

#### THE UNIVERSITY OF BRITISH COLUMBIA

## Topics in AI (CPSC 532S): **Multimodal Learning with Vision, Language and Sound**

### Lecture 15: Coordinated Representations and Joint Embeddings [part 3]



## Logistics

## Project proposals — Monday, March 15th

## Assignment 5 ... on GANs and Graph Neural Networks later ;)

## Semantic Embeddings

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding 🕒 🔍 🔍

 $\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$ 















## word2vec: Unsupervised Word Embedding

# same context tend to have similar meaning

Label Embedding <a> • • •</a>

 $\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$ 

Distributional Semantics Hypothesis: words that are used and occur in the



## word2vec: Unsupervised Word Embedding

# same context tend to have similar meaning

Label Embedding

 $\Psi_L(word_i) = \mathbf{u}_i : \{1, \dots, L\} \to \mathbb{R}^d$ 

- **Distributional Semantics Hypothesis:** words that are used and occur in the
  - e.g., Horse breeds are loosely divided into three categories



**Skip-gram Model:** unsupervised semantic representation for words

[Mikolov, Sutskever, Chen, Corrado, Dean, NIPS'13]



## **DeVise:** A Deep Visual-Semantic Embedding Model



 $j \neq label$ 

[Frome et al., 2013]

 $loss(image, label) = \sum \max[0, margin - \vec{t}_{label}M\vec{v}(image) + \vec{t}_jM\vec{v}(image)]$ 



# **DeViSE:** A Deep Visual-Semantic Embedding Model

### Supervised Results

|                   |      | Flat hit@k (%) |      | Hierarchical precision@k |      |       |       |       |       |
|-------------------|------|----------------|------|--------------------------|------|-------|-------|-------|-------|
| Model type        | dim  | 1              | 2    | 5                        | 10   | 2     | 5     | 10    | 20    |
| Softmax baseline  | N/A  | 55.6           | 67.4 | 78.5                     | 85.0 | 0.452 | 0.342 | 0.313 | 0.319 |
| DeViSE            | 500  | 53.2           | 65.2 | 76.7                     | 83.3 | 0.447 | 0.352 | 0.331 | 0.341 |
|                   | 1000 | 54.9           | 66.9 | 78.4                     | 85.0 | 0.454 | 0.351 | 0.325 | 0.331 |
| Random embeddings | 500  | 52.4           | 63.9 | 74.8                     | 80.6 | 0.428 | 0.315 | 0.271 | 0.248 |
|                   | 1000 | 50.5           | 62.2 | 74.2                     | 81.5 | 0.418 | 0.318 | 0.290 | 0.292 |
| Chance            | N/A  | 0.1            | 0.2  | 0.5                      | 1.0  | 0.007 | 0.013 | 0.022 | 0.042 |

### **Zero-shot** Results

Model

**DeViSE** 

Mensink et al. 2012 [12 Rohrbach et al. 2011 [1

[Frome et al., 2013]

|     | 200 labels | 1000 labels |
|-----|------------|-------------|
|     | 31.8%      | 9.0%        |
| 2]  | 35.7%      | 1.9%        |
| [7] | 34.8%      | -           |



## Semantic Embeddings

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding 🕒 🔍 🔍

 $\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$ 















## word2vec: Unsupervised Word Embedding

# same context tend to have similar meaning



- Distributional Semantics Hypothesis: words that are used and occur in the
  - e.g., Horse breeds are loosely divided into three categories



**Skip-gram Model:** unsupervised semantic representation for words (trained from 7 billion word linguistic corpus)



#### Semi-supervised Vocabulary Informed Learning [Fu et al., 2016]

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding 💿 🔍 🔍

 $\Psi_L(word_i) = \mathbf{u}_i : \{1, \dots, L\} \to \mathbb{R}^d$ 

L = 310,000

















#### Semi-supervised Vocabulary Informed Learning [Fu et al., 2016]

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding 💿 🔍 🔍

 $\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$ L = 310,000



Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$













#### Semi-supervised Vocabulary Informed Learning [Fu et al., 2016]

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding <a> • • •</a>

 $\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$ L = 310,000

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

### **Objective Function:**

 $\min_{\mathbf{W}} \sum_{i} \mathcal{L}_{C}(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}) + \mathcal{L}_{R}(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}) + \mu ||V||_{F}^{2}$ 















