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word2vec: Unsupervised Word Embedding

Label Embedding

 L(wordi) = ui : {1, ..., L} ! Rd

Distributional Semantics Hypothesis: words that are used and occur in the 
same context tend to have similar meaning 

Skip-gram Model: unsupervised semantic representation for words 
(trained from 7 billion word linguistic corpus) 

L = 310, 000
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[ Fu et al., 2016 ]
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Experiments: Datasets 

[ Lampert, Nickisch, Harmeling CVPR’09 ] 
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Learning To Detect Unseen Object Classes by Between-Class Attribute Transfer

Christoph H. Lampert Hannes Nickisch Stefan Harmeling
Max Planck Institute for Biological Cybernetics, Tübingen, Germany

{firstname.lastname}@tuebingen.mpg.de

Abstract
We study the problem of object classification when train-

ing and test classes are disjoint, i.e. no training examples of
the target classes are available. This setup has hardly been
studied in computer vision research, but it is the rule rather
than the exception, because the world contains tens of thou-
sands of different object classes and for only a very few of
them image, collections have been formed and annotated
with suitable class labels.

In this paper, we tackle the problem by introducing
attribute-based classification. It performs object detection
based on a human-specified high-level description of the
target objects instead of training images. The description
consists of arbitrary semantic attributes, like shape, color
or even geographic information. Because such properties
transcend the specific learning task at hand, they can be
pre-learned, e.g. from image datasets unrelated to the cur-
rent task. Afterwards, new classes can be detected based
on their attribute representation, without the need for a new
training phase. In order to evaluate our method and to facil-
itate research in this area, we have assembled a new large-
scale dataset, “Animals with Attributes”, of over 30,000 an-
imal images that match the 50 classes in Osherson’s clas-
sic table of how strongly humans associate 85 semantic at-
tributes with animal classes. Our experiments show that
by using an attribute layer it is indeed possible to build a
learning object detection system that does not require any
training images of the target classes.

1. Introduction
Learning-based methods for recognizing objects in natu-

ral images have made large progress over the last years. For
specific object classes, in particular faces and vehicles, reli-
able and efficient detectors are available, based on the com-
bination of powerful low-level features, e.g. SIFT or HoG,
with modern machine learning techniques, e.g. boosting or
support vector machines. However, in order to achieve good
classification accuracy, these systems require a lot of man-
ually labeled training data, typically hundreds or thousands
of example images for each class to be learned.

It has been estimated that humans distinguish between
at least 30,000 relevant object classes [3]. Training con-
ventional object detectors for all these would require mil-

otter

black: yes
white: no
brown: yes
stripes: no
water: yes
eats fish: yes

polar bear

black: no
white: yes
brown: no
stripes: no
water: yes
eats fish: yes

zebra

black: yes
white: yes
brown: no
stripes: yes
water: no
eats fish: no

Figure 1. A description by high-level attributes allows the transfer
of knowledge between object categories: after learning the visual
appearance of attributes from any classes with training examples,
we can detect also object classes that do not have any training
images, based on which attribute description a test image fits best.

lions of well-labeled training images and is likely out of
reach for years to come. Therefore, numerous techniques
for reducing the number of necessary training images have
been developed, some of which we will discuss in Section 3.
However, all of these techniques still require at least some
labeled training examples to detect future object instances.

Human learning is different: although humans can learn
and abstract well from examples, they are also capable of
detecting completely unseen classes when provided with a
high-level description. E.g., from the phrase “eight-sided
red traffic sign with white writing”, we will be able to detect
stop signs, and when looking for “large gray animals with
long trunks”, we will reliably identify elephants. We build
on this paradigm and propose a system that is able to detect
objects from a list of high-level attributes. The attributes
serve as an intermediate layer in a classifier cascade and
they enable the system to detect object classes, for which it
had not seen a single training example.

Clearly, a large number of possible attributes exist and
collecting separate training material to learn an ordinary
classifier for each of them would be as tedious as for all
object classes. But, instead of creating a separate training

… 

Animals with Attributes ImageNet

Target: 10 Animal Classes (NO annotation)

Auxiliary: 1,000 General Classes (annotated)

Target: 360 General Classes (NO annotation)

[ Deng et al., CVPR’09 ] 

[ Fu et al., 2016 ]



Experiments: Settings

AwA/ImageNet
No. Testing Classes No. Testing Words

Auxiliary Target Total Vocabulary Chance(%)

SUPERVISED 40/1000 40/1000 2.5/0.1

ZERO-SHOT 10/360 10/360 10/0.28

OPEN-SET 50/1360 310K/310K 3.2E-04X
X

X

X

The tasks are only separated in evaluation;  
                     We train one unified model for all the settings

[ Fu et al., 2016 ]
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than the exception, because the world contains tens of thou-
sands of different object classes and for only a very few of
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with suitable class labels.
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pre-learned, e.g. from image datasets unrelated to the cur-
rent task. Afterwards, new classes can be detected based
on their attribute representation, without the need for a new
training phase. In order to evaluate our method and to facil-
itate research in this area, we have assembled a new large-
scale dataset, “Animals with Attributes”, of over 30,000 an-
imal images that match the 50 classes in Osherson’s clas-
sic table of how strongly humans associate 85 semantic at-
tributes with animal classes. Our experiments show that
by using an attribute layer it is indeed possible to build a
learning object detection system that does not require any
training images of the target classes.

