "previous pixels"

Generate image pixels starting from the corner

Dependency on previous pixels model using an RNN (LSTM)

[van der Oord et al., 2016]

Generate image pixels starting from the corner

Dependency on previous pixels model using an RNN (LSTM)

[van der Oord et al., 2016]

Generate image pixels starting from the corner

Dependency on previous pixels model using an RNN (LSTM)

[van der Oord et al., 2016]

[van der Oord et al., 2016]

Generate image pixels starting from the corner

Dependency on previous pixels model using an RNN (LSTM)

[van der Oord et al., 2016]

Generate image pixels starting from the corner

Dependency on previous pixels model using an RNN (LSTM)

Problem: sequential generation is slow

[van der Oord et al., 2016]

PixelCNN

Still generate image pixels starting from the corner

Dependency on previous pixels now modeled using a CNN over context region

[van der Oord et al., 2016]

PixelCNN

Still generate image pixels starting from the corner

Dependency on previous pixels now modeled using a CNN over context region

Training: maximize likelihood of training images

$$p(x) = \prod_{i=1}^{n} p(x_i | x_1, \dots, x_{i-1})$$

[van der Oord et al., 2016]

Softmax loss at each pixel

PixeICNN

Still generate image pixels starting from the corner

Dependency on previous pixels now modeled using a CNN over context region

Training: maximize likelihood of training images

$$p(x) = \prod_{i=1}^{n} p(x_i | x_1, \dots, x_{i-1})$$

[van der Oord et al., 2016]

Generation is still slow (sequential), but learning is faster

Generated Samples

32x32 CIFAR-10

[van der Oord et al., 2016]

32x32 ImageNet

PixelRNN and PixelCNN

Pros:

- Can explicitly compute likelihood p(x)
- Explicit likelihood of training data gives good evaluation metric
- Good samples

Con:

— Sequential generation => slow

Improving PixelCNN performance

- Gated convolutional layers
- Short-cut connections
- Discretized logistic loss
- Multi-scale
- Training tricks
- Etc...

Multi-scale PixelRNN

Take sub-sampled pixels as additional input pixels

Can capture better global information (more visually coherent)

[van der Oord et al., 2016]

Multi-scale PixelRNN

[van der Oord et al., 2016]

Conditional Image Generation

vector **h**

 $p(\mathbf{x}) = p(x_1, x_2, \dots, x_{n^2})$ $p(\mathbf{x}|\mathbf{h}) = p(x_1, x_2, ..., x_{n^2}|\mathbf{h})$ [van der Oord et al., 2016]

Similar to PixelRNN/CNN but conditioned on a high-level image description

Conditional Image Generation

African elephant

[van der Oord et al., 2016]

Sandbar