## Semi-supervised Vocabulary Informed Learning [Fulet al., 2016]

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding <a> • • •</a>

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, \dots, L\} \to \mathbb{R}^d$$
$$L = 310,000$$



Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

**Objective Function:** 

$$\min_{\mathbf{W}} \sum_{i}^{N} \mathcal{L}_{C}(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}) + \mathcal{L}_{R}(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}) + \mu ||^{2}$$

$$\mathcal{L}_C(\mathbf{W}, \mathbf{U}, \mathbf{x}_i, y_i) = \sum [1 + D(\mathbf{W}\mathbf{x}_i, \mathbf{u}_{y_i}) - D(\mathbf{W}\mathbf{x}_i, \mathbf{u}_c)]$$



 $V||_{F}^{2}$ 



## Semi-supervised Vocabulary Informed Learning [Fullet al., 2016]

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding <a> • • •</a>

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, \dots, L\} \to \mathbb{R}^d$$
$$L = 310,000$$



Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

**Objective Function:** 

$$\min_{\mathbf{W}} \sum_{i}^{N} \mathcal{L}_{C}(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}) + \mathcal{L}_{R}(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}) + \mu ||^{2}$$

$$\mathcal{L}_C(\mathbf{W}, \mathbf{U}, \mathbf{x}_i, y_i) = \sum [1 + D(\mathbf{W}\mathbf{x}_i, \mathbf{u}_{y_i}) - D(\mathbf{W}\mathbf{x}_i, \mathbf{u}_c)]$$



 $V||_{F}^{2}$ 





 $v_1$ 







 $v_1$ 

unicycle



[Fu et al., 2016]

f(Image)















## **Experiments:** Datasets



[Lampert, Nickisch, Harmeling CVPR'09]

[Fu et al., 2016]



[Deng et al., CVPR'09]





The tasks are only separated in **evaluation**; We train one unified model for all the settings

| Classes |         | No. Testing Words |           |  |  |
|---------|---------|-------------------|-----------|--|--|
| get     | Total   | Vocabulary        | Chance(%) |  |  |
|         | 40/1000 | 40/1000           | 2.5/0.1   |  |  |
|         | 10/360  | 10/360            | 10/0.28   |  |  |
|         | 50/1360 | 310K/310K         | 3.2E-04   |  |  |





[Fu et al., 2016]

### Testing

### Supervised







[Fu et al., 2016]

### Testing

### Supervised



### Zero-shot











[Fu et al., 2016]

### Testing

### Open-set













The tasks are only separated in **evaluation**; We train one unified model for all the settings

| Classes |                | No. Testing Words |                 |  |  |
|---------|----------------|-------------------|-----------------|--|--|
| get     | Total          | Vocabulary        | Chance(%)       |  |  |
|         | 40/1000        | 40/1000           | 2.5/0.1         |  |  |
|         | <b>10</b> /360 | <b>10</b> /360    | <b>10</b> /0.28 |  |  |
|         | 50/1360        | 310K/310K         | 3.2E-04         |  |  |



## **Zero-shot** Results

#### **Results with AWA**

## Method SS-Voc: full instances Akata et al. CVPR 2015 TMV-BLP (Fu et al. ECCV 2014) AMP (SR+SE) (Fu et al. CVPR 2015) DAP (Lampert et al. TPAMI 2013) PST (Rohrbach et al. NIPS 2013)

DS (Rohrbach et al. CVPR 2010)

IAP (Lampert et al. TPAMI 2013)

HEX (Deng et al. ECCV 2014)

| Features             | Accuracy |      |
|----------------------|----------|------|
| <b>CNN</b> OverFeat  | 78.3     | +4.4 |
|                      |          |      |
|                      |          |      |
| CNNGoogLeNet         | 73.9     |      |
| <b>CNN</b> OverFeat  | 69.9     |      |
| <b>CNN</b> OverFeat  | 66.0     |      |
| CNN <sub>VGG19</sub> | 57.5     |      |
| <b>CNN</b> OverFeat  | 53.2     |      |
| <b>CNN</b> OverFeat  | 52.7     |      |
| <b>CNN</b> OverFeat  | 44.5     |      |
| CNNDECAF             | 44.2     |      |