1. Introduction
Learning-based methods for recognizing objects in natu-

ral images have made large progress over the last years. For
specific object classes, in particular faces and vehicles, reli-
able and efficient detectors are available, based on the com-
bination of powerful low-level features, e.g. SIFT or HoG,
with modern machine learning techniques, e.g. boosting or
support vector machines. However, in order to achieve good
classification accuracy, these systems require a lot of man-
ually labeled training data, typically hundreds or thousands
of example images for each class to be learned.

It has been estimated that humans distinguish between
at least 30,000 relevant object classes [3]. Training con-
ventional object detectors for all these would require mil-
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lions of well-labeled training images and is likely out of
reach for years to come. Therefore, numerous techniques
for reducing the number of necessary training images have
been developed, some of which we will discuss in Section 3.
However, all of these techniques still require at least some
labeled training examples to detect future object instances.

Human learning is different: although humans can learn
and abstract well from examples, they are also capable of
detecting completely unseen classes when provided with a
high-level description. E.g., from the phrase “eight-sided
red traffic sign with white writing”, we will be able to detect
stop signs, and when looking for “large gray animals with
long trunks”, we will reliably identify elephants. We build
on this paradigm and propose a system that is able to detect
objects from a list of high-level attributes. The attributes
serve as an intermediate layer in a classifier cascade and
they enable the system to detect object classes, for which it
had not seen a single training example.

Clearly, a large number of possible attributes exist and
collecting separate training material to learn an ordinary
classifier for each of them would be as tedious as for all
object classes. But, instead of creating a separate training
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Abstract
We study the problem of object classification when train-

ing and test classes are disjoint, i.e. no training examples of
the target classes are available. This setup has hardly been
studied in computer vision research, but it is the rule rather
than the exception, because the world contains tens of thou-
sands of different object classes and for only a very few of
them image, collections have been formed and annotated
with suitable class labels.

In this paper, we tackle the problem by introducing
attribute-based classification. It performs object detection
based on a human-specified high-level description of the
target objects instead of training images. The description
consists of arbitrary semantic attributes, like shape, color
or even geographic information. Because such properties
transcend the specific learning task at hand, they can be
pre-learned, e.g. from image datasets unrelated to the cur-
rent task. Afterwards, new classes can be detected based
on their attribute representation, without the need for a new
training phase. In order to evaluate our method and to facil-
itate research in this area, we have assembled a new large-
scale dataset, “Animals with Attributes”, of over 30,000 an-
imal images that match the 50 classes in Osherson’s clas-
sic table of how strongly humans associate 85 semantic at-
tributes with animal classes. Our experiments show that
by using an attribute layer it is indeed possible to build a
learning object detection system that does not require any
training images of the target classes.

1. Introduction
Learning-based methods for recognizing objects in natu-

ral images have made large progress over the last years. For
specific object classes, in particular faces and vehicles, reli-
able and efficient detectors are available, based on the com-
bination of powerful low-level features, e.g. SIFT or HoG,
with modern machine learning techniques, e.g. boosting or
support vector machines. However, in order to achieve good
classification accuracy, these systems require a lot of man-
ually labeled training data, typically hundreds or thousands
of example images for each class to be learned.

It has been estimated that humans distinguish between
at least 30,000 relevant object classes [3]. Training con-
ventional object detectors for all these would require mil-
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Figure 1. A description by high-level attributes allows the transfer
of knowledge between object categories: after learning the visual
appearance of attributes from any classes with training examples,
we can detect also object classes that do not have any training
images, based on which attribute description a test image fits best.

lions of well-labeled training images and is likely out of
reach for years to come. Therefore, numerous techniques
for reducing the number of necessary training images have
been developed, some of which we will discuss in Section 3.
However, all of these techniques still require at least some
labeled training examples to detect future object instances.

Human learning is different: although humans can learn
and abstract well from examples, they are also capable of
detecting completely unseen classes when provided with a
high-level description. E.g., from the phrase “eight-sided
red traffic sign with white writing”, we will be able to detect
stop signs, and when looking for “large gray animals with
long trunks”, we will reliably identify elephants. We build
on this paradigm and propose a system that is able to detect
objects from a list of high-level attributes. The attributes
serve as an intermediate layer in a classifier cascade and
they enable the system to detect object classes, for which it
had not seen a single training example.

Clearly, a large number of possible attributes exist and
collecting separate training material to learn an ordinary
classifier for each of them would be as tedious as for all
object classes. But, instead of creating a separate training
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studied in computer vision research, but it is the rule rather
than the exception, because the world contains tens of thou-
sands of different object classes and for only a very few of
them image, collections have been formed and annotated
with suitable class labels.