## **Zero-shot** Results

**Results with AWA** 

3.3% of

training data

#### Method

SS-Voc: full instances

800 instances (20 inst\*40 class);

Akata et al. CVPR 2015

TMV-BLP (Fu et al. ECCV 2014)

AMP (SR+SE) (Fu et al. CVPR 2015)

DAP (Lampert et al. TPAMI 2013)

PST (Rohrbach et al. NIPS 2013)

DS (Rohrbach et al. CVPR 2010)

IAP (Lampert et al. TPAMI 2013)

HEX (Deng et al. ECCV 2014)

| Features             | Accuracy |      |
|----------------------|----------|------|
| CNNOverFeat          | 78.3     |      |
| CNNoverFeat          | 74.4     | +0.5 |
|                      |          |      |
| CNNGoogLeNet         | 73.9     |      |
| CNNOverFeat          | 69.9     |      |
| <b>CNN</b> OverFeat  | 66.0     |      |
| CNN <sub>VGG19</sub> | 57.5     |      |
| <b>CNN</b> OverFeat  | 53.2     |      |
| <b>CNN</b> OverFeat  | 52.7     |      |
| <b>CNN</b> OverFeat  | 44.5     |      |
| CNNDECAF             | 44.2     |      |





## **Zero-shot** Results

**Results with AWA** 

#### Method

SS-Voc: full instances

800 instances (20 inst\*40 class);

200 instances (5 inst\*40 class);

Akata et al. CVPR 2015

TMV-BLP (Fu et al. ECCV 2014)

AMP (SR+SE) (Fu et al. CVPR 2015)

DAP (Lampert et al. TPAMI 2013)

PST (Rohrbach et al. NIPS 2013)

DS (Rohrbach et al. CVPR 2010)

IAP (Lampert et al. TPAMI 2013)

HEX (Deng et al. ECCV 2014)

### 0.82% of training data

| Features            | Accuracy |
|---------------------|----------|
| <b>CNN</b> OverFeat | 78.3     |
| <b>CNN</b> OverFeat | 74.4     |
| CNNoverFeat         | 68.9     |
| CNNGoogLeNet        | 73.9     |
| CNNoverFeat         | 69.9     |
| CNNOverFeat         | 66.0     |
| CNNvGG19            | 57.5     |
| CNNOverFeat         | 53.2     |
| <b>CNN</b> OverFeat | 52.7     |
| CNNOverFeat         | 44.5     |
| CNNDECAF            | 44.2     |



# or sentence in new images



The man at bat readies to swing at the pitch while the umpire looks on.



A large bus sitting next to a very tall building.

[Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollar, Zitnick, ECCV'14]

Given **image-sentence pairs** learn how to **localize** arbitrary language phrase



### Given **image-sentence pairs** learn how to **localize** arbitrary language phrase or sentence in new images



The man at bat readies to swing at the pitch while the umpire looks on.



A large bus sitting next to a very tall building.

[Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollar, Zitnick, ECCV'14]



#### a man



### Given **image-sentence pairs** learn how to **localize** arbitrary language phrase or sentence in new images



The man at bat readies to swing at the pitch while the umpire looks on.



A large bus sitting next to a very tall building.

[Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollar, Zitnick, ECCV'14]



#### a man



### Given **image-sentence pairs** learn how to **localize** arbitrary language phrase or sentence in new images



The man at bat readies to swing at the pitch while the umpire looks on.



A large bus sitting next to a very tall building.

[Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollar, Zitnick, ECCV'14]



#### a table



#### Label Embedding 😑 🔵 🛑

$$\Psi_L(phrase_i) = \mathbf{u}_i$$



#### Label Embedding <a> • • •</a>

$$\Psi_L(phrase_i) = \mathbf{u}_i$$





#### Label Embedding 💿 🔍 🔍

$$\Psi_L(phrase_i) = \mathbf{u}_i$$





#### Label Embedding

$$\Psi_L(phrase_i) = \mathbf{u}_i$$







Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta})$$





#### Label Embedding

$$\Psi_L(phrase_i) = \mathbf{u}_i$$





a table

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta})$$





#### Label Embedding

$$\Psi_L(phrase_i) = \mathbf{u}_i$$







Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta})$$





#### Label Embedding

$$\Psi_L(phrase_i) = \mathbf{u}_i$$





Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta})$$

Label Embedding

$$\Psi_L(phrase_i) = \mathbf{u}_i$$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

**Objective Function:** 



### Combination of previous discriminative similarity and linguistic regularization









DT

А

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta})$$

Label Embedding

$$\Psi_L(phrase_i) = \mathbf{u}_i$$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

**Objective Function:** 

Combination of previous discriminative similarity and **linguistic regularization** 





### Weakly-supervised Visual Grounding of Phrases [Xiao et al., 2017] For **noun phrases**:

DT

А

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta})$$

Label Embedding

$$\Psi_L(phrase_i) = \mathbf{u}_i$$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

**Objective Function:** 

Combination of previous discriminative similarity and **linguistic regularization** 

siblings should have disjoint masks





### Weakly-supervised Visual Grounding of Phrases [Xiao et al., 2017] For **noun phrases**:

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta})$$

Label Embedding

$$\Psi_L(phrase_i) = \mathbf{u}_i$$

Combination of previous discriminative similarity and linguistic regularization

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

**Objective Function:** 





siblings should have disjoint masks





### Weakly-supervised Visual Grounding of Phrases [Xiao et al., 2017] For **noun phrases**:

- siblings should have disjoint masks
- parents should be union of children masks



#### Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \boldsymbol{\Theta})$$

Label Embedding

$$\Psi_L(phrase_i) = \mathbf{u}_i$$

#### Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

#### **Objective Function:**



Combination of previous discriminative similarity and **linguistic regularization** 





For **noun phrases**:

- siblings should have disjoin parents should be union of



#### Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \boldsymbol{\Theta})$$

Label Embedding

$$\Psi_L(phrase_i) = \mathbf{u}_i$$

#### Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

#### **Objective Function:**





### Combination of previous discriminative similarity and **linguistic regularization**





### Input:



### guy in green t-shirt holding skateboard

#### [Xiao et al., 2017]



### **Input:**



### guy in green t-shirt holding skateboard

 $\rightarrow$ 

[Xiao et al., 2017]

### **NO** linguistic constraints





### **Input:**



 $\rightarrow$ 

### guy in green t-shirt holding skateboard

### **NO** linguistic constraints



[Xiao et al., 2017]



### **Input:**



### guy in green t-shirt holding skateboard

### **NO** linguistic constraints



 $\rightarrow$ 

#### [Xiao et al., 2017]

### Our Model





### Input:



### a person driving a boat

#### [Xiao et al., 2017]

### **NO** linguistic constraints



### Our Model





### **Input:**



### a child wearing black protective helmet

## **NO** linguistic constraints [Xiao et al., 2017]



### Our Model





## Segmentation performance on COCO dataset

|               | IoU@0.3 | loU@0.4 | IoU@0.5 | Avg mAP |
|---------------|---------|---------|---------|---------|
| Non-strcutred | 0.302   | 0.199   | 0.110   | 0.203   |
| Parent-Child  | 0.327   | 0.213   | 0.118   | 0.219   |
| Sibling       | 0.316   | 0.203   | 0.114   | 0.211   |
| Ours          | 0.347   | 0.246   | 0.159   | 0.251   |

[Xiao et al., 2017]

[Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollar, Zitnick, ECCV'14]



## Order Embeddings



#### [Vendrov et al., 2016]





## **Multimodal** Representation Types

### **Joint** representations:



**Coordinated** representations:





- Simplest version: modality concatenation (early fusion)
- Can be learned supervised or unsupervised

- Similarity-based methods (e.g., cosine distance)
- Structure constraints (e.g., orthogonality, sparseness)
- CCA (unsupervised), joint embeddings (supervised)

\*slide from Louis-Philippe Morency

## Final Words ...

### **Joint** representations

- Project modalities to the same space
- Use when all the modalities are present during test time
- Suitable for multi-model fusion

### **Coordinated** representations

- Project modalities to their own coordinated spaces
- Use when only one of the modalities is present during test-time
- Suitable for multimodal translation
- Good for multimodal retrieval

\*slide from Louis-Philippe Morency