In this paper, we tackle the problem by introducing
attribute-based classification. It performs object detection
based on a human-specified high-level description of the
target objects instead of training images. The description
consists of arbitrary semantic attributes, like shape, color
or even geographic information. Because such properties
transcend the specific learning task at hand, they can be
pre-learned, e.g. from image datasets unrelated to the cur-
rent task. Afterwards, new classes can be detected based
on their attribute representation, without the need for a new
training phase. In order to evaluate our method and to facil-
itate research in this area, we have assembled a new large-
scale dataset, “Animals with Attributes”, of over 30,000 an-
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sic table of how strongly humans associate 85 semantic at-
tributes with animal classes. Our experiments show that
by using an attribute layer it is indeed possible to build a
learning object detection system that does not require any
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support vector machines. However, in order to achieve good
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It has been estimated that humans distinguish between
at least 30,000 relevant object classes [3]. Training con-
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lions of well-labeled training images and is likely out of
reach for years to come. Therefore, numerous techniques
for reducing the number of necessary training images have
been developed, some of which we will discuss in Section 3.
However, all of these techniques still require at least some
labeled training examples to detect future object instances.

Human learning is different: although humans can learn
and abstract well from examples, they are also capable of
detecting completely unseen classes when provided with a
high-level description. E.g., from the phrase “eight-sided
red traffic sign with white writing”, we will be able to detect
stop signs, and when looking for “large gray animals with
long trunks”, we will reliably identify elephants. We build
on this paradigm and propose a system that is able to detect
objects from a list of high-level attributes. The attributes
serve as an intermediate layer in a classifier cascade and
they enable the system to detect object classes, for which it
had not seen a single training example.

Clearly, a large number of possible attributes exist and
collecting separate training material to learn an ordinary
classifier for each of them would be as tedious as for all
object classes. But, instead of creating a separate training
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Experiments: Settings

AwA/ImageNet
No. Testing Classes No. Testing Words

Auxiliary Target Total Vocabulary Chance(%)

SUPERVISED 40/1000 40/1000 2.5/0.1

ZERO-SHOT 10/360 10/360 10/0.28

OPEN-SET 50/1360 310K/310K 3.2E-04X
X

X
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The tasks are only separated in evaluation;  
                     We train one unified model for all the settings

[ Fu et al., 2016 ]



Zero-shot Results
Results with AWA 

Method Features Accuracy

SS-Voc: full instances


800 instances (20 inst*40 class);


200 instances (5 inst*40 class);

CNNOverFeat 78.3

CNNOverFeat 74.4

CNNOverFeat 68.9
Akata et al. CVPR 2015 CNNGoogLeNet 73.9

TMV-BLP (Fu et al. ECCV 2014) CNNOverFeat 69.9

AMP (SR+SE) (Fu et al. CVPR 2015) CNNOverFeat 66.0
DAP (Lampert et al. TPAMI 2013) CNNVGG19 57.5
PST (Rohrbach et al. NIPS 2013) CNNOverFeat 53.2

DS (Rohrbach et al. CVPR 2010) CNNOverFeat 52.7
IAP (Lampert et al. TPAMI 2013) CNNOverFeat 44.5
HEX (Deng et al. ECCV 2014)	 CNNDECAF 44.2

+4.4%

[ Fu et al., 2016 ]
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Weakly-supervised Visual Grounding of Phrases
Given image-sentence pairs learn how to localize arbitrary language phrase 
or sentence in new images

[ Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollar, Zitnick, ECCV’14 ]

[ Xiao et al., 2017 ]
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Qualitative Results NO linguistic constraints

Our Model

Input:

a person driving a boat

[ Xiao et al., 2017 ]



Qualitative Results NO linguistic constraints

Our Model

Input:

a child wearing black protective helmet

[ Xiao et al., 2017 ]



Quantitative Results

IoU@0.3 IoU@0.4 IoU@0.5 Avg mAP

Non-strcutred 0.302 0.199 0.110 0.203

Parent-Child 0.327 0.213 0.118 0.219

Sibling 0.316 0.203 0.114 0.211

Ours 0.347 0.246 0.159 0.251

Segmentation performance on COCO dataset
[ Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollar, Zitnick, ECCV’14 ]

[ Xiao et al., 2017 ]



Order Embeddings
[ Vendrov et al., 2016 ]



Multimodal Representation Types

— Simplest version: modality concatenation (early fusion)  

— Can be learned supervised or unsupervised
Modality 1Modality 2

Representation

Modality 1Modality 2

Repres. 1 Repres. 1

Joint representations:

Coordinated representations:

*slide from Louis-Philippe Morency

— Similarity-based methods (e.g., cosine distance) 

— Structure constraints (e.g., orthogonality, sparseness)  

— CCA (unsupervised), joint embeddings (supervised)



Final Words …

Joint representations 
— Project modalities to the same space 
— Use  when all the modalities are present during test time 
— Suitable for multi-model fusion 

Coordinated representations  
— Project modalities to their own coordinated spaces 
— Use when only one of the modalities is present during test-time 
— Suitable for multimodal translation 
— Good for multimodal retrieval  

*slide from Louis-Philippe Morency


